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Abstract—We study pulse synchronization of chaotic systems
in master-slave configuration. The slave system is unidirec-
tionally coupled to the master system through an intermittent
linear error feedback coupling, whose gain matrix periodi-
cally switches among a finite set of constant matrices. Using
Lyapunov-stability theory, fast-switching techniques, and the
concept of matrix measure, we derive sufficient conditions for
global synchronization. The derived conditions are specialized
to the case of Chua’s circuits. An inductorless realization of cou-
pled Chua’s circuits is developed to illustrate the effectiveness
of the proposed approach.

Index Terms—Global synchronization, fast-switching, Chua’s
circuits, master-slave synchronization

I. INTRODUCTION

Synchronization of chaotic oscillators has incurred great
interest in recent years, see for example the excellent reviews
[1], [2], [3]. Chaos synchronization has been observed in a
wide variety of phenomena ranging from biological systems,
that include animal groups [4], fireflies [5], animal gaits
[6], heart stimulation [7], and neural activity [8], to secure
communications [9], [10], [11], [12], [13], [14], chemistry
[15], meteorology [16], and nonlinear optics [17].

Synchronization schemes for two identical chaotic oscil-
lators can be classified into bidirectional [18], [19], [20] or
unidirectional [21], [22], [23], [24], [25], [26], [27], [28],
[29] depending on the coupling between the oscillators [30].
Synchronization of unidirectionally coupled oscillators is
generally referred to as master-slave synchronization. In this
case, one system acts as a “master” by driving the other
system, that consequently behaves as a “slave”.

Most of the research efforts on master-slave synchroniza-
tion focuses on time-invariant coupling, see for example [21],
[22], [24], [25], [26], [27], [28], [29]. Nevertheless, experi-
mental results on Chua’s circuits [23] and modified Chua’s
circuits [31] indicate that master-slave synchronization can
also be achieved under time-varying intermittent coupling.

In this paper, we establish sufficient conditions for global
synchronization of master-slave coupled chaotic systems with
time-varying coupling. We consider the case of pulse syn-
chronization experimentally investigated in [23], [31]. That
is, we assume that the systems are unidirectionally coupled
via a linear error feedback, whose gain matrix periodically
switches over time among a finite set of constant gain matri-
ces. We introduce a partially averaged system, see for exam-
ple [32], that describes master-slave synchronization under a
time-invariant coupling, whose constant gain matrix equals
the time-average of the switching gain. Using recent results

on partial averaging tecniques [33], [34], well-established
global synchronization criteria based on Lyapunov-stability
theory [25], [29], and the concept of matrix measure [35],
we establish sufficient conditions for pulse synchronization.
In particular, we provide easily manageable conditions on
the time-average gain matrix, and on the switching period
for global synchronization.

In order to illustrate the proposed approach, we specialize
our results to the synchronization of Chua’s circuits. Theo-
retical results are validated through experiments conducted
on coupled Chua’s circuits. Each circuit is developed using
the inductorless synthesis proposed in [36], that combines the
Chua’s diode realization of [37] with the Antoniou RC active
realization of a grounded inductance [38]. An RC active
circuit implementation of a full-state linear error feedback,
involving both voltage and current states, is presented.

The rest of the paper is organized as follows. In Section
II, we present our results on fast-switching global synchro-
nization of chaotic oscillators. In Section III, we propose a
hardware demonstration based on Chua’s circuits. Section IV
is left for conclusions.

Our notation throughout is standard. ‖·‖ refers to a norm in
Rn and the corresponding induced norm in Rn×n, where n is
a positive integer. Z+ refers to the set of nonnegative integers,
also In is the n × n identity matrix. Matrix transposition is
indicated with superscript T. The symmetric part of a matrix
A ∈ Rn×n with n ∈ Z+ is indicated with symA, that is
symA = 1

2 (A+AT). The one sided directional derivative of
‖ · ‖ at the identity matrix In in the direction A ∈ Rn×n is
called the matrix measure of A and denoted by µ(A). That
is,

µ(A) = lim
h→0+

‖I + hA‖ − 1
h

(1)

Basic properties of the matrix measure for A,B ∈ Rn×n are
[35]

µ(A + B) ≤ µ(A) + µ(B) (2a)
µ(A) ≤ ‖A‖ (2b)

In the case of the Euclidean norm ‖ · ‖2, the matrix measure
is computed by

µ2(A) = max
i=1,...,n

λi(symA) (3)

where λi(A) indicates the ith eigenvalue of A.
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II. PULSE SYNCHRONIZATION OF CHAOTIC SYSTEMS

A. Problem Statement

We consider the master system

ẋ(t) = Ax(t) + g(x(t)) + u(t) (4)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rn is the input
vector, A ∈ Rn×n is a constant matrix, g is a non linear
function, and t ∈ R+ the time variable. We construct a slave
system for (4)

˙̃x(t) = Ax̃(t) + g(x̃(t)) + u(t) + K(t)(x(t)− x̃(t)) (5)

Slave system (5) is unidirectionally coupled to the master
system (4) through the feedback matrix function K : R+ →
Rn×n. We consider the case where K(t) is a piecewise
constant bounded matrix function. At any point in time, K(t)
takes values from the set Θ = {K1,K2, . . . , KN} where
N ∈ Z+. Over the interval [0, T ),

K(t) = Kr for t ∈
[
T

r−1∑

i=1

δi, T

r∑

i=1

δi

)
(6)

where δi is the duty cycle of the subsystem corresponding to
the matrix Ki, so that 0 < δi < 1 and

∑N
i=1 δi = 1.

Following [25], we assume that

g(x)− g(x̃) = Mx,x̃(x− x̃) (7)

for some bounded matrix Mx,x̃, whose elements depend on
x and x̃. As discussed in [25], this condition applies to a
large variety of chaotic systems.

We express the system of equations (4) and (5) in terms
of the error function e = x− x̃, that is

ė(t) = Ae(t) + g(x(t))− g(x̃(t))−K(t)e(t) (8)

Using (7), equation (8) can be compactly rewritten as

ė(t) = f(e(t), t, t/T ) (9a)
f(e(t), t, t/T ) = (A + Mx(t),x(t)−e(t))e(t)−K(t)e(t) (9b)

Equation (9a) shows that two different time scales are in-
volved in the problem: a fast time scale t/T representing
the switching process and a slow time scale t describing the
chaotic dynamics. We say that the oscillators globally syn-
chronize if the nonautonomous nonlinear system described by
(8) is globally asymptotically stable, see for example [39].

We note that, since Mx,x̃ is bounded and Θ is finite,
f(e(t), t, t/T ) is globally Lipschitz in R+, that is

‖f(x, t, t/T )− f(y, t, t/T )‖ ≤ L‖x− y‖ (10)

for any x, y ∈ Rn and any t ∈ R+, and with Lipshitz constant
L > 0. Along with the Lipshitz constant L we define the
following bound for the matrix measure of A + Mx(t),x̃(t)−
K(t)

µ(A + Mx,x̃ −K) ≤ L (11)

that holds for any x, x̃ ∈ Rn and K ∈ Θ. Unlike the Lipshitz
constant L, the constant L can be positive or negative.
Following the same line of argument of the proof of Theorem

1 of [29], we can use the constant L to quantify the rate of
growth of the error e(t) as

‖e(t)‖ ≤ exp(L(t− t0))‖e(t0)‖ (12)

for any t0 ∈ R+ and t > t0. We also note that using the
triangle inequality and the properties of the matrix measure
recalled in (2), we can choose L = L∗ and L = L∗ ≤ L∗
given by

L∗ = m + max
1≤i≤N

{‖A−Ki‖} (13a)

L∗ = m + max
1≤i≤N

{µ(A−Ki)} (13b)

where m > 0 is such that ‖Mx,x̃‖ ≤ m.
Using (12), a simple criterion for global synchronization

can be stated.
Theorem 1: Consider the nonlinear nonautonomous

switched system (9a). If the feedback gain matrix K(t) is
chosen such that

L ≤ −κ (14)

for any t ∈ R+ and some κ > 0, then (9a) is globally
exponentially stable, implying that the oscillators globally
synchronize.

Proof: If condition (14) holds, then equation (12) yields
directly

‖e(t)‖ ≤ exp(−κ(t− t0))‖e(t0)‖ (15)

which implies the claim since κ > 0.

B. Fast-Switching Global Synchronization

We associate to the nonlinear nonautonomous system (9a)
the partially averaged system

ė(t) = f(e(t), t, t/T ) (16a)
f(e(t), t, t/T ) = (A + Mx(t),x(t)−e(t))e(t)−Ke(t) (16b)

where K =
∑N

i=1 δiKi represents the time-average gain
matrix.

In what follows, we show that pulse synchronization of
coupled oscillators can be assessed through the analysis of the
partially averaged system (16a). In particular, we show that if
the time-average gain matrix is chosen such that the partially
averaged system (16a) is globally exponentially stable with
a monotonically decaying quadratic Lyapunov function, then
the oscillators globally synchronize under fast-switching in-
termittent coupling. This means that if the switching period
T is sufficiently small, compared to the individual oscillator’s
time dynamics, then global pulse synchronization is achieved.

The proof of our claim combines results from global
synchronization of coupled oscillators, based on Lyapunov-
stability theory [25], [29], with stability results from partial
averaging techniques [33], [34]. In particular, we build on
the use of a quadratic Lyapunov function for chaotic systems
coupled via a time-invariant coupling [25], [29] and on the
stability results established in [33], [34] that are valid for
more general Lyapunov functions.

Theorem 2: Consider the nonautonomous nonlinear
switched system (9a) and the corresponding partially
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averaged system (16a). If the feedback gain matrix function
K(t) is chosen such that ∀ξ ∈ Rn

li(ξ, t) ≤ −w < 0, i = 1, 2, ...n (17)

where w > 0, li(ξ, t)’ s are the eigenvalues of the matrix

Q(ξ, t) = (A−K + Mx(t),x(t)−ξ)TP+

P (A−K + Mx(t),x(t)−ξ) (18)

x(t) is a solution of (4), and P is a positive definite
symmetric constant matrix, then the partially averaged system
(16a) is globally exponentially stable. Moreover there exists
a T ∗ > 0 such that such that ∀T < T ∗ (9a) is also globally
exponentially stable, implying that the oscillators globally
synchronize.

Proof: Define the quadratic function

V (ξ) = ξTPξ (19)

The derivative of V along the trajectory of the partially
averaged system (16a) is

V̇ (e(t)) = 2e(t)TP f̄(e(t), t) (20)

From equations (16b) and (18) we have that ∀ξ ∈ Rn and
t ∈ R+

2ξTP f̄(ξ, t) = ξTQ(ξ, t)ξ ≤ −w‖ξ‖2 (21)

We note that from equations (17) and (21), V is a
Lyapunov function for the partially averaged system whose
derivative along the flow of (16a) is negative definite. Thus,
the partially averaged system (16a) is globally exponentially
stable [39], and the two oscillators globally synchronize
under the time constant coupling matrix K.

In general, the function V is not a Lyapunov function for
the switched system (9a) even under fast-switching condi-
tions. Nevertheless, global exponential stability of (9a) can be
enforced by using the weaker stability conditions presented
in [33]. Indeed Theorem 1 of [33], applied to the case at
hand, states that if there exists ν > 0 such that for any
k ∈ Z+, V (e((k+1)T ))−V (e(kT )) ≤ −ν‖e(kT )‖2, where
e((k+1)T ) is the solution of (9a) with initial condition e(kT )
at t = kT , then (9a) is globally exponentially stable. In what
follows, we show that there exists a finite switching period
T ∗ such that conditions of Theorem 1 of [33] apply for any
T < T ∗. To this aim, we define for every k ∈ Z+

∆kV = V (e((k + 1)T ))− V (e(kT )) (22)

The derivative of V along the trajectory of the switched
system is

V̇ (e(t)) =
dV

de
(e(t))f(e(t), t, t/T ) =

2eT(t)Pf(e(t), t, t/T ) (23)

From (9a), (23), and (22), we have

∆kV =
∫ (k+1)T

kT

V̇ (e(t))dt =

2
∫ (k+1)T

kT

eT(t)Pf(e(t), t, t/T )dt =

2
[∫ (k+1)T

kT

eT(t)Pf(e(t), t, t/T )−

eT(kT )Pf(e(kT ), t, t/T )dt

]
+

2eT(kT )P
[∫ (k+1)T

kT

f(e(kT ), t, t/T )dt

]
(24)

We seek an upper bound for the absolute values of the two
terms in the right hand side of (24). We start our analysis by
considering the first term, that we rewrite for convenience as

∫ (k+1)T

kT

2eT(t)P (f(e(t), t, t/T )− f(e(kT ), t, t/T ))+

2(eT(t)− eT(kT ))Pf(e(kT ), t, t/T )dt (25)

Using (12) we have

‖e(t)‖ ≤ ‖e(kT )‖ exp(LT ) (26)

for any t ∈ [kT, (k + 1)T ). In addition, we note that for any
t ∈ [kT, (k + 1)T )

e(t) = e(kT ) +
∫ t

kT

f(e(s), s, s/T )ds (27)

Using the Lipshitz condition (10) in (27), we obtain

‖e(t)− e(kT )‖ ≤
∫ t

kT

L‖e(s)‖ds (28)

Accounting for (26) in (28), we find

‖e(t)− e(kT )‖ ≤ LT‖e(kT )‖ exp(LT ) (29)

Using (10), (26), and (29) in (25), we find
∣∣∣∣
∫ (k+1)T

kT

2eT(t)Pf(e(t), t, t/T )−

2eT(kT )Pf(e(kT ), t, t/T )dt

∣∣∣∣≤ g(T )‖e(kT )‖2 (30)

where we added and subtracted in equation (30) the function
g(T ) is given by

g(T ) = 2T 2L2‖P‖ exp(LT )(1 + exp(LT )) (31)

Now, we consider the second term in the right side of
(24). First, we note that from the definition of the partially
averaged system and the fact that e(kT ) is not a function of
time, see equations (9b) and (16b), we have

∫ (k+1)T

kT

f(e(kT ), t, t/T )dt =
∫ (k+1)T

kT

f(e(kT ), t)dt

(32)
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Using (21), the second term in (24) can be bounded by

2eT(kT )P
∫ (k+1)T

kT

f(e(kT ), t, t/T )dt ≤ −wT‖e(kT )‖2
(33)

Using (30) and (33) in (24), we obtain

∆kV ≤ (g(T )− wT )‖e(kT )‖2 (34)

Noticing that g(0) = 0 and g′(0) = 0, we find that there
exists T ∗ > 0 such that

∆kV ≤ −ν‖e(kT )‖2 (35)

where ν = [wT − g(T )] > 0, for every T < T ∗. This
implies that (9a) is globally exponentially stable according
to Theorem 1 of [33].

Choosing P = In and making use of the constants defined
in (13), we obtain the following following specialization of
Theorem 2.

Corollary 1: Consider the nonautonomous nonlinear
switched system (9a) and the corresponding partially
averaged system (16a). If the feedback gain matrix K(t)
is chosen such that its time average is a diagonal matrix
K = diag[k1, · · · kn] and

ki ≥ 1
2


bii +

∑

j 6=i

|bij |+ w


 , i = 1, 2, ...n (36)

where B = [bij ] is defined by

B = 2sym(A + Mx(t),x(t)−e(t)) (37)

with w > 0. Then, (9a) is globally exponentially stable for
any T < T ∗, where T ∗ is the smallest nonzero solution of

2TL2
∗ exp(L∗T )(1 + exp(L∗T ))− w = 0 (38)

and L∗ and L∗ are given in (13).
Proof: By applying Gerschgorin’s theorem [40], it can

be shown that conditions (17) follow from (36). By applying
Theorem 2, and by noticing that ‖P‖2 = 1 in (31), the claim
follows.
We note that the matrix B in (37) is a function of x(t) and
e(t).

III. CASE STUDY: SYNCHRONIZATION OF TWO CHAOTIC
CHUA’S CIRCUIT

A. Governing Equations

As an example, we specialize our results to synchroniza-
tion of Chua’s circuits, see for example [41]. A Chua’s circuit
is described by





ẋ1 = a(x2 − x1 − h(x1))
ẋ2 = x1 − x2 + x3

ẋ3 = −bx2

(39)

where a > 0, b > 0 and the nonlinear function h has the
form

h(x1) = m1x1 +
1
2
(m0 −m1)(|x1 + 1| − |x1 − 1|) (40)

with m0 < 0 and m1 < 0. We define

h(x1)− h(x̃1) = wx1,x̃1(x1 − x̃1) (41)

where wx1,x̃1 depends on x1 and x̃1 and is bounded by
m0 ≤ wx1,x̃1 ≤ m1, see for example [25]. We consider
the case where the feedback matrices in Θ are all diagonal.
Following (5), the slave system of (39) below is constructed





˙̃x1 = a(x̃2 − x̃1 − h(x̃1)) + k1(t)(x1 − x̃1)
˙̃x2 = x̃1 − x̃2 + x̃3 + k2(t)(x2 − x̃2)
˙̃x3 = −bx̃2 + k3(t)(x3 − x̃3)

(42)

Combining (39) and (42), we obtain the error dynamics (8),
with

A =



−a a 0
1 −1 1
0 −b 0


 , g(x) =



−ah(x1)

0
0




K(t) =




k1(t) 0 0
0 k2(t) 0
0 0 k3(t)


 (43)

We observe that g(x)− g(x̃) = Mx,x̃e, with

Mx,x̃ =



−awx1,x̃1 0 0

0 0 0
0 0 0


 (44)

Using the Euclidean norm, we have ‖M‖2 ≤ a|m0|, see
for example [25]. The constants L∗ and L∗ are computed
specializing (13) to the Euclidean norm

L∗ = a|m0|+ max
1≤i≤N

{‖A−Ki‖2} (45a)

L∗ = a|m0|+ max
1≤i≤N

{µ2(A−Ki)} (45b)

where the matrix measure is defined in (3).
Global pulse synchronization is achieved by enforcing the

conditions of Corollary 1 for some w > 0. In particular,
conditions (36) specified to the case at hand, yield

k1 ≥ 1
2
(1− a− 2am0 + w)

k2 ≥ 1
2
(a− 1 + |1− b|+ w) (46)

k3 ≥ 1
2
(|1− b|+ w) (47)

Equations (46) guarantee that the partially averaged system
is globally exponentially stable. Solving equation (38), we
determine the slowest switching rate that guarantees global
pulse synchronization.

B. Experimental Results

The experimental test-bed is constituted of two Chua’s
circuits. The simplest implementation of a Chua’s circuit
comprises four passive components, including two capacitors,
one resistor, and one inductor, and a single nonlinear com-
ponent called Chua’s diode. Following [36], we synthesize
the Chua’s diode using the circuit realization proposed in
[37], and we synthesize the inductor using the Antoniou’s

5095



circuit [38]. This inductorless synthesis permits a fine tuning
of the nominal parameters of the circuit, and provides a
robust circuit realization. For ease of implementation, we
consider a feedback gain matrix K(t) that switches between
two constant matrices K1 and K2. We further specialize our
experiments to the case where the feedback gain for the x3

variable is constant in time and is equal to k3. Moreover, we
assume that the feedback gains for the x1 and x2 variables
switch between 0 and positive values, k1 and k2 respectively.
Switching is driven by a square wave whose duty cycle is
kept constant to δ1 = δ2 = 0.5.

The realization of the experimental platform includes
passive and active circuit elements. Employed elements are
carbon film resistors (5% of tolerance respect to the nominal
value), ceramic disk capacitors (20% of tolerance respect to
the nominal value), TL082 operational amplifiers ( biased at
±9V ), and DG419 analogue switches. Switches are driven
by a square wave generated by the CF0250 function gener-
ator by Tektronix. The choice of the hardware components
implies the following values for the parameters describing the
Chua’s circuits in (39): a = 9.80, b = 13.44, m0 = −1.217,
and m1 = −0.648. The values of the feedback gains are
k1 = 40, k2 = 55, and k3 = 20. Data are collected with
National Instruments PCI − 6229 acquisition board with
a sample period Ts = 0.1006. All the quantities reported
in the following figures are nondimensional. We note that
the dimensional time in the actual experiment is equal to
tt0, where t0 = 0.1656ms, and t is the dimensionless time
appearing in equation (39). Fig. 1 shows the chaotic dynamics
of one Chua’s circuit.

Fig. 1. Trajectory of the system in the x1 − x2 plane.

The time-average coupling matrix K = diag[20, 27.5, 20]
satisfies condition (36) with w = 25. Therefore, Corollary 1
guarantees global pulse synchronization under fast-switching.
Experimentally, we note that the coupled circuits synchronize
for switching periods lower than T = 0.6039. As the
switching period increases synchronization becomes weaker
and weaker, and for the switching period T = 6.0386 the os-
cillators lose synchronization. Fig. 2 shows how the coupled

circuits synchronize for a switching period T = 0.0403, and
Fig. 3 instead illustrates how oscillators lose synchronization
at a switching period T = 6.0386.

Fig. 2. Experimental synchronization graph in the x1 − x̃1 plane for a
time-varying coupling of period T = 0.0403.

Fig. 3. Experimental synchronization graph in the x1 − x̃1 plane for a
time-varying coupling of period T = 6.0386.

For brevity, the trajectories in the x2 − x̃2 and x3 − x̃3

planes are not reported. Nevertheless the graphs confirm
synchronization achievement shown in Fig. 2. It is important
to notice that the existence of a residual synchronization error
is due to a constructive difference between parameters of the
two Chua’s circuits. Solving equation (38) for the present
case, we find a relatively conservative estimate of the slowest
switching period T ∗ for global pulse synchronization. From
(45), we find L∗ = 14.89 and L∗ = 84.32. Numerically solv-
ing equation (38), we find that the maximum switching period
that guarantees global synchronization is T ∗ = 0.000857.

IV. CONCLUSIONS

In this paper, we study global pulse synchronization of
two coupled chaotic systems. The systems are unidirection-
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ally coupled through a linear error feedback that periodi-
cally switches over time. The global pulse synchronization
problem is transformed into a global exponential stability
problem for a nonlinear nonautonomous switched system. We
associate to the switched system a partially averaged one that
describes synchronization under the time-average coupling
feedback gain matrix. We derive sufficient conditions for
global pulse synchronization in terms of the time-average
feedback gain matrix, and the switching rate. We show
that synchronizability under time-average coupling can be
inherited in the case of switched coupling if the switching
rate is sufficiently fast.

Proposed criteria are easily applicable to a wide class of
chaotic systems. We illustrate our general findings through
the analysis of coupled Chua’s circuits. Theoretical findings
are validated through experimental results. An inductorless
realization of two Chua’s circuit coupled through a full-state
linear diagonal switched feedback is developed. Experimental
results show that synchronization is possible if the time-
average feedback gains are properly chosen, and the switch-
ing rate is sufficiently large.
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