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Abstract— In this paper we consider the finite-time stability
problem for discrete-time linear systems. Differently from
previous papers, the stability analysis is performed with the aid
of polyhedral Lyapunov functions rather than using the classical
quadratic Lyapunov functions. In this way we are able to deal
with more realistic constraints on the state variables; indeed, in
a way which is naturally compatible with polyhedral functions,
we assume that the sets to which the state variables must belong
to in order to satisfy the finite-time stability requirement are
boxes (or more in general polytopes) rather than ellipsoids. The
main result, derived by using polyhedral Lyapunov functions,
is a sufficient condition for finite-time stability of discrete-time
linear systems. Some examples are presented to illustrate the
advantages of the proposed methodology over existing methods.

I. INTRODUCTION

The concept of finite-time stability (FTS), or short-time

stability, considered in this paper dates back to the Sixties,

when this idea was introduced in the control literature [6],

[9]. A system is said to be finite-time stable if, given a

bound on the initial condition, its state does not exit a certain

domain during a specified time interval. It is important to

note that FTS and Lyapunov Asymptotic Stability (LAS) are

independent concepts; indeed a system can be FTS but not

LAS, and vice versa. While LAS deals with the behavior

of a system in a sufficiently long (in principle infinite) time

interval, FTS is a more practical concept, useful to study the

behavior of the system in a finite (possibly short) interval.

Therefore FTS finds application whenever it is desired that

the state variables do not exit a given domain (for example

to avoid saturations or the excitation of nonlinear dynamics)

during the transients.

Recently, in [2] for the discrete-time case and in [3] for

the continuous-time case, the authors extended the definition

of FTS given in [6] and derived sufficient conditions for FTS

and finite-time stabilization via state feedback of linear sys-

tems. All these conditions require the solution of feasibility

problems involving Linear Matrix Inequalities (LMIs).

The definition of FTS given in [2] and [3] exploits the

standard weighted quadratic norm to define both the initial

state domain (initial domain) and the domain where the
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Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli,
Italy.

trajectory is requested to be confined over a prescribed time

interval (trajectory domain); therefore such domains turn out

to be ellipsoidal. The definition of the above domains is

consistent with the fact that quadratic Lyapunov functions

are used to derive the main results of [2] and [3].

In this paper we propose a new definition for the initial and

trajectory domains that makes use of polytopes rather than

of ellipsoidal domains. Polytopic domains naturally arise in

many practical problems when, for instance, we consider

constraints on the state variables in the form ai ≤ xi ≤ bi.

If the domains are defined by means of polytopes, the FTS

analysis based on the ellipsoidal domains introduces conser-

vatism since it is needed to approximate the polytopic initial

domain by an appropriate ellipsoidal domain containing it,

and the polytopic trajectory domain by another ellipsoidal

domain contained in it. For example let us consider the

discrete-time system

x(t + 1) =

(

1.0 0.4
−0.5 1.0

)

x(t) , t = 0, 1, . . . (1)

and assume that the following constrains on the state vari-

ables are imposed

−0.7 ≤ x1(0) ≤ 0.7 (2a)

−1.0 ≤ x2(0) ≤ 1.0 (2b)

−2.45 ≤ x1(t) ≤ 2.45, t ∈ {1, . . . , N} (2c)

−2.5 ≤ x2(t) ≤ 2.5, t ∈ {1, . . . , N} , (2d)

where N = 7.

If we analyze this FTS problem using the approach pro-

posed in [2], we need to approximate the initial domain and

the trajectory domain by ellipsoidal domains (see Fig. 1);

it is therefore clear that the approximation of the domains

introduces conservatism in the FTS analysis.

Moreover, as we will see in Section II, in some cases the

technique proposed in [2] cannot be applied; this happens

when the ellipsoid approximating the trajectory domain does

not contain the ellipsoid approximating the initial domain.

To overcome this problem, in this paper we will provide a

technique based on polyhedral Lyapunov functions [5] which

allows us to take directly into account polytopic domains in

the FTS analysis; the main result is a sufficient condition for

FTS of linear time-invariant systems. Then we present some

numerical examples to show the advantages of the proposed

approach over the existing techniques.

The paper is organized as follows: in Section II a definition

of FTS in which the initial and trajectory domains are poly-

topes is given, and some preliminary results are provided. In
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Fig. 1. Initial domain and trajectory domain for system (1).

Section III the main result of the paper is stated, namely a

sufficient condition for FTS based on polyhedral functions

theory. In Section IV some examples which illustrate the

benefits of the proposed approach are discussed. Finally,

some conclusions are drawn in Section V.

Notation

We denote by qi, i = 1, ..., m, the i-th column of a matrix

Q ∈ R
n×m. If Q ∈ R

n×m is a full row rank matrix, we

indicate with ℘(Q) the polytope defined as (see [8], p. 6)

℘(Q) := {x ∈ R
n : ‖QT x‖∞ ≤ 1} , (3)

where, given a vector v ∈ R
m, ‖v‖∞ :=

max{|v1|, . . . , |vm|} denotes the infinity norm of v.

By ∂℘(Q) we indicate the boundary of the polytope ℘(Q).

II. PROBLEM STATEMENT AND PRELIMINARIES

Let us consider the following linear system

x(t + 1) = Ax(t) , t = 0, 1, . . . , (4)

where A ∈ R
n×n. Roughly speaking, system (4) is said to be

finite-time stable (FTS) if, given a certain initial domain, its

state remains, over a finite-time interval, within a prescribed

trajectory domain. In particular, we assume that both the

domains are polytopes.

Definition 1 (Finite-time stability): System (4) is said to

be FTS with respect to (P0, P, N), where N is a positive

number, P0 ∈ R
n×m0 and P ∈ R

n×m are two full-row rank

matrices with ℘(P0) ⊂ ℘(P ), if

x(0) ∈ ℘(P0) ⇒ x(t) ∈ ℘(P ) ∀t ∈ {1, . . . , N}. (5)

♦

Remark 1: Note that, given a full row rank matrix P , the

set ℘(P ) is a polytope symmetric with respect to the origin

(see (3)). It follows that, by Definition 1, we are restricting

our attention to the class of initial and trajectory domains

that are symmetric polytopes. ♦

Remark 2: A sufficient condition for system (4) to be

FTS with respect to (P0, P, N) can be derived by using the

approach proposed in [2]. The main result of [2] states that

system (4) is FTS with respect to (P0, P, N) if there exist

three positive scalars c1, c2, α, with α ≥ 1 and c2 > c1, and

two positive definite matrices R, Q ∈ R
n×n such that

℘(P0) ⊆ E1 = {x ∈ R
n : xT Rx ≤ c1} (6a)

℘(P ) ⊇ E2 = {x ∈ R
n : xT Rx < c2} (6b)

AT QA − αQ < 0 (6c)
c1

c2
αN I < Q̃ < I , (6d)

where Q̃ = R−1/2 Q R−1/2. First note that this way of

proceeding unavoidably introduces conservatism in the FTS

analysis. Even worse, there are some cases when it is not

possible to find a matrix R and two scalars c1 and c2,

c2 > c1, such that conditions (6a) and (6b) are satisfied

with E1 ⊂ E2. In these cases, the procedure derived in [2]

cannot be applied. For example assume that the initial and

trajectory domains are

℘(P0) = {x ∈ R
2 : |x1| ≤ 1, |x2| ≤ 1}

℘(P ) = {x ∈ R
2 : |x1| ≤ 1 + ǫ, |x2| ≤ 2, ǫ > 0} .

It is easy to see that, regardless of the system under consid-

eration and the step N , there exists a lower bound ǭ to the

value of ǫ for which the approach proposed in [2] cannot be

exploited because it is not possible to find two ellipsoidal

domains E1 and E2 that verify ℘(P0) ⊆ E1 ⊂ E2 ⊆ ℘(P ). ♦

In Section III, we will present an alternative sufficient

condition which does not suffer from the drawbacks of the

approach proposed in [2]. To this end, we will make use of

the class of polyhedral Lyapunov functions [5], which are

piecewise linear functions of the following form

V (x) = ‖QT x‖∞ ,

where Q is a full row rank matrix.

A. Some useful results about polytopes

In the following we provide some preliminary definitions

and results on linear algebra and polytopes that will be

necessary to state the main result of the paper.

If we deal with a finite set, say K = {x(1), . . . , x(l)} ⊂
R

n, the convex hull of K turns out to be a polytope, whose

dimension ([10], p. 5), is given by the dimension of the affine

hull of K , i.e.

rank
[

x(2) − x(1) x(3) − x(1) . . . x(l) − x(1)
]

.

Moreover, as stated in next lemma, the set of vertices of a

given polytope P is a subset of K .

Lemma 1 ([10]): Given a polytope defined as the convex

hull of K = {x(1), . . . , x(l)} ⊂ R
n, the vertices of the

polytope are the points x(i) ∈ K which satisfy the following

property

x(i) /∈ conv
(

K − {x(i)}
)

.

♦
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Remark 3: Note that, given a collection of symmetric

points K = {x(1), . . . , x(2l)}, x(i) = −x(l+i), i = 1, . . . , l,
if x(i) is a vertex of conv(K), then also x(l+i) = −x(i) is a

vertex of conv(K). ♦

Remark 4: A given symmetric polytope P admits two

different equivalent descriptions: by means of its vertices,

and by means of a suitable matrix (see (3)). The algorithm

in [4], implemented in the Matlab routine convhulln, enables

to find the matrix Q defining a polytope starting from the

polytope vertices. ♦

In the following, given a symmetric polytope ℘(Q), we

indicate with x
(i)
Q with i = 1 . . . 2l the vertices of ℘(Q) and

we suppose that x
(i)
Q = −x

(i+l)
Q for i = 1 . . . l.

To conclude this section, we present a lemma that will be

used in the proof of the main result.

Lemma 2: Let P0 ∈ R
n×m0 and P ∈ R

n×m be two full-

row rank matrices. If ℘(P0) ⊆ ℘(P ) then

‖PT x‖∞ ≤ ‖PT
0 x‖∞ , ∀x ∈ R

n .

Proof: Consider a vector x ∈ R
n. There exist two

points x̄ ∈ ∂℘(P ) and x̄0 ∈ ∂℘(P0), and two positive scalars

β and β0 such that

x = βx̄ = β0x̄0.

Taking into account that ℘(P0) ⊆ ℘(P ), we have that for

some γ ≥ 1
x̄ = γx̄0 ,

which implies

β ≤ β0 . (7)

Finally, from the definition of boundary point of a polytope,

we have

‖PT x‖∞ = β‖PT x̄‖∞ = β

‖PT
0 x‖∞ = β0‖P

T
0 x̄0‖∞ = β0

From the last statement and (7), the proof follows.

III. MAIN RESULT

The following theorem is the main result of the paper.

Theorem 1 (Sufficient condition for FTS): System (4) is

finite-time stable with respect to (P0, P, N) if there exists

a polytope ℘(Q) of dimension n such that the following

conditions hold

max
i

‖QT Ax
(i)
Q ‖∞ ≥ 1 , (8)

max
i

‖QT x
(i)
P0
‖∞ max

i
‖PT x

(i)
Q ‖∞·

·
(

max
i

‖QT Ax
(i)
Q ‖∞

)N

≤ 1 , (9)

where x
(i)
P0

are the vertices of the polytope ℘(P0).
Proof: Consider a polytope ℘(Q) specified as the

convex hull of the set {x
(1)
Q , ..., x

(2l)
Q }.

Now let us consider the polyhedral Lyapunov function

V (x) = ‖QT x‖∞ . (10)

Assume that there exists a scalar α ≥ 1 such that the

condition

V (x(t + 1)) ≤ αV (x(t)) (11)

holds for all t = 0, . . . , N , where x(t+1) is evaluated along

the solution of the system (4).

We will first demonstrate that conditions

max
i

‖QT x
(i)
P0
‖∞ max

i
‖PT x

(i)
Q ‖∞ αN ≤ 1 (12)

and (11) imply that system (4) is FTS with respect to

(P0, P, N). Then, to conclude the proof, we will show that

conditions (11) and (12) are implied by (8) and (9).

Applying iteratively (11), we obtain

V (x(t)) ≤ αtV (x(0)), t = 1, . . . , N . (13)

It follows that

‖QT x(t)‖∞ ≤ ‖QT x(0)‖∞αt ∀t = 1, . . . , N . (14)

Since x(0) ∈ ℘(P0) and ‖QT x‖∞ enjoys a radial prop-

erty, an upper bound to the quantity ‖QT x(0)‖∞ is attained

at one of the vertices of ℘(P0), i.e.

‖QT x(0)‖∞ ≤ max
i

‖QT x
(i)
P0
‖∞ . (15)

Let us choose h > 0 such that

℘(Q) ⊆ ℘(hP ) . (16)

Taking into account Lemma 2, equation (16) can be equiv-

alently written as

‖QT x‖∞ ≥ h‖PT x‖∞ ∀x ∈ R
n . (17)

Since the polytope ℘(Q) is included in the polytope ℘(hP ),
the vertices of ℘(Q) belong to ℘(hP ), therefore we have

max
i

h‖PT x
(i)
Q ‖∞ ≤ 1 . (18)

Equation (18) gives an upper bound to the values of h that

satisfy (17)

h ≤ hmax :=
1

maxi ‖PT x
(i)
Q ‖∞

. (19)

From (17) and (19) we have along the system trajectories

‖QT x(t)‖∞ ≥ hmax‖P
T x(t)‖∞ =

‖PT x(t)‖∞

maxi ‖PT x
(i)
Q ‖∞

.

(20)

Putting together (14), (15) and (20), we obtain

‖PT x(t)‖∞ ≤

max
i

‖QT x
(i)
P0
‖∞ max

i
‖PT x

(i)
Q ‖∞αt , t = 1, . . .N . (21)

From (21) it readily follows that (12) implies, for all t =
1, . . .N , ‖PT x(t)‖∞ ≤ 1; from this last consideration our

first claim follows.

Now we will prove that conditions (8) and (9) guaran-

tee (11) and (12). Condition (11) is guaranteed if [5]

max
j

q̃T
j Ax ≤ α max

j
q̃T
j x, ∀x ∈ R

n , (22)
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where q̃j denotes the j-th column of Q̃ =
(

Q −Q
)

.

For each x, there exist a positive scalar λ and a point

xb ∈ ∂℘(Q) such that x = λxb. Since maxj q̃T
j xb = 1,

condition (22) can be equivalently rewritten

max
j

q̃T
j Ax ≤ α , ∀x ∈ ∂℘(Q) . (23)

Notice that the maximum value of the linear function

max
j

q̃T
j Ax

on a face of ℘(Q) is attained at the vertices of the face itself.

Hence, condition

max
i

‖QT Ax
(i)
Q ‖∞ ≤ α (24)

guarantees (23). Condition (8) guarantees the existence of a

scalar α ≥ 1 such that (24) holds. Now, the proof follows

noticing that condition (12) is implied by (9).

In order to find a polyhedral Lyapunov function satisfying

the conditions of Theorem 1, the following procedure can be

adopted.

Procedure 1 (Implementation of Theorem 1):

1) Fix an initial number 2l ≥ 2n of symmetric points x
(i)
Q

on a hypersphere with radius 1. Let indicate with K0 =

{x
(i)
Q }i=1,...,2l the set of such points.

2) Find a set of symmetric points K solving the problem

min
K

f(K) (25)

s.t. max
i

‖QT Ax
(i)
Q ‖∞ ≥ 1

rank(Q) = n

with initial condition K0, where

f(K) =max
i

‖QT x
(i)
P0
‖∞ max

i
‖PT x

(i)
Q ‖∞·

·
(

max
i

‖QT Ax
(i)
Q ‖∞

)N

− 1

3) Let M = minK f(K). If M < 0 then set

Kopt = arg M,

and go to step 4, else set

K0 = K ∪
{

x
(l+1)
Q ,−x

(l+1)
Q

}

, x
(l+1)
Q ∈ R

n

l = l + 1 ,

and go to step 2.

4) The polyhedral Lyapunov function which proves the

FTS of system (4) wrt (P0, P, N) is

V (x) = ‖QT x‖∞

where Q describes the polytope of vertices Kopt.

♦

Remark 5: To solve problem (25), we have made use of

the Matlab Optimization Toolbox routine fminimax [1], with

variables ±x
(i)
Q , i = 1, . . . , l. ♦

Remark 6: The choice of x
(l+1)
Q in step 3 is done putting

such point on one of the faces of ℘(Q). In this way, since

at each step the algorithm begins from the solution found in

the previous step, the value M decreases (or, at least, does

not increase) at each step. ♦
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Fig. 2. Polyhedral Lyapunov function with 12 vertices.

IV. EXAMPLES AND APPLICATIONS

A. Comparison with the previous literature

Let us reconsider the FTS problem presented in the

Introduction. We will show that Theorem 1 enables to prove

that system (1), under the constraints (2), is FTS while the

sufficient condition proposed in [2] does not enable to draw

any conclusion.

Our goal is to check whether system (1) is FTS with

respect to (P0, P, N), where P0 and P are the 4-vertices

polytopes selected accordingly to the constraints (2) (see

Fig. 1), and N = 7.

We first tried to verify the FTS stability of system (1)

by using the approach described in Remark 2. To this

end, we selected R and c2 imposing the ellipsoid E2 to

be symmetric with respect to the coordinate axis and with

maximum possible volume. Consequently, c1 was computed

by a scaling operation (see Fig. 1). The conditions (6c)–(6d)

were evaluated with the aid of the Matlab LMI Toolbox [7]

and the derived problem was found unfeasible for all α ≥ 1.

Next, we tried to solve the problem with the application of

Theorem 1. Using Procedure 1, we verified that system (1)

is FTS with respect to (P0, P, N), by using the polyhedral

Lyapunov function of 12 vertices shown in Fig. 2.

Next, consider the third order system with the dynamical

matrix

A =





0.5 1 0
0 1.05 0
0 1 0.9



 . (26)

Consider the following boxes in R
3

P0 = {x ∈ R
3 : |x1| ≤ 0.5, |x2| ≤ 0.5, |x3| ≤ 0.5}

P = {x ∈ R
3 : |x1| ≤ 6, |x2| ≤ 6, |x3| ≤ 6} ;

moreover let N = 5. We found that the system is FTS with

respect to (P0, P, N) the polyhedral Lyapunov function of

12 vertices shown in Fig. 3.
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Fig. 3. Polyhedral Lyapunov function with 12 vertices.

B. Discussion

From the above results we can conclude that the method

proposed in this paper improves the existing literature when,

as often it happens in practical engineering problems, the

initial and trajectory domains, to which the state variables

are constrained to belong to, are boxes or, more in general,

polytopes in the state space.

Indeed, in this case, the problem data may be such that

the method proposed in [2] cannot be applied for the FTS

analysis of the system under consideration (see Remark 2).

On the other hand the approach proposed in this paper suf-

fers from the fact that the feasibility problem with constraints

given by (9) and (12) is, in general, not convex, and therefore

the convergence to the optimal solution is not guaranteed.

Conversely, the approach of [2] is based on LMIs conditions

which lead to a convex optimization problem. However, as

shown in Section IV-A, even when the approach of [2] is

applicable, Theorem 1 may result a less conservative FTS

analysis tool than the main theorem in [2].

Therefore it is mandatory to use the approach of this

paper when we are in the situation described in Remark 2

(the ellipsoid approximating the trajectory domain does not

contain the ellipsoid approximating the initial domain); in

the other cases the proposed methodology can be considered

a viable, possibly less conservative, alternative to the main

result in [2].

V. CONCLUSIONS

In this paper we have considered the finite-time stability

problem for discrete-time linear systems, where the initial

and trajectory domains are polytopes. In this case the clas-

sical approach based on quadratic Lyapunov functions may

result overly conservative. It is shown in this paper that a

more effective methodology is the one based on polyhedral

Lyapunov functions arguments. Indeed, the main result is a

sufficient condition for finite-time stability obtained by using

this class of functions. Some numerical examples illustrate

the effectiveness of the proposed approach.
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