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Abstract— The present work proposes a method for data-
based fault diagnosis that takes into account the design of
the feedback control law in order to perform fault detec-
tion and isolation. This method allows isolating certain faults
in a specifically structured closed-loop system using only a
data-based approach. This is achieved through the design of
appropriate nonlinear control laws that allow isolating given
faults by effectively decoupling the dependency between certain
process state variables. The theoretical results are demonstrated
through a gas-phase polyethylene reactor example.

I. INTRODUCTION

Handling process and control system failures efficiently

is an issue of increasing importance in the context of

chemical process control. Automation tends to increase the

vulnerability of the plant to faults which can potentially cause

a host of undesired economic, environmental and safety

problems. One way of reducing the risk of such problems

is through fault-tolerant control. Fault-tolerant control has

been an active area of research over the past ten years

and has motivated many research studies within the context

of aerospace engineering [1], [2], [3]. Methods of fault-

tolerant control utilize system redundancy to reconfigure a

faulty control scheme to one that does not rely upon the

failed process or equipment. In order to perform fault-tolerant

control it is necessary to quickly detect the presence of a

fault and isolate the unit or process in which the failure

has occurred. Thus, early and accurate fault detection and

isolation (FDI) may allow corrective action to avoid problems

during a failure (see, for example, [4], [5]).

The proposed FDI method combines data-based fault

detection methods with model-based controller design tech-

niques to perform fault isolation. Detection is based exclu-

sively on process measurements while isolation relies on

a specifically enforced structure in the closed-loop system.

Generally, data-based methods analyze measured data to give

a picture of the location and trajectory of the system in

the state-space. Historical process data from faulty operation

can then be compared to the current operating data to

diagnose a given fault [6], [7]. Data-based methods have
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been developed that process the measured data to reduce

the dimensions and extract information about the data under

common-cause variation using principle component analysis

(PCA) or partial least squares (PLS) [6]. Methods that use

this reduced PCA space and consequent null space to gain

further insight into the process include techniques such as

contribution plots [8], multiblock PCA [9] and multiscale

PCA [10]. For a comprehensive review of data-based fault

detection and isolation methods, the reader may refer to

[11]. One of the main drawbacks of currently available data-

based methods is that they commonly require fault-specific

historical data that may be costly to obtain. Additionally,

due to the nonlinear nature of chemical processes, it is often

difficult to distinguish regions of faulty operation due to

overlap. In general, most data-based FDI methods are based

on the premise that the controller is designed independently

of the possible faults that might occur and design the fault

detection and isolation scheme based on the closed-loop

system.

Motivated by these issues, a data-based fault detection and

isolation scheme is proposed that is able to isolate a given set

of faults if the closed-loop system satisfies certain isolability

conditions. We explicitly characterize this set of isolability

conditions and show that it is possible, under certain con-

ditions, to design a feedback control law that guarantees

that the origin of the closed-loop system is asymptotically

stable and that it satisfies these conditions. In this way, the

design of the controller is introduced into the FDI strategy.

This is achieved through the use of appropriate nonlinear

control laws that allow isolating given faults by effectively

decoupling the dependency between certain process state

variables. In a previous work [12], feedback linearization

was used to achieve the desired closed-loop structure. In the

present work, this result is generalized to a broader family

of controllers and is demonstrated through an application to

a gas-phase polyethylene reactor.

II. SYSTEM MODEL

This work focuses on nonlinear systems subject to faults

with the following state-space description

ẋ = f(x, u, d) (1)

where x ∈ Rn denotes the vector of state variables, u ∈ Rm

denotes the vector of input variables and d ∈ Rp denotes

the vector of p possible faults. Normal operating conditions

are defined by d = 0. Each component dk, k = 1, . . . , p of

vector d characterizes the occurrence of a given fault. When

fault k occurs, variable dk can take any value. The system of

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThC11.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3299



Eq.1 under normal operating conditions and zero input has

an equilibrium point at the origin, that is, f(0, 0, 0) = 0.

Before proceeding with the theoretical development, it is

important to state that the proposed FDI method brings to-

gether model-based analysis and controller design techniques

for nonlinear, deterministic ordinary differential equation

systems and statistical data-based fault-diagnosis techniques.

These will be applied to the closed-loop system to diagnose

faults that affect the process outside of the region determined

by the common-cause process variation. To this end, we will

first state the isolability conditions for the closed-loop system

that need to be enforced by the appropriate control laws

on the basis of the nonlinear deterministic system of Eq.1.

Subsequently, we will introduce additive autocorrelated noise

in the right-hand side of Eq.1 and additive Gaussian noise

in the measurements of the vector x to compute the region

of operation of the process variable, x, under common-cause

variance. Finally, we will demonstrate that the enforcement

of an isolable structure in the closed-loop system by an

appropriate feedback law allows isolating specific faults

whose effect on the closed-loop system leads to sustained

process operation outside of the region of common-cause

variance.

Under the assumption of single-fault occurrence, we pro-

pose a novel data-based fault detection and isolation tech-

nique based on the structure of the closed-loop system. We

provide the conditions under which this technique can be

applied and show that for certain systems, the controller can

be designed to guarantee that these conditions are satisfied

as well as to stabilize the closed-loop. The main objective

is to design a state feedback controller u(x) such that

the origin of the system of Eq.1 in closed-loop with this

controller is asymptotically stable under normal operating

conditions and the closed-loop system satisfies the isolability

conditions needed to apply the proposed FDI method. In

order to present the FDI method, we need to define the

incidence graph of a system and its reduced representation.

The following definitions are motivated by standard results

in graph theory [13]. This kind of graph analysis has been

applied before in the context of control, see for example [14].

Definition 1: The incidence graph of an autonomous sys-

tem ẋ = f(x) with x ∈ Rn is a directed graph defined by n

nodes, one for each state, xi, of the system. A directed arc

with origin in node xi and destination in node xj exists if

and only if
∂fj

∂xi
6= 0.

The incidence graph of a system shows the dependence of

the time derivatives of its states. Figure 1 shows the incidence

graph of the following system:

ẋ1 = −2x1 + x2 + d1

ẋ2 = −2x2 + x1 + d2

ẋ3 = −2x3 + x1 + d3

(2)

when d1 = d2 = d3 ≡ 0. A path from node xi to node

xj is a sequence of connected arcs that starts at xi and

reaches xj . A path through more than one arc that starts

and ends at the same node is denoted as a loop. States that

belong to a loop have mutually dependent dynamics, and any

disturbance affecting one of them also affects the trajectories

of the rest. The mutual dependence of the dynamics of

the states that belong to a given loop makes data-based

isolation of faults that affect the system a difficult task. The

following definition introduces the reduced incidence graph

of an autonomous system. In this graph, the nodes of the

incidence graph belonging to a given loop are united in a

single node. This allows identifying which states do not have

mutually dependant dynamics.

Definition 2: The reduced incidence graph of an au-

tonomous system ẋ = f(x) with x ∈ Rn is the directed

graph of nodes qi, where i = 1, ..., N , that has the maximum

number of nodes, N , and satisfies the following conditions:

• To each node qi there corresponds a set of states Xi =
{xj}. These sets of states are a partition of the state

vector of the system, i.e.,
⋃

Xi = {x1, . . . xn}, Xi

⋂

Xj = ∅, ∀i 6= j.

• A directed arc with origin qi and destination qj exists

if and only if ∂fl

∂xk
6= 0 for some xl ∈ Xi, xk ∈ Xj .

• There are no loops in the graph.

In the reduced incidence graph, states that belong to a loop

in the incidence graph correspond to a single node. In this

way, the states of the system are divided into subsystems

that do not have mutually dependent dynamics; that is, there

are no loops connecting them. The arcs of the graph indicate

that there exists a state corresponding to the origin node that

affects a state corresponding to the destination node. Note

that the reduced incidence graph can be always obtained,

but for strongly coupled systems, it may be defined by a

single node.

In the incidence graph of the system of Eq.2 there is a

loop that contains states x1 and x2. The reduced incidence

graph of the system of Eq.2 contains two nodes. Node q1

corresponds to the states of the loop, that is, X1 = {x1, x2}.

Node q2 corresponds to X2 = x3. Figure 1 shows the

reduced incidence graph of the system of Eq.2. It can be

seen that in the reduced incidence graph there are no loops.

In the following section, we introduce the notion of the

signature of a fault, or the set of states whose trajectories

are affected by a fault and propose an FDI scheme based on

this notion.

III. SIGNATURE OF A FAULT

In this section, we introduce the set of conditions under

which it is possible to isolate a fault using only state

measurements. To this end, we define the isolability graph

of an autonomous system.

Definition 3: The isolability graph of an autonomous sys-

tem ẋ = f(x, d) with x ∈ Rn, d ∈ Rp is a directed graph

made of the N nodes of the reduced incidence graph of

the system ẋ = f(x, 0) and p additional nodes, one for

each possible fault dk. The graph contains all the arcs of

the reduced incidence graph of the system ẋ = f(x, 0). In

addition, a directed arc with origin in fault node dk and

destination to a state node qj exists if and only if ∂fl

∂dk
6= 0

for some xl ∈ Xj .
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x1 x3

x2

q1 q2

Incidence graph

Reduced incidence graph

Fig. 1. Incidence graph and reduced incidence graph of the system of
Eq.2.

Figure 2 shows the isolability graph of the system of Eq.2.

The isolability graph of an autonomous system subject to p

faults shows, in addition to the incidence arcs of the reduced

incidence graph, which loops of the system are affected by

each possible fault. Based on this graph we can define the

signature of a fault.

Definition 4: The signature of a fault dk of an autonomous

system subject to p faults ẋ = f(x, d) with x ∈ Rn, d ∈
Rp is a binary vector W k of dimension N , where N is

the number of nodes of the reduced incidence graph of the

system. The ith component of W k, denoted W k
i , is equal to

one if there exists a path in the isolability graph from the

node corresponding to fault k to the node qi corresponding

to the set of states Xi, or zero otherwise.

The signature of a fault indicates the set of states that are

affected by the fault. If each of the corresponding signatures

of the faults is different, then it is possible to isolate the faults

using a data-based fault-detection method. Faults d1 and d2

in the system of Eq.2 have the same signature, W 1 = [1 1]T ,

because d1 and d2 both directly affect q1 and there is a

path from q1 to q2. This implies that both faults affect the

same states and upon detection of a fault with the signature

W 1 = [1 1]T , it is not possible to distinguish between them

based upon the signature. On the other hand, the signature

of fault d3 in the same system is W 1 = [0 1]T because

there is no path to q1 from q2, which is the node directly

affected by d3. This implies that the states corresponding to

node q1 are effectively decoupled from fault d3. This allows

distinguishing between a fault in d3 and a fault in either d1

or d2 in the system of Eq.2 based on the profiles of the state

trajectories.

IV. DATA-BASED ISOLATION

Data-based methods for fault detection in multivariate

systems are well established in statistical process control.

q1 q2

d1 d3

d2

Fig. 2. Isolability graph of the system of Eq.2.

A common approach to monitoring multivariate process

performance is based upon Hotelling’s T 2 statistic, which

allows multivariate processes to be monitored using a single

statistic with a well-defined threshold for normal operation.

A generalization of Student’s t-statistic, Hotelling’s method

found in [15] normally calls for random samples consisting

of multiple observations per sample. The covariance matrix

is then calculated from the observations in each sample (see

also [16]). This method has been adapted to use single ob-

servations in order to be more compatible with the nature of

continuous chemical process systems [16], [17]. In a another

work [18], both approaches were considered; however, the

present work uses only the method of single observations in

the application example of Section VI.

Given a multivariate state vector x of dimension n, the T 2

statistic can be computed using the mean x̄ and the estimated

covariance matrix S of process data obtained under normal

operating conditions (see, for example, [6], [8]).

T 2 = (x − x̄)T S−1(x − x̄). (3)

The upper control limit for the T 2 statistic can be calculated

from its distribution, with on the assumption that the data

are multivariate normal, according to the following formula:

T 2
UCL =

(h2 − 1)n

h(h − n)
Fα(n, h − n) (4)

where h is the number of historical measurements used

in approximating S, Fα(n, h − n) is the value on the F

distribution with (n, h − n) degrees of freedom for which

there is probability α of a greater or equal value occurring.

Thus α is the probability of a Type I error or false alarm.

Because T 2 is a positive quantity, the test has no lower

bound. Note that the requirement of multivariate normal data

is generally a reasonable assumption since data that may be

serially correlated in open-loop operation is frequently more

normal under feedback control on a large timescale [16]

We propose to monitor the following statistics based on

the state trajectories of the system of Eq.1 in closed-loop

with a given feedback controller u(x):

• T 2 statistic based on the full state x with upper control

limit T 2
UCL.

• T 2
i statistic with i = 1, . . . , N based on the states xj ∈

Xi, where Xi are the sets of states corresponding to

each one of the nodes of the reduced incidence graph.
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To each T 2
i statistic a corresponding upper control limit

T 2
UCLi is assigned.

The fault detection and isolation procedure then follows

the steps given below:

1. A fault is detected if T 2(t) > T 2
UCL ∀t tf ≤ t ≤ TP

where TP is chosen so that the window TP −tf is large

enough to allow fault isolation within a desired degree

of confidence and depends on the process time constants

and potentially on available historical information of the

process behavior.

2. A fault that is detected can be isolated if the signature

vector of the fault W (tf , TP ) can be built as follows:

T 2
i (t) > T 2

UCLi ∀t tf ≤ t ≤ TP → Wi(tf , TP ) = 1.

T 2
i (t) ≯ T 2

UCLi ∀t tf ≤ t ≤ TP → Wi(tf , TP ) = 0.

In such a case, fault dk is detected at time TP if

W (tf , TP ) = W k. If two or more faults are defined

by the same signature, isolation between them is not

possible on the basis of the fault signature obtained from

the isolability graph.

This FDI scheme can be applied if the signatures of

the closed-loop system faults are different. Note that the

signature of a fault depends on the structure of the closed-

loop system, in particular, on the isolability graph. For

example, if the reduced incidence graph has only one node,

isolation is not possible. In the following section, we propose

to design the feedback controller u(x) to guarantee that the

closed-loop reduced incidence graph has more than one node,

that there exist faults with different signatures and that the

origin of the closed-loop system is asymptotically stable.

Remark 1: The upper control limit is chosen taking into

consideration common-cause variance, including process and

sensor noise, in order to avoid false alarms. Thus, small

disturbances or failures may go undetected if the magnitude

and effect of the disturbance is similar to that of the in-

herent process variance. For this reason, a fault dk must be

sufficiently large in order for T 2
i (t) to exceed the threshold

T 2
UCLi ∀t tf ≤ t ≤ TP . It is assumed that if a fault dk

is not large enough to cause T 2
i (t) to exceed the threshold

T 2
UCLi ∀t tf ≤ t ≤ TP (where tf is the time in which

T 2
i (tf ) ≥ T 2

UCL for the first time) then the fault is not

sufficiently large and its effect on the closed-loop system,

from the point of view of faulty behavior, is not of major

consequence. Therefore, such a dk is not considered to be a

fault. However, it should be noted that a fault dk that is large

enough to cause the T 2 derived from the full state vector, x,

to cross the upper control limit signaling a fault may not be

large enough to signal a fault in all of the affected subgroups.

In this case, it is possible to have a false isolation.

V. CONTROLLER ENHANCED ISOLATION

In general, control laws are designed without taking into

account the FDI scheme of the control system. In this sec-

tion, we propose to design an appropriate nonlinear control

law to allow isolation of given faults using the method

proposed in the previous section by effectively decoupling

TABLE I

NOISE PARAMETERS

σp σM φ

[In] 1E-3 5E-2 0
[M1] 1E-3 5E-2 0.7
Y 1E-3 1E-2 0.7
T 5E-3 5E-2 0.7
Tg1 5E-3 5E-2 0.7
Tw1 5E-3 5E-2 0.7

the dependency between certain process state variables. The

purpose is to obtain a reduced incidence graph of the closed-

loop system which provides different signatures for different

faults. The achievement of the key requirement, which is the

enforcement of a specific structure in the closed-loop system,

can be accomplished by a variety of nonlinear control laws.

In a previous paper [12], we utilized feedback linearization

to achieve this task. In the present work, however, we show

that other control strategies can be applied. In particular we

provide a controller that can be applied to nonlinear systems

with the following state space description:

ẋ1 = f11(x1) + f12(x1, x2) + g1(x1, x2)u + d1

ẋ2 = f2(x1, x2) + d2.

With a state feedback controller of the form:

u(x1, x2) = −
f12(x1, x2) − v

g1(x1, x2)

the closed-loop system takes the form

ẋ1 = f11(x1) + v(x1) + d1

ẋ2 = f2(x1, x2) + d2

where v(x1) has to be designed in order to achieve

asymptotic stability of the origin for x1 when d1 = 0.

Note that stabilizing control laws that provide explicitly-

defined regions of attraction for the closed-loop system

have been developed using Lyapunov techniques for spe-

cific classes of nonlinear systems, particularly input-affine

nonlinear systems; the reader may refer to [19], [20] for

results in this area. The origin of the closed-loop system

is asymptotically stable if ẋ2 = f22(x1, x2) is input-to-

state stable with respect to x1 for d2 = 0. In this case

the proposed controller guarantees stability of the closed-

loop system, as well as different signatures for faults d1 and

d2. Note that the reduced incidence graph is defined by two

nodes corresponding to both states and the signatures are

given by W 1 = [1 1]T ,W 2 = [0 1]T .

VI. APPLICATION TO A POLYETHYLENE REACTOR

The method of controller enhanced isolation will be

demonstrated using a model of an industrial gas phase

polyethylene reactor. The feed to the reactor is made up

of ethylene, comonomer, hydrogen, inerts, and catalyst. A

recycle stream of unreacted gases flows from the top of the

reactor and is cooled by passing through a water-cooled heat

exchanger. Cooling rates in the heat exchanger are adjusted

by mixing cold and warm water streams while maintaining

a constant total cooling water flowrate through the heat

3302



exchanger. Mass balances on hydrogen and comonomer have

not been considered in this study because hydrogen and

comonomer have only mild effects on the reactor dynamics

[21]. A mathematical model for this reactor has the form:

d[In]

dt
=

1

Vg

(FIn −
[In]

[M1] + [In]
bt)

d[M1]

dt
=

1

Vg

(FM1
−

[M1]

[M1] + [In]
bt − RM1)

dY1

dt
= Fcac − kd1

Y1 −
RM1MW1

Y1

Bw

+ d2

dY2

dt
= Fcac − kd2

Y2 −
RM1MW1

Y2

Bw

+ d2

dT

dt
=

Hf + Hg1 − Hg0 − Hr − Hpol

MrCpr + BwCppol

+ d1

dTw1

dt
=

Fw

Mw

(Twi − Tw1
) −

UA

MwCpw

(Tw1
− Tg1

)

dTg1

dt
=

Fg

Mg

(T − Tg1
) +

UA

MgCpg

(Tw1
− Tg1

) + d3

(5)

where

bt = VpCv

√

([M1] + [In])RRT − Pv

RM1 = [M1]kp0e
−Ea

R
( 1

T
−

1

Tf
)
(Y1 + Y2)

Cpg =
[M1]

[M1] + [In]
Cpm1 +

[In]

[M1] + [In]
CpIn

Hf = (FM1
Cpm1 + FInCpIn)(Tfeed − Tf )

Hg1 = Fg(Tg1
− Tf )Cpg

Hg0 = (Fg + bt)(T − Tf )Cpg

Hr = HreacMW1
RM1

Hpol = Cppol(T − Tf )RM1MW1

(6)

The definitions for all the variables used in Eqs.5-6 are

given in Table II and their values can be found in [22] (see

also [23]). Under normal operating conditions, the open-loop

system behaves in an oscillatory fashion (i.e., the system

possesses an open-loop unstable steady-state surrounded by

a stable limit cycle). The open-loop unstable steady-state

around which the system will be controlled is

[In]ss = 439.7mol
m3 [M1]ss = 326.7mol

m3

Y1ss, Y2ss = 3.835mol Tss = 356.2K

Tg1ss = 290.4K Tw1ss = 294.4K

Note that with the given parameters, the dynamics of

Y1, Y2 are identical and will be reported in the results section

as a single combined state. In this example, we consider three

possible faults, d1, d2, and d3 which represent a change in the

feed temperature, catalyst deactivation and a change in the

recycle gas flow rate, respectively. The manipulated inputs

are the feed temperature, Tfeed, and the inlet flow rate of

ethylene, FM1.

The control objective is to stabilize the system at the open-

loop unstable steady state. In addition, in order to apply the

proposed FDI scheme, the controller must guarantee that the

closed-loop system satisfies the isolability conditions. The

open-loop system is highly coupled. If the controller does

not impose a specific structure, all the states have mutually

dependent dynamics (i.e., they consist of one node in the

isolability graph). In the present work, we propose to design

a nonlinear controller to decouple [In], [M1] and T from

(Y1, Y2) and from Tw1 and Tg1. In this way, the resulting

closed-loop system consists of three subsystems (i.e., three

nodes in the isolability graph) that do not have mutually

dependent dynamics. In addition, the signature of each of

the three faults is different, and thus, the fault isolability

conditions are satisfied. In order to accomplish this objective,

we define the following control laws:

FM1 = u2Vg + FM1ss

Tfeed =
u1(MrCpr + BW Cppol) + Hfss

FM1Cpm1 + FInCpIn

+ Tf

(7)

with

u1 =
Hr − Hrss + Hpol − Hpolss − Hg1 + Hg1ss

MrCpr + BwCppol

+ v1

u2 =
RM1 − RM1ss

Vg

+ v2

(8)

where terms with the subscript ss are constants evaluated

at the steady state and v1, v2 are external inputs that will

allow us to stabilize the resulting closed-loop system. The

dynamics of the affected states, T and [M1], take the

following form in the closed-loop system:

d[M1]

dt
= [FM1

−
[M1]

[M1] + [In]
bt − RM1ss]

1

Vg

+ v2

dT

dt
=

Hf + Hg1ss − Hg0 − Hrss − Hpolss

MrCpr + BwCppol

+ v1 + d1

(9)

It can be seen that these states only depend on [In], [M1]
and T . The closed-loop system under the control law defined

in Eq.7 has a reduced incidence graph with three nodes

q1, q2 and q3 corresponding to the three partially decoupled

subsystems X1 = {[In], [M1], T}, X2 = {Y1, Y2} and

X3 = {Tg1, Tw1}, respectively. The resulting isolability

graph for the closed-loop system is shown in Figure 3. This

structure leads to each of the three faults d1, d2 and d3

having unique signatures W 1 = [1 1 1]T , W 2 = [0 1 0]T

and W 3 = [0 0 1]T and allows fault detection and isolation

in the closed-loop system using the proposed data-based FDI

scheme.

In order to study the stability properties of the closed-loop

system, we study the stability of the equilibrium point for

each subsystem assuming that the rest of the states are at

the equilibrium point. It can be seen that both subsystems

X2 = {Y1, Y2} and X3 = {Tg1, Tw1} are stable. This
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q3 q2

q1 d3

d1 d2

Fig. 3. Isolability graph for the system of Eq.5.

implies that to obtain a stable closed-loop system, the control

inputs v1, v2 have to be designed to stabilize subsystem

X1 = {[In], [M1], T}. In the present example, we use two

PI controllers that regulate each state independently. By

extensive simulations, the PI controllers have been tuned

to stabilize the equilibrium of the closed-loop system and

achieve a desired closed-loop response. It is important to re-

mark that for the purpose of this example, any controller that

stabilizes subsystem X1 can be used, as the main objective

is to demonstrate the data-based FDI scheme proposed. The

PI controllers are defined as follows:

v1(t) = K1(Tss − T +
1

τ1

∫ t

t0

(Tss − T )dt)

v2(t) = K2([M1]ss − [M1] +
1

τ2

∫ t

t0

([M1]ss − [M1])dt)

(10)

with K1 = 0.005, K1 = 0.0075, τ2 = 1000, τ1 = 500.

We will refer to the controller defined by Eqs.7, 8 and 10

as the “decoupling” controller. Additionally, for comparison

purposes, a controller is used that stabilizes the closed-

loop system, but does not take into account the isolability

conditions of the proposed FDI method. Specifically, two

PI controllers will be used to regulate T and M1. This

will be denoted as the “PI-only” control law. The inputs

FM1 and Tfeed are defined by Eq.7, but in this case, u1

and u2 are evaluated by applying the PI controllers of

Eq.10 with the same tuning parameters to the states T and

M1. The PI-only controller stabilizes the equilibrium point

under normal operating conditions, however, all the states are

mutually dependent, or in other words the reduced incidence

graph consists of only one node. This implies that every

fault affects all the state trajectories, making isolation of

the fault a difficult task. The proposed FDI scheme cannot

be applied because the closed-loop does not satisfy the

isolability conditions, i.e., all the system faults have the same

signature.

Simulations have been carried out for several scenarios to

demonstrate the effectiveness of the proposed FDI scheme

in detecting and isolating the three faults d1, d2, and d3. In

all the simulations, sensor measurement and process noise
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Fig. 4. State trajectories of the closed-loop system under the decoupling
(solid) and PI-only (dashed) controllers with a fault d2 at t = 0.5hr.
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Fig. 5. Statistics T 2, T 2

1
, T 2

2
, and T 2

3
of the closed-loop system under

the decoupling controller with a failure in d2 at t = 0.5hr.

were included. The sensor measurement noise trajectory

was generated using a sample time of ten seconds and a

zero-mean normal distribution with standard deviation σM .

The autoregressive process noise was generated discretely

as wk = φwk−1 + ξk where k = 0, 1, . . . is the discrete

time step, with a sample time of ten seconds where φ is the

autoregressive coefficient and ξk is obtained at each sampling

step using a zero-mean normal distribution with standard

deviation σp. Sensor measurement and process noise are

evaluated independently for each state variable. The process

and sensor noise for Y1 and Y2 are assumed to be equal.

Table I provides the values of the noise parameters for each

state of the system of Eq. 5. A window of ten minutes was

used for detecting faults (i.e., TP − tf = 10min). Although

the states in the polyethylene system are serially correlated

on a short timescale, this is compensated for by using a

large amount of historical data for estimating S. This, along

with the fact that feedback control makes the closed-loop

system more normally distributed (see [16]), means that the

multivariate normal assumption necessary for applying the

single observation T 2 statistic is reasonable. Figure 6 shows
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TABLE II

POLYETHYLENE REACTOR EXAMPLE PROCESS VARIABLES.

ac active site concentration of catalyst
bt overhead gas bleed
Bw mass of polymer in the fluidized bed
Cpm1 specific heat capacity of ethylene
Cv vent flow coefficient
Cpw, CpIn, Cppol specific heat capacity of water, inert gas

and polymer
Ea activation energy
Fc, Fg flow rate of catalyst and recycle gas
FIn, FM1

, Fw flow rate of inert, ethylene and cooling
water

Hf , Hg0 enthalpy of fresh feed stream, total gas
outflow stream from reactor

Hg1 enthalpy of cooled recycle gas stream to
reactor

Hpol enthalpy of polymer
Hr heat liberated by polymerization reaction
Hreac heat of reaction
[In] molar concentration of inerts in the gas

phase
kd1

, kd2
deactivation rate constant for catalyst
site 1, 2

kp0 pre-exponential factor for polymer prop-
agation rate

[M1] molar concentration of ethylene in the
gas phase

Mg mass holdup of gas stream in heat ex-
changer

MrCpr product of mass and heat capacity of
reactor walls

Mw mass holdup of cooling water in heat
exchanger

MW1
molecular weight of monomer

Pv pressure downstream of bleed vent

R, RR ideal gas constant, unit of J
mol·K

,
m3

·atm
mol·K

T , Tf , Tfeed reactor, reference, feed temperature
Tg1

, Tw1
temperature of recycle gas, cooling wa-
ter stream from exchanger

Twi inlet cooling water temperature to heat
exchanger

UA product of heat exchanger coefficient
with area

Vg volume of gas phase in the reactor
Vp bleed stream valve position
Y1, Y2 moles of active site type 1, 2

that the distribution of the state measurements over a long

period of fault-free operation is approximately Gaussian.

For each failure dk, two simulations have been carried out.

One using the decoupling controller and another using the PI-

only controller. Both simulations have been arrived at using

the same sensor measurement and process noise trajectories.

the three different failures with values d1 = 10 K
s

, d2 =
−0.002 mol

s
, and d3 = 300 K

s
were introduced at time t =

0.5hr. Figure 4 shows the state trajectories of the closed-loop

system under the decoupling controller (solid line) and the

PI-only controller (dashed line) for the system with a fault in

d2. It can be seen that for the PI-only controller, each time

a fault occurs, all states deviate from the equilibrium point.

This makes isolation a difficult task. However, the closed-

loop state trajectories under the decoupling controller show

that when a given fault occurs, not all state trajectories are

affected. The decoupling of some states from given faults
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Fig. 6. Polyethylene reactor example. Distribution of normalized, fault-free
operating data compared with a normal distribution of the same mean and
covariance.
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Fig. 7. Statistics T 2, T 2
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of the closed-loop system under

the decoupling controller with a failure in d3 at t = 0.5hr.

allow us to isolate the faults based on the T 2
i statistics.

The state trajectories of the closed-loop system under the

decoupling controller were monitored using the T 2 statistic

based on all the states of the system of Eq. 5 and the T 2
i

statistic corresponding to each one of the three subsystems

X1, X2, X3. Figures 5, 7 and 8 show the trajectories of

T 2, T 2
1 , T 2

2 and T 2
3 for each fault along with the corre-

sponding upper control limits. Based on the fault detection

and isolation procedure laid out in Section IV, each failure

is defined by a unique signature that can be isolated based

on the monitored statistics. Figure 5 shows the statistics

corresponding to the simulation with a failure in d2. The

signature of d2 is W 2 = [0 1 0]T , because the dynamics of

the states corresponding to X1 and X3 are not affected by

fault d2; that is, there is no path from the node corresponding

to d2 to the nodes corresponding to X1 and X2 in the

isolability graph of the closed-loop system. Figure 5 clearly

shows the fault occurring at time t = 0.5hr and the signature

that is expected with only T 2
2 violates the upper control limit.
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Fig. 9. Manipulated input values for both decoupling and PI-only control
with a fault in d2 at t = 0.5hr.

The state trajectories of this faulty scenario of Figure 4 shows

that there is a failure affecting Y starting at t = 0.5hr.

The failure affects all the state trajectories under PI-only

control but affects only Y for the system under decoupling

control. Similarly, a failure in Tg1 affects only subsystem

X3. The statistics in Figure 7 show that the signature of

the fault is [0 0 1]T = W 3. The signature of fault d1 is

W 1 = [ 1 1 1]T , meaning that this fault affects all the states

in the closed-loop system. Figures 8 shows the corresponding

statistics. Figure 9 shows the manipulated input trajectories

for both controllers in the scenario with fault d2 occurring.

It can be observed that the control action required under the

decoupling control law is on the same order of magnitude

as that of the PI-only controller and is not excessive relative

to the normal demand under PI control.

VII. CONCLUSIONS

This work has presented a general approach to integrating

data-based fault detection with model-based controller design

in a fault detection and isolation scheme. This approach

enforces a specific structure on the closed-loop system that

facilitates fault isolation. This method was demonstrated

using a polyethylene reactor example. By decoupling faults

of interest from certain states, it was possible to achieve the

required closed-loop structure to allow fault detection and

isolation.
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[12] B. J. Ohran, P. Mhaskar, D. Muñoz de la Peña, P. D. Christofides, and
J. F. Davis, “Enhancing fault isolation through nonlinear controller
design,” in Proceedings of 8th IFAC Symposium on Dynamics and

Control of Process, vol. 1, Cancun, Mexico, 2007, pp. 81–86.
[13] F. Harary, Graph Theory. Perseus Books Publishing, 1969.
[14] P. Daoutidis and C. Kravaris, “Structural evaluatino of control confiu-

rations for multivariable nonlinear processes,” Chemical Engineering

Science, vol. 47, pp. 1091–1107, 1991.
[15] H. Hotelling, “Multivariate quality control,” in Techniques of Statistical

Analysis, O. Eisenhart, Ed. McGraw-Hill, 1947, pp. 113–184.
[16] D. C. Montgomery, Introduction to statistical quality control. John

Wiley & Sons, 1996.
[17] N. D. Tracy, J. C. Young, and R. L. Mason, “Multivariate control charts

for individual observations,” Journal of Quality Technology, vol. 24,
pp. 88–95, 1992.
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