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Abstract— In this work, we develop a method for dynamic
output feedback covariance control of the state covariance
of linear dissipative stochastic partial differential equations
(PDEs) using spatially distributed control actuation and sensing
with noise. Such stochastic PDEs arise naturally in the modeling
of surface height profile evolution in thin film growth and
sputtering processes. We begin with the formulation of the
stochastic PDE into a system of infinite stochastic ordinary
differential equations (ODEs) by using modal decomposition.
A finite-dimensional approximation is then obtained to capture
the dominant mode contribution to the surface roughness profile
(i.e., the covariance of the surface height profile). Subsequently,
a state feedback controller and a Kalman-Bucy filter are
designed on the basis of the finite-dimensional approximation.
The dynamic output feedback covariance controller is subse-
quently obtained by combining the state feedback controller
and the state estimator. The steady-state expected surface
covariance under the dynamic output feedback controller is
then estimated on the basis of the closed-loop finite-dimensional
system. An analysis is performed to obtain a theoretical estimate
of the expected surface covariance of the closed-loop infinite-
dimensional system. Applications of the linear dynamic output
feedback controller to the linearized stochastic Kuramoto-
Sivashinsky equation are presented.

I. INTRODUCTION

The recent efforts on feedback control and optimization of

thin film growth processes to achieve desired material micro-

structure (see, for example, [4], [6], [7] and the references

therein) have been motivated by the fact that the electrical

and mechanical properties of thin films strongly depend

on microstructural features such as interface width, island

density and size distributions [2], [17], which significantly

affect device performance. To fabricate thin film devices

with high and consistent performance, it is desirable that the

operation of thin film growth processes is tightly controlled.

Stochastic PDEs arise naturally in the modeling of surface

morphology of ultra thin films in a variety of material

preparation processes [11], [24], [25], [10]. Methods for

state feedback covariance control for linear [19], [18], [21]

and nonlinear [20] stochastic PDEs have been developed.

However, in the design of a state feedback controller, it is

assumed that the full state of the PDE can be measured in
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real-time at all positions and times. This assumption is not

practical in many applications, where process output mea-

surements are typically available from a finite (usually small)

number of measurement sensors. Therefore, there is a strong

motivation to develop dynamic output feedback covariance

control methods for stochastic PDEs, which couple a state

feedback control law to a dynamic state-observer that utilizes

information from a few measurement sensors. The observer-

based covariance control structure for linear stochastic ODE

systems was proposed in [12], [15], in which a Kalman

filter is used as a state estimator and the estimated state

is used by the feedback controller. However, the problem

of output feedback covariance control for nonlinear systems

and infinite-dimensional systems has not been studied.

In this work, a method is developed for dynamic output

feedback covariance control of the state covariance of linear

dissipative stochastic PDEs. Spatially distributed control ac-

tuation and sensor measurements with noise are considered

when designing the dynamic output feedback controller.

We initially formulate the stochastic PDE into a system of

infinite stochastic ODEs by using modal decomposition and

construct a finite-dimensional approximation to capture the

dominant mode contribution to the surface covariance of the

height profile. Subsequently, a state feedback controller and

a Kalman-Bucy filter are designed on the basis of the finite-

dimensional approximation. The dynamic output feedback

controller is obtained by combining the state feedback con-

troller and the state estimator. Analysis of the closed-loop

stability and the steady-state surface covariance under the dy-

namic output feedback controller are provided for the finite-

dimensional approximation and the infinite-dimensional sys-

tem. Applications of the linear dynamic output feedback

controller to the linearized stochastic Kuramoto-Sivashinsky

equation (KSE) are presented.

II. PRELIMINARIES

A. Stochastic PDEs with Distributed Control

We focus on linear dissipative stochastic PDEs with dis-

tributed control of the following form:

∂h

∂ t
= A h+

p

∑
i=1

bi(x)ui(t)+ξ (x, t) (1)

subject to homogeneous boundary conditions and the initial

condition h(x,0) = h0(x), where x ∈ [−π,π] is the spatial

coordinate, t is the time, h(x, t) is the state of the PDE

which corresponds to the height of the surface in a thin film

growth process at position x and time t, A is a dissipative

spatial differential operator, ui(t) is the ith manipulated input,
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p is the number of manipulated inputs and bi(x) is the ith

actuator distribution function (i.e., bi(x) determines how the

control action computed by the ith control actuator, ui(t),
is distributed (e.g., point or distributed actuation) in the

spatial interval [−π,π]). ξ (x, t) is a Gaussian noise with the

following expressions for its mean and covariance:

〈ξ (x, t)〉 = 0

〈ξ (x, t)ξ (x′, t ′)〉 = σ2δ (x− x′)δ (t − t ′)
(2)

where σ is a real number, δ (·) is the Dirac function, and 〈·〉
denotes the expected value.

Our objective is to control the surface covariance of the

process, Covh, which is represented by the expected value of

the standard deviation of the surface height from the desired

height and is given as follows:

Covh(t) =

〈∫ π

−π
[h(x, t)−hd ]

2dx

〉
(3)

where hd(t) is the desired surface height.

To study the dynamics of Eq.1, we initially consider the

eigenvalue problem of the linear spatial differential opera-

tor of Eq.1 subject to the operator homogenous boundary

conditions, which takes the form:

A φ̄n(x) = λnφ̄n(x), n = 1,2, · · · (4)

where λn and φ̄n denote the nth eigenvalue and eigenfunction,

respectively. To simplify our development and motivated by

most practical applications, we consider stochastic PDEs for

which A is a highly dissipative operator (i.e., a second-

order or fourth-order linear self-adjoint operator) and has

eigenvalues which are real and satisfy λ1 ≥ λ2 · · · and the

sum
∞

∑
i=1

∣∣∣∣
1

λi

∣∣∣∣ converges to a finite positive number. Further-

more, the eigenfunctions {φ̄1(x), φ̄2(x), · · ·} form a complete

orthonormal set.

To present the method for feedback controller design, we

initially formulate Eq.1 into an infinite-dimensional stochas-

tic ODE system using modal decomposition. To this end,

we first expand the solution of Eq.1 into an infinite series

in terms of the eigenfunctions of the operator of Eq.4 as

follows:

h(x, t) =
∞

∑
n=1

αn(t)φ̄n(x) (5)

where αn(t) (n = 1,2, · · · ,∞) are time-varying coefficients.

Substituting the above expansion for the solution, h(x, t), into

Eq.1 and taking the inner product with the adjoint eigenfunc-

tion, φ̄ ∗
n (x), the following system of infinite stochastic ODEs

is obtained:

dαn

dt
= λnαn +

p

∑
i=1

biαn
ui(t)+ξ n

α(t),n = 1, . . . ,∞ (6)

where

biαn
=

∫ π

−π
φ̄ ∗

n (x)bi(x)dx (7)

and

ξ n
α(t) =

∫ π

−π
ξ (x, t)φ̄ ∗

n (x)dx (8)

The covariance of ξ n
α(t) can be computed by using the

following result:

Result 1: If (1) f (x) is a deterministic function, (2)

η(x) is a random variable with 〈η(x)〉 = 0 and covariance

〈η(x)η(x′)〉 = σ2δ (x− x′), and (3) ε =
∫ b

a f (x)η(x)dx, then

ε is a real random number with 〈ε〉 = 0 and covariance

〈ε2〉 = σ 2
∫ b

a f 2(x)dx [1].

Using Result 1, we obtain 〈ξ n
α(t)ξ n

α(t ′)〉 = σ2δ (t − t ′).
In this work, the controlled variable is the surface covari-

ance defined in Eq.3. Without loss of generality, we pick

hd(t) = 0. Therefore, Covh(t) can be rewritten in terms of

αn(t) as follows [19]:

Covh(t) = 〈
∫ π

−π
[h(x, t)−0]2dx〉

= 〈
∫ π

−π
[

∞

∑
i=1

αi(t)φi(x)]
2dx〉 = 〈

∞

∑
i=1

αi(t)
2〉 =

∞

∑
i=1

〈αi(t)
2〉

(9)

Eq.9 provides a direct link between the surface covariance

and the state covariance of the system of infinite stochastic

ODEs of Eq.6.

B. Model Reduction

Owing to its infinite-dimensional nature, the system of

Eq.6 cannot be directly used as a basis for feedback con-

troller design that can be implemented in practice (i.e., the

practical implementation of such a controller will require

the computation of infinite sums which cannot be done

by a computer). Instead, we will use finite-dimensional

approximations of the system of Eq.6 for the purpose of

model-based output feedback controller design. Specifically,

we rewrite the system of Eq.6 as follows:

dxs

dt
= Λsxs +Bsu+ξs

dx f

dt
= Λ f x f +B f u+ξ f

(10)

where

xs = [α1 · · · αm]T x f = [αm+1 αm+2 · · · ]T

ξs =
[
ξ 1

α · · · ξ m
α

]T
ξ f =

[
ξ m+1

α ξ m+2
α · · ·

]T

Λs = diag [λ1 · · · λm]
Λ f = diag [λm+1 λm+2 · · · ]

Bs =




b1α1
· · · bpα1

...
. . .

...

b1αm · · · bpαm




B f =




b1αm+1
· · · bpαm+1

b1αm+2
· · · bpαm+2

...
...

...




(11)

Note that the xs subsystem is mth-order and the x f subsystem

is infinite-dimensional.

261



The expression of Covh in Eq.9 can be re-written in the

following form:

Covh(t) =
∞

∑
i=1

〈αi(t)
2〉 =

m

∑
i=1

〈αi(t)
2〉+

∞

∑
i=m+1

〈αi(t)
2〉

= 〈xs(t)
T xs(t)〉+ 〈x f (t)

T x f (t)〉 = Tr[Ps(t)]+Tr[Pf (t)]
(12)

where Ps and Pf are covariance matrices of the xs and

x f which are defined as Ps = 〈xsx
T
s 〉 and Pf = 〈x f xT

f 〉,
respectively. Tr[·] denotes the trace of a matrix.

Neglecting the x f subsystem, the following finite-

dimensional approximation is obtained:

dx̃s

dt
= Λsx̃s +Bsu+ξs (13)

and the surface covariance of the infinite-dimensional

stochastic system, Covh, can be approximated by C̃ovh,

which is computed from the state of the finite-dimensional

approximation of Eq.13 as follows:

C̃ovh(t) = Tr[P̃s(t)] (14)

where the tilde symbol denotes that the variable is associated

with the finite-dimensional system. The reader may refer

to [9], [23], [5] for further results on model reduction of

dissipative PDEs.

C. State Feedback Control

When the state of the finite-dimensional system of Eq.13

is available, a linear state feedback controller can be designed

to regulate the surface covariance:

u = Gx̃s (15)

where G is the gain matrix, which should be carefully

designed so as to stabilize the closed-loop finite-dimensional

system and obtain the desired closed-loop surface covariance.

Note that the linear state feedback controller of Eq.15 has

been used, in our previous work, to control the surface

covariance in both thin film growth and ion-sputtering pro-

cesses [19], [18].

Since the above state feedback control assumes a full

knowledge of the states of the process at all positions and

times, which may be a restrictive requirement for certain

practical applications, we proceed to design output feedback

controllers by combining the state feedback control law and

a state observer.

III. OUTPUT FEEDBACK CONTROL

In this section, we design linear output feedback con-

trollers by combining the state feedback control law of Eq.15

and a dynamic state observer which estimates the state of

the finite-dimensional system of Eq.13 using the measured

process output with sensor noise. First, a dynamic state

observer is developed using a Kalman-Bucy filter approach,

which yields an optimal estimate of the state of the finite-

dimensional system by minimizing the mean square estima-

tion error. The dynamic state observer is then coupled to the

state feedback controller of Eq.15 to construct a dynamic

output feedback controller. For the special case where the

number of measurement sensors is equal to the order of the

finite-dimensional system, a static output feedback controller

may be designed by following a static state estimation

approach proposed in [3], [8].

A. Measured Output with Sensor Noise

The state feedback controller of Eq.15 requires the avail-

ability of the state x̃s, which implies that the value of the

surface height profile, h(x, t), is available at any location and

time. However, from a practical point of view, measurements

of the surface height profile are only available at a finite

number of locations. Motivated by this, we design an output

feedback controller that uses measurements of the surface

height at distinct locations to enforce a desired closed-

loop surface covariance. The sensor noise is modeled as

a Gaussian white noise and is added to the surface height

measurements. Specifically, the measured process output is

expressed as follows:

y(t) =[
h(x1, t)+ξ 1

y (t) h(x2, t)+ξ 2
y (t) · · · h(xq, t)+ξ q

y (t)
]T

(16)

where xi (i = 1,2, · · · ,q) denotes a location of a point

measurement sensor and q is the number of measurement

sensors. ξ 1
y (t), ξ 2

y (t), · · · , ξ q
y (t) are independent Gaussian

white noises with the following expressions for their means

and covariances:

〈ξ i
y(t)〉 = 0

〈ξ i
y(t)ξ

j
y (t ′)〉 = σ2δi jδ (t − t ′)

i = 1,2, · · · q j = 1,2, · · · q

(17)

where σ is a constant and δi j is the Kronecker delta function.

Note that the sensor noises are independent of the system

noises, ξs and ξ f .

Using Eq.5, the vector of measured outputs, y(t), can be

written in terms of xs and x f as follows:

y(t) =




∞

∑
n=1

αn(t)φn(x1)+ξ 1
y (t)

∞

∑
n=1

αn(t)φn(x2)+ξ 2
y (t)

...
∞

∑
n=1

αn(t)φn(xq)+ξ q
y (t)




= Csxs(t)+C f x f (t)+ξy(t)

(18)

where

Cs =




φ1(x1) φ2(x1) · · · φm(x1)
φ1(x2) φ2(x2) · · · φm(x2)

...
...

. . .
...

φ1(xq) φ2(xq) · · · φm(xq)




C f =




φm+1(x1) φm+2(x1) · · ·
φm+1(x2) φm+2(x2) · · ·

...
...

. . .

φm+1(xq) φm+2(xq) · · ·




(19)
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and

ξy(t) =
[
ξ 1

y (t) ξ 2
y (t) · · · ξ q

y (t)
]T

(20)

Consequently, the system of Eq.10 with the measured

process output vector can be written as follows:

dxs

dt
= Λsxs +Bsu+ξs

dx f

dt
= Λ f x f +B f u+ξ f

y = Csxs +C f x f +ξy

(21)

Neglecting the x f subsystem, the following finite-

dimensional stochastic ODE system can be obtained:

dx̃s

dt
= Λsx̃s +Bsu+ξs

ỹ = Csx̃s +ξy

(22)

where the tilde symbols in x̃s and ỹ denote the correspon-

dence to a reduced-order system. The system of Eq.22 is

used as the basis for output feedback controller design.

B. Dynamic Output Feedback Control

To design a dynamic output feedback controller, we first

construct a dynamic state estimator using information from

the measured output vector. Specifically, a Kalman-Bucy

filter is designed for the optimal estimation of the state of

the finite-dimensional system of Eq.22 as follows [12]:

dx̂s

dt
= Λsx̂s +Bsu+K(y−Csx̂s), x̂s(0) = x̂s0 (23)

where x̂s is the estimate of the state and K is a gain matrix,

which is computed as follows [12]:

K = QCT
s V−1

y (24)

where Vy is the sensor noise intensity matrix defined by

〈ξy(t)ξy(t
′)T 〉 = Vyδ (t − t ′) (25)

and Q is the covariance matrix for the state estimation error

and is defined as

Q = lim
t→∞

〈ẽ(t)ẽ(t)T 〉 (26)

where ẽ(t) is the estimation error:

ẽ = x̃s − x̂s (27)

The covariance matrix for the state estimation error, Q,

is the unique nonnegative-definite solution of the following

algebraic Riccati equation [12]:

ΛsQ+QΛs −QCT
s V−1

y CsQ+Vs = 0 (28)

where Vs is the noise intensity matrix of the ξs defined by

〈ξs(t)ξs(t
′)T 〉 = Vsδ (t − t ′) (29)

The dynamic output feedback controller is designed by

combining the state feedback controller of Eq.15 and the

state estimator of Eq.23 and takes the form:

dx̂s

dt
= Λsx̂s +Bsu+K(y−Csx̂s), x̂s(0) = x̂s0

u = Gx̂s

(30)

By applying the dynamic output feedback controller of Eq.30

to the finite-dimensional system of Eq.22, the following

closed-loop finite dimensional system can be obtained:

dx̃s

dt
= Λsx̃s +Bsu+ξs

ỹ = Csx̃s +ξy

dx̂s

dt
= Λsx̂s +Bsu+K(ỹ−Csx̂)

u = Gx̂s

(31)

The closed-loop finite dimensional system of Eq.31 can be

written in terms of x̃s and e using Eq.27 as follows:

dx̃s

dt
= (Λs +BsG)x̃s −BsGẽ+ξs

dẽ

dt
= (Λs −KCs)ẽ+ξs −Kξy

(32)

The stability of the closed-loop finite-dimensional system

of Eq.32 depends on the stability properties of the matrices

(Λs +BsG) and (Λs−KCs). Specifically, the stability of (Λs +
BsG) depends on the appropriate design of the state feedback

controller and the stability of (Λs −KCs) depends on the

appropriate design of the Kalman-Bucy filter. Owing to its

cascaded structure, the system of Eq.32 is asymptotically

stable if both (Λs +BsG) and (Λs−KCs) are stable matrices.

This results in the existence of a steady-state covariance

matrix (e.g., a covariance matrix as t → ∞) of the closed-

loop stochastic system [12]. To investigate the steady-state

covariance matrix of the closed-loop system of Eq.32, we

rewrite Eq.32 as follows:

d

dt

[
x̃s

e

]
=

[
Λs +BsG −BsG

0 Λs −KCs

][
x̃s

e

]
+

[
Is 0

Is −K

][
ξs

ξy

]

(33)

where Is is a mth-order elementary matrix and 0 denotes a

zero matrix with an appropriate size.

The steady-state covariance matrix of the system of Eq.33

is defined as follows:

P̃ = lim
t→∞

〈[
x̃s(t)
ẽ(t)

][
x̃s(t)

T ẽ(t)T
]〉

=

[
P̃s P̃se

P̃es P̃e

]
(34)

where P̃s, P̃e, P̃se and P̃es are covariance matrices of the form:

P̃ = lim
t→∞

〈[
x̃s(t)
e(t)

][
x̃s(t)

T e(t)T
]〉

=

[
P̃s Pse

Pes Pe

]
(35)

P̃ is the unique positive-definite solution of the following

Lyapunov equation [12]:

[
Λs +BsG −BsG

0 Λs −KCs

]
P̃+ P̃

[
Λs +BsG −BsG

0 Λs −KCs

]T

+

[
Is 0

Is −K

][
Vs 0

0 Vy

][
Is 0

Is −K

]T

= 0

(36)

When the solution of P̃ is available, the surface covariance

of the finite-dimensional system, C̃ovh, can be obtained by

using only P̃s.
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C. Analysis of Closed-loop Infinite-dimensional System

We now proceed to characterize the accuracy with which

the surface covariance in the closed-loop infinite-dimensional

system is controlled by the finite-dimensional linear dynamic

output feedback controller. By applying the controller of

Eq.30 to the infinite-dimensional system of Eq.10 and substi-

tuting the estimation error in Eq.27, the infinite-dimensional

closed-loop system takes the following form:

dxs

dt
= (Λs +BsG)xs −BsGe+ξs

de

dt
= (Λs −KCs)e−KC f x f +ξs −Kξy

ε
dx f

dt
= Λ f ε x f + ε(B f Gxs −B f Ge)+ εξ f

(37)

where ε =
|λ1|

|λm+1|
, and Λ f ε = εΛ f is an infinite-dimensional

stable matrix.

The infinite-dimensional system of Eq.37 is then a

singularly-perturbed system driven by white noise. We now

proceed to characterize the accuracy with which the sur-

face covariance is controlled in the closed-loop infinite-

dimensional system. Theorem 1 provides a characteriza-

tion of the surface covariance enforced by dynamic output

feedback controller in the closed-loop infinite dimensional

system. The proof of Theorem 1 can be found in the journal

version of this paper [13] and is omitted here due to space

limitation.

Theorem 1: Consider the surface covariance of the finite-

dimensional system of Eq.32, C̃ovh

P̃s = lim
t→∞

〈x̃s(t)x̃s(t)
T 〉, C̃ovh = Tr{P̃s} (38)

and the surface covariance of the infinite-dimensional system

of Eq.37, Covh

x = [ xT
s xT

f ]T , P = lim
t→∞

〈x(t)x(t)T 〉, Covh = Tr{P}
(39)

where 〈·〉 denotes the expected value. Then, there exists ε∗ >
0 such that if ε ∈ (0,ε∗], C̃ovh and Covh satisfy:

Covh = C̃ovh +O(
√

ε) (40)

IV. APPLICATION TO THE LINEARIZED STOCHASTIC

KSE

In this section, we present applications of the proposed

linear output feedback covariance controller to the linearized

stochastic KSE to demonstrate the effectiveness of the pro-

posed output feedback covariance controllers. The stochastic

KSE is a fourth-order nonlinear stochastic partial differential

equation that describes the evolution of the height fluctuation

for surfaces in a variety of material preparation processes

including surface erosion by ion sputtering [10], [16], surface

smoothing by energetic clusters [14] and ZrO2 thin film

growth by reactive ion beam sputtering [22]. The linearized

stochastic KSE around the zero solution (h(x, t) = 0) takes

the following form:

∂h

∂ t
= −∂ 2h

∂x2
−κ

∂ 4h

∂x4
+

p

∑
i=1

bi(x)ui(t)+ξ (x, t)

y(t) =[
h(x1, t)+ξ 1

y (t) h(x2, t)+ξ 2
y (t) · · · h(xq, t)+ξ q

y (t)
]T

(41)

subject to periodic boundary conditions:

∂ jh

∂x j
(−π, t) =

∂ jh

∂x j
(π, t), j = 0, · · · ,3 (42)

and the initial condition h(x,0) = h0(x), where x ∈ [−π,π] is

the spatial coordinate and κ > 0 is the instability parameter

of the stochastic KSE.

The eigenvalue problem of the linear operator of Eq.41

takes the form:

A φ̄n(x) = −d2φ̄n(x)

dx2
−κ

d4φ̄n(x)

dx4
= λnφ̄n(x)

d jφ̄n

dx j
(−π) =

d jφ̄n

dx j
(+π); j = 0, · · · ,3; n = 1, · · · ,∞

(43)

A direct computation of the solution of the above eigenvalue

problem yields λ0 = 0 with ψ0 = 1/
√

2π , and λn = n2−κn4

(λn is an eigenvalue of multiplicity two) with eigenfunc-

tions φn = (1/
√

π)sin(nx) and ψn = (1/
√

π)cos(nx) for

n = 1, · · · ,∞. Note that the φ̄n in the general eigenvalue

problem formulation of Eq.4 denotes either φn or ψn. From

the expression of the eigenvalues, it follows that for a fixed

value of κ > 0, the number of unstable eigenvalues of the

operator A in Eq.43 is finite and the distance between two

consecutive eigenvalues (i.e. λn and λn+1) increases as n

increases.

For 0 < κ < 1, the operator of Eq.4 possesses unstable

eigenvalues. Thus, the zero solution of the open-loop system

of Eq.41 is unstable, which implies that the surface covari-

ance increases with time due to the open-loop instability

of the zero solution. An appropriately designed feedback

controller is necessary to regulate the surface covariance to

a desired value.

Using modal decomposition, the linearized stochastic KSE

is formulated into an infinite-dimensional stochastic ODE

system as follows:

dαn

dt
= (n2 −κn4)αn +

p

∑
i=1

biαn
ui(t)+ξ n

α(t) n = 1, . . . ,∞

dβn

dt
= (n2 −κn4)βn +

p

∑
i=1

biβn
ui(t)+ξ n

β (t) n = 0,1, . . . ,∞

(44)

A finite-dimensional approximation of Eq.44 can be then

derived by neglecting the fast modes (i.e., modes of order

m + 1 and higher) and a system of the form of Eq.13 is

obtained for covariance controller design.

A linear state feedback controller is initially designed

on the basis of the finite-dimensional approximation by

following the method proposed in [18], which takes the

following form:

u = B−1
s (Λcs −Λs) x̃s (45)
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where the matrix Λcs contains the desired poles of the

closed-loop system; Λcs = diag[λcβ0 λcα1 · · · λcαm λcβ1

· · · λcβm]. λcβ0, λcαi and λcβ i (i = 1, · · · ,m) are desired

poles of the closed-loop finite-dimensional system, which

satisfy Re{λcαi} < 0 for i = 1, · · · ,m and Re{λcβ i} < 0 for

i = 0,1, · · · ,m.

To simplify the development, we assume that p = 2m+1

(i.e., the number of control actuators is equal to the dimen-

sion of the finite dimensional system) and pick the actuator

distribution functions, bi(x), in the following form:

bi(x)=





1/
√

2π; i = 1

(1/
√

π)sin[(i−1)x]; i = 2, · · · ,m+1

(1/
√

π)cos[(i−m−1)x]; i = m+2, · · · ,2m+1
(46)

Note that the actuator distribution functions are selected such

that B−1
s exists. The following parameters are used in the

simulation:

κ = 0.1 σ = 0.1 m = 5 (47)

We design the linear state feedback controller such that all

the desired poles in Λcs are equal to −10.0. The surface

covariance of the infinite-dimensional system under the state

feedback controller is 0.55. The method to determine the

values of the closed-loop poles to regulate the surface

covariance to a set-point value can be found in [18] and

is omitted here for brevity.

Eleven measurement sensors are used and are evenly

placed on the spatial domain [−π,π]. A perfect initial surface

is assumed and zero initial state estimates are used for all

simulations.

h0(x) = 0 xs(0) = x̂s(0) = 0 x f (0) = 0 (48)

A 50th order stochastic ODE approximation of Eq.41 is

used to simulate the process (a higher-order approximation

leads to identical numerical results). The Dirac delta function

involved in the covariances of ξ n
α and ξ n

β is approximated

by
1

∆t
, where ∆t is the integration time step. Since it is a

stochastic process, the surface covariance profile is obtained

by averaging the results of 1000 independent simulation runs

using the same parameters.

In the closed-loop simulation under linear dynamic output

feedback control, a Kalman-Bucy filter is designed to esti-

mate the state of the finite-dimensional system. The gain ma-

trix K is obtained from the solution of the algebraic Riccati

equation of Eqs.24 and 28. C̃ovh is the surface covariance of

the closed-loop finite-dimensional system under the finite-

dimensional output feedback covariance controller and is

the solution of the Lyapunov equation of Eq.36. According

to Theorem 1, C̃ovh is an O(
√

ε) approximation of the

closed-loop surface covariance of the infinite-dimensional

system, Covh, i.e., the closed-loop surface covariance of the

infinite-dimensional system is an O(
√

ε) approximation of

the desired value. To regulate the surface covariance to a

desired value, the ε should be sufficiently small, which can

be achieved by appropriately selecting the size of the finite-

dimensional approximation used for covariance controller

design. In this design, when m = 5, ε = 0.01, which is a

sufficiently small number compared to the desired closed-

loop surface covariance.

Since we use 11 measurement sensors, q = 2m + 1 and

the observer gain matrix is a square matrix. The desired

surface covariance is 1.1347. The gain matrices for both

the state observer, K, and the state feedback control law,

G, are determined based on this desired surface covariance

Note that because of the existence of the sensor noise, the

surface covariance under the output feedback covariance

controller is higher than the one under state feedback control

where the same gain matrix, G is used and the full state

of the surface is accessible. The closed-loop simulation

result under the dynamic output feedback controller with

11 measurement sensors is shown in Fig.1. The controller

successfully drives the surface covariance of the closed-loop

infinite-dimensional system to a level which is within the

range of the theoretical estimate of Theorem 1, i.e.,
√

ε ≃ 0.1
and Covh = C̃ovh + O(0.1). The result shown in Fig.1 also

confirms that the surface covariance contribution from the x f

subsystem is negligible and that the contribution from the xs

subsystem is dominant. Therefore, the design of the output

feedback covariance controller based on the xs subsystem can

regulate the surface covariance of the infinite-dimensional

closed-loop system to the desired level.
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Fig. 1. The closed-loop surface covariance under linear dynamic output
feedback control using 11 measurement sensors. The horizontal dashed lines
represent the range in which the surface covariance Covh is expected to be
based on the theoretical estimates of Theorem 1.

For dynamic output feedback control design, the number

of the measurements is not needed to be equal to the

dimension of the finite-dimensional system. A number of

measurement sensors that is larger than the dimension of

the finite-dimensional system results in a more accurate

state estimation from the Kalman-Bucy filter. Therefore, the

closed-loop surface covariance can be closer to the set-

point value compared to the one in which the number of

measurement sensors is equal to the dimension of the finite-

dimensional system. On the other hand, when the number of

the measurement sensors is smaller than the dimension of the
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finite-dimensional system but is equal to or larger than the

number of unstable modes of the system, it is still possible

to design a stable Kalman-Bucy filter for state estimation.

Fig.2 shows the comparison of closed-loop simulation results

when different numbers of measurement sensors are used for

state estimation. The feedback control law is the same for

all simulations. Specifically, Fig.2 shows results from three

closed-loop simulation runs with 7, 11 and 15 measurement

sensors. It is clear that the control system which uses a larger

number of measurement sensors is capable to control the

surface covariance to a lower level. On the other hand, since

the dimension of the finite-dimensional system is 11, it is

possible to stabilize the surface covariance to a finite value

when the number of measurement sensors is smaller than the

dimension of the finite-dimensional system.
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Fig. 2. Comparison of the surface covariance under linear dynamic output
feedback controllers with 7, 11 and 15 measurement sensors.

However, there is a minimum number of measurement

sensors required by the dynamic output feedback controller

to stabilize the system. In this study, a minimum of 7

measurement sensors are required. When the number of

measurement sensors is fewer than the minimum number, 7,

the output feedback controller cannot stabilize the closed-

loop system. The results for a number of measurement

sensors less than the minimum can be found in the journal

version of this paper and thus omitted here due to the page

limit [13].

V. CONCLUSIONS

In this work, we developed a method for dynamic output

feedback covariance control of the state covariance of linear

dissipative stochastic PDEs using spatially distributed control

actuation and sensing with measurement noise. Application

of the linear dynamic output feedback controller to the

linearized stochastic Kuramoto-Sivashinsky equations was

presented.
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