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Abstract— Economic performance assessment of process con-
trol system has been a great interest to control engineers and
academic researchers. In this paper, a novel approach for
economic performance assessment of the constrained process
control is presented. The method builds on steady-state eco-
nomic optimization techniques and uses the LQG benchmark
other than conventional minimum variance control (MVC) to
estimate potential of reduction in variance. Combining the LQG
benchmark directly with benefit potential of process control,
both the economic benefit and the optimal operation condition
can be obtained by solving the economic optimization problem.
The proposed method is also illustrated by simulated examples
where the economic potential due to improved process control
is illustrated.

I. INTRODUCTION

Economic performance assessment of process control has

been an area of active research in process control community.

Quantifying the economic benefit of existing process control

is often based on the variance reduction for key process

variables. A general approach for economic performance

evaluation is to reduce the variance in controlled variable,

which in turn shifts the process mean operating point closer

to the operating constraint and thus results in better per-

formance. Several performance assessment techniques have

been proposed in the literature.

The notable work has been done by Martin [5], where

a general framework for economic justification of APC

applications is given . Using statistical analysis , an approach

for analysis of variance reduction under various improved

control operations is developed in [3]. Considering the prob-

ability constraints for the quality process variables, Zhao and

Forbes (2003) proposed a structured procedure for economic

benefits analysis using stochastic programming. According

to steady-state model and back-off idea, an economic perfor-

mance assessment of MPC using a linear matrix inequality

approach has been developed [1].

It is assumed that improvement of process economic

performance comes from variance reduction. The achievable

variance reduction in process variables depends on dynamic

control. The existing assessment methods are often con-

cerned with variance reduction estimation with minimum

variance controller (MVC) as the benchmark. Minimum
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variance control usually is not a desired control strategy in

most practical situations since it demands excessive control

action and has poor robustness. Thus, variance reduction

estimation based on the MVC benchmark tends to obtain

an overaggressive economic performance assessment for a

practical control system. The LQG benchmark is an alterna-

tive benchmark, and it has been proven to be a more realistic

one than MVC when evaluating process control system with

constraints since it considers input variance as well as output

variance.

In this work, based on the LQG benchmark, a model

based technique to assess the economic performance of the

constraint process control system is presented. The remainder

of this paper is organized as follows: the general procedure

for calculation of the LQG benchmark is briefly reviewed

in section 2. The approach for economic performance as-

sessment of process control using model-based optimization

technique is discussed in section 3. In section 4, an algorithm

to estimate the economic benefit based on the LQG bench-

mark is introduced. Simulations are presented in section 5,

followed by concluding remarks in section 6.

II. LQG BENCHMARK

MVC appears not to be appropriate for performance

assessment of constraint control systems such as MPC ap-

plication since MVC does not explicitly take the control cost

into account and is rarely implemented in practical situation.

The LQG benchmark as an alternative benchmark has been

proposed for performance assessment of control systems with

consideration of the control action constraints. Using LQG

benchmark, the achievable performance is given by a tradeoff

curve as shown in Fig. 1, and this curve can be obtained from

solving the LQG problem [7]. The LQG objective function

is define as:

J(λ) = E(y2
t ) + λE(u2

t ) (1)

Calculation of the LQG benchmark is briefly reviewed in

this section following the approach of [4].

Consider that the process is described by an ARMAX

model:

yt + a1yt−1 + · · · + anyt−n = b1ut−1 + · · · +

bnut−n + at + c1at−1 + · · · + cnat−n (2)

The corresponding Kalman predictor can be written as

xt+1 = Axt + But + Kαt

yt = Cxt + αt (3)
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Fig. 1. Optimal performance curve obtained through LQG benchmark

The optimal feedback control can be written as

x̂t+1 = (A − KC − BL)x̂t + Kyt

ut = −Lx̂t (4)

where L is the optimal state feedback control gain and can

be solved via a MATLAB LQR function. Combining the

Kalman predictor with state feedback yields

[

xt+1

x̂t+1

]

=

[

A −BL

KC A − KC − BL

] [

xt

x̂t

]

+

[

K

K

]

αt

(5)

Writing it in a compact form

Xt+1 = AclXt + Bclαt (6)

the variance of the input and output can be written as:

Var (ut) =
[

0 −L
]

Var (Xt)

[

0
−LT

]

(7)

Var (yt) =
[

C 0
]

Var (Xt)

[

CT

0

]

+ Var (αt)(8)

Define P = V ar(Xt), and P is the solution to the Lyapunov

equation,

P = AclPAT
cl + BclB

T
cl (9)

For the MIMO system, the objective function of LQG control

is written as

J(λ) = E
[

Y T
t WYt

]

+ λE
[

UT
t RUt

]

(10)

where the output weighting W is determined by the relative

importance of the individual controlled variables, and the

control weighting R is chosen according to the relative cost

of individual control moves.

By varying λ, various LQG control solutions of E
[

y2
t

]

and E
[

u2
t

]

can be calculated. Then a tradeoff curve can be

plotted from these solutions, and this curve provides a useful

lower bound on the achievable performance of the controller

in terms of both input and output variance.

III. ECONOMIC PERFORMANCE ASSESSMENT WITH

MODEL-BASED OPTIMIZATION

Reduction of the variance of quality variables is identified

as a key aspect in any attempt to increase benefit potential.

The back-off method has been an effective way to deal with

disturbances and uncertainty in control systems, and can be

applied into the economic performance assessment of the

run-time control system.

Based on the idea of back-off approach and the steady

state optimization techniques in MPC, Xu (2007) proposed

a method to evaluate economic performance of existing run-

time MPC application. The economic performance assess-

ment of MPC application problems can be transferred to the

constrained optimization problems by applying the steady

state model and the back-off strategy. Several different sce-

narios for MPC performance assessment have been described

in the form of constrained quadratic optimization problems

with consideration of variance reduction and tuning of con-

straints. Only the economic potential analysis is discussed

here for the sake of brevity, and mathematical details can be

found in [1].

Consider a p × m system with m inputs and p outputs,

having steady-state process gain matrix K . It is assumed

that (ȳi0, ūj0) is the current operating point and (ȳi, ūj) is

the optimal operating point. Then the quadratic economic

objective function for the system is formulated as follows:

J =

p
∑

i=1

[bi × ȳi + a2
i × (ȳi − ydi)

2] +

m
∑

j=1

[bj × ūj + a2
j × (ūj − udj)

2] (11)

where, bi (respectively, bj) and ai (respectively, aj) are

the linear and quadratic coefficients for the ith controlled

variables (CVs) (respectively, the jth manipulated variables

(MVs)); ydi and udj are the ith CVs and jth MVs. The

economic performance assessment may be transferred to the

quadratic optimization problems as follows,

min
ȳi,ūj

J (12)

subject to:

∆ȳi =

m
∑

j=1

[Kij × ∆uj ] (13)

(Lyi − ryi × yhoi + 2 × αyi0 × (1 + syi)) ≤ ȳi ≤

(Hyi + ryi × yhoi − 2 × αyi0 × (1 + syi)) (14)

(Luj − ruj × uhoj + 2 × αuj0) ≤ ūi ≤

(Huj + ruj × uhoj − 2 × αuj0) (15)

where i = 1, 2, . . . , p and j = 1, 2, . . . , m. Equation (13)

means that the move (∆ȳi, ∆ūi) must satisfy the steady-

state relation of the system.

In the above two inequalities, Lyi and Hyi are the low

limit and high limit of CVi, Luj and Huj are the low limit
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and high limit of MVj . σyi0 and σuj0 are the standard

deviation of CVi and MVj under the base case operation

where the base case refers to the existing operation. ryi and

ruj are the user defined percentage of relaxation in the limit

for CVi and MVj . yhoi and uhoj are the half constraint

range of CVi and MVj . The standard deviations are set to

be adjusted by the percentage of variability change syi.

Therefore, the benefit potentials under the various op-

eration conditions are readily obtained via solution of the

defined steady-state economic optimization problem.

IV. ECONOMIC PERFORMANCE ASSESSMENT WITH LQG

BENCHMARK

There are two important problems that should be taken

into account when assessing the economic performance

of process control systems. One is how to determine the

relationship between economic performance and process

variance reduction, the other is the relationship between the

input variance and the output variance. Based on the back-off

approach and the steady-state model, the most economically

attractive operating point, or the optimal operating point, is

determined via the solution of a model based optimization

problem with specified allowable constraint limit violation.

Thus, the relationship between economic performance and

the output variance is determined through the back-off ap-

proach.

The second issue can be considered as an optimal con-

trol problem that determines the relationship between in-

put variance and output variance. Xu et al. (2007) solved

this problem by using minimum energy covariance control.

However, under the minimum energy covariance control, the

relationship between the input variance and the output vari-

ance is not uniquely determined (i.e. an inequality relation

rather than an equality relation). To this end, we consider

the limit of control performance, represented by the LQG

tradeoff curve. Several possible optimal benchmark controls

have been identified from the tradeoff curve shown in Fig. 2,

and each of them serves for a different control objective [2].

For example, the minimum energy controller is optimal in

the sense that it offers minimum possible control effort, and

indicates the maximum variance reduction of control action

(MV). Minimum variance control offers minimum possible

error and the maximum variance reduction of output variable

(CV). While an LQG tradeoff controller has performance

between the minimum variance control and minimum cost

control, it offers a tradeoff between reduction of the output

variance and the control action. In terms of input and output

variances, LQG tradeoff provides limit of control perfor-

mance, or Pareto optimal [7]. Each point of the tradeoff curve

corresponds to an optimal control. In this work, the LQG

benchmark is combined directly with benefit potential, which

therefore leads to an achievable optimal benefit potential.

Given a process control system, the purpose of economic

performance assessment can now be viewed as identifying

the possibility of moving its operating point as close as

possible to its optimal point with the consideration of likely

disturbance and uncertainty. Given sufficient operating data,

Minimum

energy control

 current control

LQG tradeoff

control

Var(Y)

Var(U)

Minimum

variance  control

Achievable performance

Fig. 2. Performance assessment benchmark with different control objective

the base case operation can be described as its current mean

values and standard deviation. The optimal operation condi-

tion can be obtained by solving the economic steady state

optimization problem subject to the current constraint limit

settings and the input and output variability relation based on

the LQG tradeoff curve. Generally, a reasonable percentage

of constraint limit violation of controlled variables (CVs), say

5%, is allowed such that 95% of operation falls within the

range of ±2 times standard deviation [5]. Since manipulated

variables usually represent the valve position of an actuator

or the speed of rotation of a motor, constraint violation is

not allowed in practice. Therefore, a more conservative back-

off strategy is implemented on MVs than on CVs, and ±3
times standard deviation is used for the analysis. Economic

benefit potential can be determined by comparing optimal

operation with base case operation. The problem formulation

of optimal operation is described as follows.

Given an p × m system, having steady-state process gain

matrix K . (ȳi0, ūj0) is defined as the current operating

point and (ȳi, ūj) is the optimal operating point. Then the

quadratic economic objective function in [1] is adopted in

this work:

J =

p
∑

i=1

[bi × ȳi + a2
i × (ȳi − ydi)

2] +

m
∑

j=1

[bj × ūj + a2
j × (ūj − udj)

2] (16)

where all notation are same as that for equation (11). The

move (∆yi, ∆uj) must satisfy the steady state gain relation

described by the following equations:

∆ȳi =

m
∑

j=1

[Kij × ∆ūj ]

ȳi = ȳi0 + ∆ȳi

ūj = ūj0 + ∆ūj (17)

Considering the allowable percentage of violation of con-

straints, the following inequalities must be satisfied:

Lyi + 2 × σyi ≤ ūi ≤ Hyi − 2 × σyi (18)
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Luj + 3 × σuj ≤ ūi ≤ Huj − 3 × σuj (19)

where σyi and σuj are the standard deviation of the ith

output variable and the jth input variable, which can be

determined by the LQG benchmark. The LQG tradeoff curve

represents a relationship between the output variance and the

input variance, which may be represented by a function as

σ2
Y = f

(

σ2
U

)

(20)

There is no analytical solution to obtain tradeoff curve

since the LQG control law can not be explicitly expressed

in term of λ or its equivalence. As discussed in section

2, a series of LQG solutions of Var(ut) and Var(yt) can

be calculated according to (7) and (8) by varying λ. Then

we can obtain a function of input variance against output

variance through numerical methods such as interpolation

or regression. Spline interpolation technique is a simple

and effective method to obtain the function. The standard

deviation other than variance of variables is more relevant to

the determination of the optimal operation condition based

on a predefined back-off level. Thus, the same numerical

method is used to determine the function of input standard

deviation against output standard deviation,

σY = f (σU ) (21)

For MIMO systems, according to the LQG control law

discussed in section 2, σY and σU should satisfy:

σ2
Y =

p
∑

i=1

wiσ
2
yi (22)

σ2
U =

m
∑

j=1

rjσ
2
uj (23)

where rj , j = 1, · · · , m and wi, i = 1, · · · , n are the

weighting coefficients of input and output variables, which

are same as that in equation (10) where the weighting

matrices are defined as diagonal matrices. Based on above

analysis, the economic optimization problem for the benefit

potential assessment of different scenarios can be transferred

to the following form:

min
ūj ,ȳi,σyi,σuj

J subject to (17) ∼ (23) (24)

Equation (24) gives the achievable optimal operation con-

dition for a process control system with the given eco-

nomic objective and the steady-state model. For the base

case operation, the economic objective function value is

calculated by replacing (ȳi, ūj) with the current operating

point (ȳi0, ūj0) in (16), which is denoted as J0. It is a

value to be compared with for the calculation of economic

potentials. In the following, we will discuss the economic

potential calculations under different scenarios, following the

notations used in [1].

• Ideal operation scenario: In this scenario, the distur-

bance effect is not considered and a nominal steady-

state operation is assumed. There is no back-off due

to the disturbance and the constraint limits are kept

unchanged. The solution of (24) results in an ideal

operation point (ȳIi, ūIj) and corresponding objective

function is denoted as JI . Then, the ideal economic

potential ∆JI can be calculated by

∆JI = JI − J0 (25)

• Existing variability scenario: In this scenario, the

present level of disturbance is taken into account, and

no action is taken to reduce the variability of the

output variables. Thus, the existing economic potential

is obtained by shifting mean value only. The resultant

optimal operating point is denoted as (ȳEi, ūEj), and

corresponding objective function as JE , which is cal-

culated by replacing σyi in equation (18) with existing

standard deviation σyi0 in the QP problem (24). Thus,

the existing economic potential δJE can be defined as

following:

∆JE = JE − J0 (26)

• Reducing variability scenario: In this scenario, the

increased economic benefit comes from the variability

reduction on controlled variables based on the LQG

trade-off. With variability reduction, the back-off can

also be reduced, which allows further mean values

shifting in the direction of the optimal operation point.

The optimal operation point is usually located on the

constraint limit. The mean shift reduces the distance be-

tween the actual operating point and the optimal point,

and thus gives rise to increased economic beneficial.

The optimal operating point is denoted as (ȳV i, ūV j),
and corresponding objective function as JV , which

can be calculated via the solution of the QP problem

(24). Thus, the optimal economic potential by reducing

variability ∆JV can be defined as following:

∆JV = JV − J0 (27)

The economic performance assessment of the process control

can be done using the information obtained by performing

the optimizations discussed above. Two economic perfor-

mance indices, the existing economic performance index

(ηE) and the best achievable economic performance index

(ηB), are used to assess the economic performance potential

of process control.

ηE =
∆JE

∆JI

(28)

ηB =
∆JV

∆JI

(29)

It is obvious that 0 ≤ ηE , ηB ≤ 1. Comparing ηE with

ηB , the following inequality holds 0 ≤ ηE ≤ ηB ≤ 1. A

positive value of (ηB) means that this economic potential

could be achieved by reducing the variability through LQG

control, while the economic potential given by a positive

value of (ηE) could be actually achieved by simply moving

the operating point to the optimal one.
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V. CASE STUDIES

In this section, two simulation examples are performed

to demonstrate the effectiveness of the proposed approach

in assessing the economic performance of process control

systems. The calculations for both examples are based upon

closed-loop data sets containing 3000 observations of the

controlled and manipulated variables generated using Mat-

lab/Simulink.

A. SISO system

In this example the proposed algorithm is applied to a

system described by the following linear transfer functions

for the plant Gp, and disturbance model Gd,

Yt = GpUt + Gdαt

=
0.6299z−1

1 − 0.8899z−1
Ut−2 +

1 − 0.8z−1

1 − 0.8899z−1
αt (30)

where {αt} is a normally distributed white noise sequence

of mean 0 and variance 1. The economic objective chosen

for this problem is to maximize the output while satisfying

the following constraints:

−5 ≤ u (k) ≤ 5

−10 ≤ y (k) ≤ 10

By setting the economic objective function as J = −2ȳ, the

optimal operation condition can be obtained by solution of

the optimization problem as follows:

min
ȳ,ū,σy,σu

−2ȳ

(ȳ − ȳ0) = 5.72 (ū − ū0)

YLk + 2 × σy ≤ ȳ ≤ YHk − 2 × σy

ULk + 3 × σu ≤ ū ≤ UHk − 3 × σu

σy = spline(σui0, σyi0, σu) (31)

A PI controller is chosen to regulate the control

loop and the base case operation is defined as
[

ū0 ȳ0 σu0 σy0

]T
, which is estimated as

[

−0.022 0.382 0.632 2.212
]T

based on simulation

results. According to the solution to the QP problem (24),

the optimal operation condition under reducing variability

scenario is
[

0.466 2.936 0.468 1.956
]T

. On the

other hand, the economic potentials of other scenarios

are: ∆JI = −8.14, ∆JE = −2.43, and ∆JV = −5.11.

Accordingly, the existing economic performance index

and the best achievable economic performance index are

calculated as ηE = 29% and ηB = 64%. This means that

35% of the ideal potential benefits (ηB − ηE) is possibly

achieved by further variability tuning through advanced

control.

The calculated ∆JV is the benefit potential that could

be achieved if the LQG control is implemented. This

benefit potential can be verified by replacing the existing

PI controller with a designed LQG controller in the control

system. With the same simulation condition, the realized

economic potential is calculated as ∆Jver = −4.86, which

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.8

1.85
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2
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2.15
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2.25

2.3

σu

σ
y

Current operating
point

Optimal operating
point

Fig. 3. Comparison of the base and the optimal operation condition in
term of standard deviation
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Distillate product

Reboiler

Bottom product

Distillate receiver

Feed

Fig. 4. Schematic diagram of the separation process

is about 59% of ideal economic potential. It means that

the calculated economic potential is indeed achieved by

the control system upgrading. The base and the optimal

operation condition in term of standard deviation is shown

in Fig. 3.

B. MIMO Case

The proposed economic performance assessment method

is further tested in another case study involving control-

optimization application [6]. The process is a binary sep-

aration process shown in Fig. 4, which has two manipulated

variables, two controlled variables, and one disturbance vari-

able. The manipulated variables are reflux flow rate u1 and

vapor boil up rate u2, the output variables are the distillate

product y1 and bottom product y2, and the disturbance

variable is feed flow rate d.

The input-output transfer function model of the process is

[

y1

y2

]

=

[

4e−5s

14s+1

2e−3s

22s+1

−1e−2s

25s+1

5

27s+1

]

[

u1

u2

]

+

[

−0.5e−1s

15s+1

0.1e−3s

20s+1

]

d (32)

An MPC controller is implemented in this distillation

process with the following parameters: prediction horizon as

P = 20, control horizon as M = 4; weighting coefficients

matrix as W = diag (10, 1), and input weighting matrix as

R = diag (3, 3). The MPC design problem has the following
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Fig. 5. Base case operation of simulated separation process

TABLE I

RESULTS OF ECONOMIC PERFORMANCE VALUATION PROBLEM

scenarios optimal operation point economic potentials

y1 y2 u1 u2 calculated verified

ideal 0.796 0.129 2.124 1.882 0.221 0.201

existing 0.217 0.385 1.655 2.071 0.052 0.047

reducing 0.470 0.170 2.301 1.552 0.131 0.115

formulation

Min
u1,k+j ,u2,k+j

j=0,...,M

P
∑

i=1

2
∑

l=1

[wyl(yl,k+i − yl,ss)] +

M−1
∑

j=0

2
∑

l=1

[wul(ul,k+j − ul,ss)]

(33)

subject to

−0.5 ≤ y1,k+j ≤ 1, 1 ≤ j ≤ P

−0.5 ≤ y2,k+j ≤ 0.5, 1 ≤ j ≤ P

−5 ≤ u1,k+j ≤ 5, 1 ≤ j ≤ M − 1

−5 ≤ u2,k+j ≤ 5, 1 ≤ j ≤ M − 1

−0.03 ≤ ∆u1,k+j ≤ 0.03, 1 ≤ j ≤ M − 1

−0.03 ≤ ∆u2,k+j ≤ 0.03, 1 ≤ j ≤ M − 1 (34)

where y1,ss = 0.95, y2,ss = 0.05, u1,ss = 3.95 and u2,ss =
2.19 are the nominal steady state values. By simulation on

this MPC application, the base case operation with given

constraints limits is shown in Fig. 5.

The economic objective function is set as the maximiza-

tion of the controlled variable y1. According to the steady-

state economic potentials analysis discussed in section 4, the

economic benefits and optimal operation conditions under

different scenarios are calculated and verified in Table. I. the

existing economic performance index and the best achievable

economic performance index are calculated as ηE = 23.5%
and ηB = 59.3%, which means that 23.5% and 59.3%
of ideal economic potential can be achieved by the mean

shifting only and the further controller tuning respectively.

According to the calculated optimal operation condition, the

best achievable economic potential ∆JV can be achieved

when reducing the standard deviation of y1,y2,u1 and u2

by 28.4%,10.5%,−22.4%,48.7% respectively, as shown in

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

1 = Y ; 2 = U ; 3 = y1; 4 = y2; 5 = u1; 6 = u2

σ

 

 

Standard deviation under  base case operation

Standard deviation under  optimal operation condition

Fig. 6. Standard deviation under base and optimal operation condition

Fig. 6.

The calculated economic potentials ∆JE , ∆JE and ∆JV

are verified by setting the setpoint as the corresponding

optimal operation point in MPC application. From Table I

we can see that the realized economic potentials are close to

those of calculated ones. Simulated results once again show

that realized economic potentials agree with those calculated

ones, which demonstrates the feasibility of the proposed

approach for economic performance assessment of process

control.

VI. CONCLUSION

An economic performance assessment algorithm based on

the LQG benchmark is developed to evaluate the benefit

potentials in this study. The LQG benchmark offers a more

realistic tradeoff between the variability reduction in the

output and the input variables. Based on the LQG trade-

off curve as well as the back-off strategy, the economic

performance assessment problems under different scenarios

are formulated as the constrained optimization problems.

The economic potential as well as the optimal operation

condition can be obtained via solution of the formulated

optimization problem. Two case studies show the feasibility

of the proposed algorithm.
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