
Scaling of stochasticity in gene cascades

Abhyudai Singh and João Pedro Hespanha

Abstract— Stochastic fluctuations in protein levels are in-
evitable due to the probabilistic nature of gene expression.
These fluctuations are attributed to two factors: intrinsic noise
(noise associated with random transcription and translation
events) and extrinsic noise (noise associated with fluctuations in
the reaction rates due to correspondent fluctuations in cellular
enzyme levels). We present results on how stochastic noise in
proteins scales in a cascade of genes both in the presence and
absence of extrinsic noise. In particular, we derive analytical
formulas relating the noise in the proteins to the length, per
stage magnification of the cascade and the amount of extrinsic
noise present in the cell.

We show that when there is no extrinsic noise the gene
cascade acts like a noise attenuator where downstream proteins
exhibit reduced noise. Moreover, for two different cascades with
the same average final protein level, the cascade with the larger
number of stages will have lower stochastic noise in the final
protein. We also show that adding extrinsic noise can change
the qualitative behavior of the cascade from a noise attenuator
to a noise magnifier where downstream protein have increased
noise. Furthermore, there exists a critical level of extrinsic noise
above which the cascade with lower number of stages will have
lesser noise in the final protein.

I. INTRODUCTION

Gene expression is inherently a noisy process. The cause
for this stochasticity lies in the probabilistic nature of the
biochemical processes (such as transcription and translation)
which make up gene expression and fluctuations in the
cellular enzyme levels that carry out these processes. Recent
work [1], [2], [3], [4] has provided considerable experimental
evidence for these stochastic fluctuations and may account
for the large amounts of cell to cell variation observed in
genetically identical cells exposed to the same environmental
conditions [5], [6]. Gene cascades, where a protein expressed
from one gene activates another gene to make a different
protein, are common motifs occurring with in cells. In these
cascades an initial signal (a protein with small number of
molecules) can be amplified over a number of stages. The
amplified signal (a protein with large number of molecules)
can then be used to trigger some physiological response in
the cell. We investigate how noise levels in the proteins of
the gene cascade are effected by the length and per stage
magnification of the cascade.

We first quantify stochastic noise in a single gene GeneX
which expresses a protein X . We consider a simple model
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of gene expression where the mRNA is transcribed from the
gene GeneX at a rate Tx and the protein X is translated from
the mRNA at a rate Lx. Both mRNA and the protein decay
at constant rates ax and dx, respectively. In the stochastic
formulation of this gene expression model, transcription,
translation and degradation are treated as probabilistic events
and x(t), the protein count at time t is a stochastic process.
Details on the stochastic formulation are presented in Sec-
tion II. We quantify the noise in x(t) by its coefficient of
variation defined by

CV 2
X :=

E[x2(∞)]−E[x(∞)]2

E[x(∞)]2
(1)

where E[xk(∞)] denotes the steady-state value of the moment
E[xk], k ∈ [1,2]. We show in Section II that for this consti-
tutively expressed gene the noise in the protein numbers is
given by

CV 2
intX =

1+ Lx
ax

E[x(∞)]
, E[x(∞)] =

LxTx

dxax
. (2)

The above expression for CVintX is the noise associated with
random transcription and translation events occurring in gene
expression and we refer to it as the intrinsic stochasticity of
the gene GeneX .

We next consider a scenario where the gene GeneX is
not constitutively expressed but activated by a protein Z. We
model this activation by assuming that the transcription rate
of gene GeneX is αz(t) where α is a constant and z(t) is
the number of molecules of protein Z at time t. We further
assume that protein Z is expressed from gene GeneZ whose
intrinsic stochasticity is denoted by CVintZ . For this two-gene
cascade, we show in Section III that the steady-state average
counts of the two proteins are related by

E[x(∞)] =
αLx

dx
E[z(∞)] (3)

and the noise in the protein X is given by

CV 2
X = CV 2

intX +
dx

dx +dz
CV 2

intZ (4)

where E[z(∞)] is the steady-state average molecular count
of protein Z and dz is the degradation rate of protein Z.
Equation (4) shows that the noise in protein X is the sum
of the intrinsic stochasticity in GeneX plus the contribution
from the activating protein Z.

In Section IV we generalize this to a cascade of N genes
GeneX1, GeneX2, . . . , GeneXN where gene GeneXi expresses
protein Xi that activates gene GeneXi+1, for all i∈ [1, . . . ,N−
1] (as shown in Figure 1). As before we model the activation
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Fig. 1. A gene activation cascade where gene GeneX1 expresses protein
X1. This protein then activates gene GeneX2 to make X2 which then goes
on to activate gene GeneX3.

by assuming that the transcription rate of GeneXi+1 is αxi
for some constant α and xi denotes the number of molecules
of protein Xi. For this cascade we have that

E[xi+1(∞)] = Mi+1E[xi(∞)], ∀ i ∈ [1, . . . ,N−1] (5)

where E[xi(∞)] denotes the steady-state mean number of
molecules of protein Xi, Mi+1 is the amount by which the
population of protein Xi is magnified at the i + 1th stage of
the cascade and is assumed to be larger than one. For this
network, the noise in protein Xi+1 is a function of the noise
in protein Xi according to

CV 2
Xi+1

= CV 2
intXi+1

+
di+1

di +di+1
CV 2

Xi
(6)

where CVintXi+1 represents the intrinsic stochasticity of the
gene GeneXi+1 and di is the degradation rate of protein
Xi. From (6) we conclude that here CVXi monotonically
decreases to zero as the number of stages i increases. Thus
in this case the cascade acts like a noise attenuator where
downstream proteins have reduced noise. We also compare
the final protein noise in two different cascades of genes with
different sizes but with the same average steady-state number
of molecules of the final protein XN . We show that the gene
cascade that achieves the same total magnification in more
number of stages but smaller magnification per stage has
lesser stochastic fluctuations in the final protein compared
to a cascade with lesser number of stages and a higher
magnification per stage.

In Section V we investigate the same cascade of N genes,
but we now consider the presence of extrinsic noise. We
show that the presence of extrinsic noise can change the
qualitative behaviour of the cascade. More specifically, for
sufficiently large extrinsic noise, CVXi increases unboundedly
with i, and hence, the cascade behaves as a noise magnifier
instead of a noise attenuator. We also show that there exists

a critical level of extrinsic noise above which the cascade
with the lower number of stages and higher magnification
per stage has lesser noise in the final protein than a cascade
with higher number of stages and lower magnification per
stage.

II. SIMPLE GENE EXPRESSION AND INTRINSIC NOISE

A very simple model for gene expression is shown in
Figure 2. This process is initiated when cellular enzymes
known as RNA polymerase (RNAP) recognize and bind to
specialized DNA sequences known as promoters present at
the start of a gene. The RNAP then moves along the gene
and synthesizes a messenger RNA (mRNA) which carries the
information encoded by the gene. This process is known as

Fig. 2. A simple model for gene expression.

transcription. Ribosome’s (small cellular components) attach
to the nascent mRNA and start the translation process which
consists of making a protein by assembling amino acids in an
order that corresponds to the mRNA sequence. We assume
that the mRNA is transcribed from the gene GeneX at a
constant rate Tx and the protein X is translated from the
mRNA at a constant rate Lx. Both mRNA and the protein
decay at rates ax and dx respectively. The lifetime of the
mRNA is typically much smaller than that of the protein and
throughout the paper we use the approximation dx/ax << 1.
As the average lifetime of a mRNA is 1/ax and proteins are
made from it at rate Lx, Bx = Lx/ax denotes the number of
proteins produced per mRNA, which is referred to as the
burst size of the gene GeneX . Here and in the sequel we
denote by mx and x, the number of molecules of the mRNA
and protein X, respectively. As a continuous deterministic
model based on chemical rate equations does not provide
information about the stochastic fluctuation in the protein, we
consider a stochastic formulation that treats births and deaths
of the mRNA and the protein as probabilistic events. Given
that x(t) = x and mx(t) = mx, the probabilities of the four
reactions corresponding to births and deaths of the mRNA
and the protein happening in the infinitesimal time interval
(t, t +dt] are given by

Pr{x(t +dt) = x,mx(t +dt) = mx +1}= Txdt (7a)
Pr{x(t +dt) = x,mx(t +dt) = mx−1}= axmxdt (7b)
Pr{x(t +dt) = x+1,mx(t +dt) = mx}= Lxmxdt (7c)
Pr{x(t +dt) = x−1,mx(t +dt) = mx}= dxxdt. (7d)

As shown in [7], [8], a convenient way to model the time
evolution of the number of molecules x and mx is through
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a Stochastic Hybrid System (SHS), the state of which is
y = [mx,x]T . This SHS is characterized by trivial continuous
dynamics

ẏ = 0, (8)

four reset maps φi(y)

y 7→ φ1(y) =
[

mx +1
x

]
, y 7→ φ2(y) =

[
mx−1

x

]
(9a)

y 7→ φ3(y) =
[

mx
x+1

]
, y 7→ φ4(y) =

[
mx

x−1

]
(9b)

and corresponding transition intensities λi(y)

λ1(y) = Tx, λ2(y) = axmx, λ3(y) = Lxmx, λ4(y) = dxx
(10)

corresponding to transcription, translation, mRNA and pro-
tein degradation. In order to gauge the noise level in the
protein population, we determine the time evolution of the
first and second order moments of y, i.e. the expected values
E[mx], E[x], E[x2], E[m2

x ] and E[mxx]. Using the Dynkin’s
formula for the SHS (8)-(10) we have

dE[mx]
dt

= Tx−axE[mx],
dE[x]

dt
= LxE[mx]−dxE[x]

(11a)

dE[m2
x ]

dt
= Tx +axE[mx]+2TxE[mx]−2axE[m2

x ] (11b)

dE[x2]
dt

= LxE[mx]+dxE[x]+2LxE[mxx]−2dxE[x2] (11c)

dE[mxx]
dt

= LxE[m2
x ]+TxE[x]−dxE[mxx]−axE[mxx]

(11d)

[9], [10]. The steady-state moments are then given by

E[mx(∞)] =
Tx

ax
, E[x(∞)] =

LxTx

dxax
=

BxTx

dx
(12a)

E[m2
x(∞)] =

axTx +T 2
x

a2
x

(12b)

E[x2(∞)] =
LxTx

dxax
+

Lx(dxaxLxTx +dxLxT 2
x +axLxT 2

x )
d2

x a2
x(dx +ax)

(12c)

E[mx(∞)x(∞)] =
dxaxLxTx +dxLxT 2

x +axLxT 2
x

dxa2
x(dx +ax)

(12d)

where E[mi
x(∞)x j(∞)] denotes the steady-state value of the

moment E[mi
xx j]. Replacing the above stady-states in (1) and

using dx/ax << 1 we conclude that

CV 2
intX =

1+Bx

E[x(∞)]
=

1+Bx
LxTx
dxax

, Bx =
Lx

ax
. (13)

We refer to CVintX as the intrinsic stochasticity of the
gene GeneX , which represents the noise in a protein which
arises due to the random transcription and translation events
occurring in gene expression.

III. INCORPORATING FLUCTUATIONS IN ACTIVATING
PROTEIN

In the previous section the protein X was constitutively
expressed from gene GeneX at a constant rate. We now
consider the situation where GeneX is not constitutively ex-
pressed but activated by a different protein Z. This activation
is modeled by assuming that that the transcription rate of
gene GeneX is given by αz(t) where z(t) represents the
number of molecules of protein Z at time t and α is a
constant. Our goal is to evaluate the noise in the protein
X as a function of the noise in the protein Z.

We assume that the protein Z is expressed from a gene
GeneZ at a constant rate Tz and its corresponding mRNA is
translated at a constant rate Lz. Both the protein Z and its
corresponding mRNA decay at rates dz and az, respectively.
Then from (13) we conclude that the noise in the protein Z
is given by

CV 2
intZ =

1+Bz
TzLz
dzaz

, Bz =
Lz

az
. (14)

In order to see the effect of noise in the protein Z on the
noise in the protein X , we augment the state of the SHS in the
previous section with mz(t) and z(t), where mz(t) represents
the number of molecules of the mRNA transcribed from gene
GeneZ. The state of the modified SHS is now given by

ẏ = 0, y = [mz,z,mx,x] (15)

with eight reset maps

y 7→ φ1(y) =


mz +1

z
mx
x

 , y 7→ φ2(y) =


mz−1

z
mx
x

 ,

(16a)

y 7→ φ3(y) =


mz

z+1
mx
x

 , y 7→ φ4(y) =


mz

z−1
mx
x

 ,

(16b)

y 7→ φ5(y) =


mz
z

mx +1
x

 , y 7→ φ6(y) =


mz
z

mx−1
x

 ,

(16c)

y 7→ φ7(y) =


mz
z

mx
x+1

 , y 7→ φ8(y) =


mz
z

mx
x−1

 (16d)

and corresponding transition intensities

λ1(y) = Tz, λ2(y) = azmz, λ3(y) = Lzmz, λ4(y) = dzz
(17a)

λ5(y) = αz, λ6(y) = axmx. λ7(y) = Lxmx, λ8(y) = dxx.
(17b)

Again using the Dynkin’s formula for the SHS (15)-(17)
one can write the time evolution of all the first and second
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order moments of y. In particular, if we construct a vector
µ containing all the first and second order moments of y its
time derivative is given by

µ̇ = v+Aµ (18)

for some vector v and matrix A. Solving for the steady-state
moments from (18) we obtain that the steady-state means
and noise in the protein X are given by

E[z(∞)] =
TzBz

dz
, E[x(∞)] =

αBx

dx
E[z(∞)], (19a)

CV 2
X =

1+Bx

E[x(∞)]
+

dx

dx +dz
CV 2

intZ . (19b)

Using (13), the above expression for the noise in the protein
X can be re-written as

CV 2
X = CV 2

intX +
dx

dx +dz
CV 2

intZ . (20)

The above equation shows that the noise in the protein X is
given as the sum of the intrinsic stochasticity in gene GeneX
plus the contribution in noise from the activating protein Z
which is given by

dx

dx +dz
CV 2

intZ . (21)

IV. SCALING OF INTRINSIC NOISE OVER NETWORKS

In this section we extend the network in the previous sec-
tion to a cascade of N genes GeneX1, GeneX2, . . . , GeneXN
where gene GeneXi for i ∈ [1, . . . ,N− 1] expresses protein
Xi. The protein Xi then activates gene GeneXi+1 to expresses
protein Xi+1 (see Figure 1). As in the previous section we
model the activation by assuming that the transcription rate
of gene GeneXi+1 is αxi where α is a constant and xi is the
number of molecules of protein Xi. In the sequel we denote
the burst size of GeneXi and degradation rate of protein Xi
by Bi and di respectively. This implies from (19) that

E[xi+1(∞)] =
αBi+1

di+1
E[xi(∞)] =: Mi+1E[xi(∞)], (22)

for all i ∈ [1, . . . ,N − 1] where the constant Mi+1 =
αBi+1/di+1. We consider a cascade where the the input
signal (i.e. E[xi(∞)]) is magnified at each stage, and hence,
assume Mi+1 > 1. Using (20) we express the noise in the
protein Xi+1 as a function of noise in the protein Xi as

CV 2
Xi+1

= CV 2
intXi+1

+
di+1

di +di+1
CV 2

Xi
(23)

where CVintXi+1 represents the intrinsic stochasticity of the
gene GeneXi+1. Substituting (13) in (23) we have

CV 2
Xi+1

=
1+Bi+1

E[xi+1(∞)]
+

di+1

di +di+1
CV 2

Xi
. (24)

Assuming that for all i, Bi is bounded from above and
di+1/(di +di+1) is strictly less than one, we have

lim
i→∞

CV 2
Xi

= 0. (25)

Fig. 3. Noise in the protein Xi (CV 2
Xi

) at the ith stage of the gene cascade
when all genes have per stage magnification of M = 1.5, α = d = γ = 1.

Thus in this case the cascade acts like a noise attenuator
where as we go down the cascade, the noise in the down-
stream proteins becomes smaller.

For a homogeneous cascade of genes with the transcription
rate of the first gene given by γα for some constant γ and

Bi = B, di = d, Mi = M =
αB
d

> 1, ∀i (26)

we conclude from (22) that

E[xi(∞)] = γMi (27)

and from (24) that

CV 2
Xi+1

=
1+B
γMi+1 +

1
2

CV 2
Xi

=
(1+B)

Mγ

1
2i

i

∑
j=0

(
2
M

) j

=
(1+B)

(
(M/2)i+1−1)

)
(M/2−1)Mi+1γ

.

(28)

Analysis of this expression shows that if the per stage
magnification (M) is less than two, then CV 2

Xi
first increases

and then decreases (see Figure 3), while for larger for values
of M > 2, CV 2

Xi
decreases monotonically with i (see Figure

4).
We now compare the final protein noise in two different

gene cascades of different sizes but same final average
number of molecules. We assume that both the cascades
have equal parameters, except for the per stage magnification
M. For both cascades to have the same average number of
molecules of the final protein, the cascade with the lower
number of stages will need to have a larger magnification
per stage. More specifically, if the cascades are of size N and
K with per stage magnification of MN and MK , respectively,
then

MN
N = MK

K . (29)

From (28) we conclude that the ratio of the noises in the
final protein are

CV 2
XN

CV 2
XK

=
(α +dMN)
(α +dMK)

(MK/2−1)
(MN/2−1)

(MN/2)N −1)
(MK/2)K −1)

(30)
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Fig. 4. Noise in the protein Xi (CV 2
X2

i
) at the ith stage of the gene cascade

when all genes have per stage magnification of M = 5, α = d = γ = 1.

where CV 2
XN

and CV 2
XK

denote the noise in the final protein
of a gene cascade with N and K stages, respectively. If the
per stage magnification of both the cascades is less than two
then for sufficiently large N and K we have

CV 2
XN

CV 2
XK

≈ (α +dMN)
(α +dMK)

(1−MK/2)
(1−MN/2)

. (31)

If N > K, which implies MN < MK , then one can show that
the above ratio is always less than one, i.e. the gene cascade
with the larger number of stages has less noise in the final
protein. In the other limit, when the magnification is much
lager than two, we have from (30)

CV 2
XN

CV 2
XK

≈ dMN

dMK

MK/2
MN/2

(MN/2)N

(MK/2)K =
(

1
2

)N−K

. (32)

This again shows that a gene cascade which achieves magni-
fication with a larger number of stages and less magnification
per stage will have lower stochastic fluctuation in the final
protein compared to a cascade with a smaller number of
stages and a higher magnification per stage.

V. SCALING OF EXTRINSIC AND INTRINSIC NOISE OVER
NETWORKS

In the previous section we assumed that the transcription
rate of gene GeneXi+1 is equal to αxi where α was a
constant. As α corresponds to the number of molecules of
RNAP (the enzyme involved in transcription) present in cell,
an implicit assumption in the previous section was that there
were no significant fluctuations in the enzyme levels. We
now incorporate these stochastic fluctuations in RNAP in the
gene cascade. These fluctuations are often referred to as the
extrinsic noise. We now modify the transcription rate of gene
GeneXi+1 to βri+1(t)xi(t) where β is a constant and ri+1(t)
is the number of molecules of RNAP involved in transcribing
the gene GeneXi+1 at time t. As in Section II we assume
that this enzyme is constitutively expressed from a gene
through random transcription, translation and degradation
events and characterize the stochastic fluctuations in ri(t) by

its coefficient of variation CVexti . For simplicity we assume
that ri and r j for i 6= j are independent of each other which
would correspond to different genes being transcribed by
different types of RNA polymerases. The above assumption
implies that ri+1 is independent of xi, and hence we have

E[xi+1(∞)] =
βE[ri+1(∞)]Bi+1

di+1
E[xi(∞)] =: Mi+1E[xi(∞)]

(33)

for all i ∈ [1, . . . ,N−1] where E[ri(∞)] denotes the steady-
state count of the corresponding RNAP and as in the previous
section we assume Mi+1 > 1. As before, by using Dynkin’s
formula to write the moment dynamics and then performing
a steady-state analysis we can relate the coefficients of
variation of protein Xi+1 and Xi as follows

CV 2
Xi+1

=
1+Bi+1

E[xi+1(∞)]
+ξiCV 2

Xi
+ζiCV 2

exti +δiCV 2
extiCV 2

Xi
(34)

where

ξi =
di+1

di +di+1
< 1, ζi =

di+1

gi+1 +di+1
< 1 (35a)

δi =
di+1

gi+1 +di+1 +di
< 1 (35b)

and gi represents the degradation rate for the RNAP tran-
scribing the gene GeneXi. One can now conclude from
(34) that unlike in Section IV where CV 2

Xi
goes to zero for

sufficiently large i, CV 2
Xi

now approach some non-zero value
determined by the amount of extrinsic noise in the cascade.
Furthermore, if ξi +δiCV 2

exti > 1, for all i, then

lim
i→∞

CV 2
Xi

= ∞, (36)

in which case the gene cascade is a noise magnifier where
the downstream proteins have increased noise. Hence, by
altering the amount of extrinsic noise in the cascade one
could change a cascade from being a noise attenuator (as in
Section IV where CV 2

exti = 0) to a noise amplifier.
For a homogeneous cascade where

di = d, βE[ri(∞)] = α, CV 2
exti = CV 2

ext , gi = g, Bi = B,

Mi = M =
αB
d

> 1, (37)

with the transcription rate of the first gene given by γα for
some constant γ , we have from (34) that

CV 2
Xi+1

=
1+B
γMi+1 +

d
d +g

CV 2
ext +

(
1
2

+
d

2d +g
CV 2

ext

)
CV 2

Xi
.

(38)

From (38) we conclude that

lim
i→∞

CV 2
Xi

=
{

S for CV 2
ext < 1+ g

2d
∞ for CV 2

ext ≥ 1+ g
2d

(39)

where

S =
dCV 2

ext

d +g
2(2d +g)

2d(1−CV 2
ext)+g

. (40)
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We can explicitly solve the difference equation (38) to obtain
the noise in protein Xi to be

CV 2
Xi

=
(α +dM)

(
(Mν)i−1)

)
α(Mν−1)γMi +ζCV 2

ext
ν i−1
ν−1

(41)

where

ν =
1
2

+
d

2d +g
CV 2

ext , ζ =
d

d +g
. (42)

For sufficiently large M the above expression reduces to

CV 2
Xi
≈ dν i−1

αγ
+ζCV 2

ext
ν i−1
ν−1

. (43)

As in the previous section we now consider two cascades of
lengths N, K with N > K and per stage magnification MN
and MK chosen such that both of them have the same average
number of molecules for the final protein (i.e. MN

N = MK
K ).

We showed in Section IV that if CV 2
ext = 0 then CV 2

XN
<CV 2

XK
.

However, from (43), when ν = 1, i.e. CV 2
ext = 1 + g/2d we

have

CV 2
Xi
≈ d

αγ
+ iζ

(
1+

g
2d

)
. (44)

Thus when CV 2
ext = 1+g/2d, CV 2

XN
> CV 2

XK
as N > K. Since

CV 2
Xi

varies continuously with CV 2
ext , there must exists a

CV 2
crit < 1 + g/2d such that if CV 2

ext > CV 2
crit , then CV 2

XN
>

CV 2
XK

. This result illustrates that if the extrinsic noise present
is larger than a critical value, then the gene cascade which
achieves magnification with a smaller number of stages and
higher magnification per stage will have lower stochastic
fluctuation in the final protein compared to a cascade with
a larger number of stages and a smaller magnification per
stage.

VI. CONCLUSION AND FUTURE WORK

This paper presented results relating the stochastic noise
in proteins of a gene cascade with the number of stages
and the per stage magnification of the cascade. We provided
explicit formulas to compute the noise in the proteins both in
the absence and presence of extrinsic noise. We showed that
when there is no extrinsic noise the noise in the ith protein
decreases with i and the cascade acts like a noise attenuator.
Furthermore, for two different cascades with the same aver-
age final protein level, the cascade with the larger number
of stages will have lower stochastic noise in the final protein
When sufficiently large extrinsic noise is present in the cell
there is a role reversal for the cascade. More specifically, the
cascade now acts like a noise amplifier where downstream
proteins have increased noise. Thus depending on whether
noise in the final product is deleterious or advantageous to
the cell, stochastic noise can be appropriately modulated via
cascades. We also showed that there exists a critical level
of extrinsic noise above which, the gene cascade with the
lower number of stages has lesser stochastic noise in the
final protein.

We assumed in Section V that the molecular counts of the
RNAP transcribing the ithgene and jth gene were independent
of each other (i.e. ri and r j for i 6= j were independent

of each other). However, if the same RNAP is involved in
transcribing both the genes, ri and r j would be positively
correlated. A direction of future work is to investigate
scenarios where correlations exists between reaction rates
and study its consequences on the scaling of stochasticity in
cascades.
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