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Abstract— Necessary and sufficient conditions for pos-
itive realness of general transfer function matrices
are derived. These conditions can be checked using
eigenvalue solvers for both proper and strictly proper
transfer function matrices.
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I. INTRODUCTION

The concept of Positive Realness (PR) and Strict
Positive Realness (SPR) of a rational function ap-
pears frequently in various aspects of engineering
[1], [2], [3], [4]. Efficient techniques for checking
whether a given transfer function matrix is positive
real has also been the subject of much interest
in the numerical linear algebra community. While
for the case of proper transfer function matrices,
H(s) = D + CT (sI −A)−1B, with D + DT > 0,
robust numerical methods exist, [5], [6], [7], [8],
[9], the case when D + DT ≥ 0 is still prob-
lematic. Usually, these situations are resolved using
generalised eigenvalue solvers [10]. Our objective
in this note is to demonstrate that one need never
resort to such solvers and that such problems can
always be solved as eigenvalue problems (even
when D + DT is singular). Specifically, this short
paper summarises the results derived in [11] and
presents some generalisations. Full proofs can be
found in the aforementioned reference.

II. BACKGROUND

We first present some background material.

Definition 1: A rational function in a complex
variable H(s) is PR if, and only if, H(s) is real
for real values of s, and H(s) satisfies

Real [H(s)] ≥ 0 for Real [s] ≥ 0 . (1)

Definition 2: A rational function in a complex
variable H(s) is SPR if, and only if,

∃ ε > 0 such that H(s− ε) is PR . (2)

The following equivalent definition of positive real-
ness of a rational function is also well known [12].

Definition 1(a): A rational function of a complex
variable H(s) is PR if and only if H(s) is real
for real values of s, and all poles of H(s) are
in the closed left half plane of s. If there are
imaginary-axis poles, they are simple with real
positive residues, and

Real [H(jω)] ≥ 0 ∀ ω ∈ R (3)

where s = σ + jω.

Definition 3: A matrix H(s) is a positive real
matrix, termed a PR matrix, if and only if the
rational function defined by

F (s) = xT H(s)x (4)

is a positive real function for every complex m-
dimensional vector x.

Definition 4: A matrix H(s) is a strictly positive
real matrix, termed a SPR matrix, if and only if
there exists an ε > 0 such that F (s − ε) is a posi-
tive real function for every complex m-dimensional
vector x where F (s) is defined in (4).

It is well known that checking strict positive re-
alness of a strictly proper transfer function matrix
reduces to checking a number of conditions. See
[13], [14], and in particular [15]. Basically these
amount to checking a number of point conditions
and to verifying whether H(jω) + H(jω)∗ > 0 for
all ω ∈ R. Our objective in this particular paper is
focus on the latter condition.
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III. MAIN RESULTS

Frequently one exploits the Hamiltonian based
methods to test for SPR by making use of the
following theorem.

Theorem 1: [16], [1], [6] Let A be a stable [n×n]
real matrix. Let B ∈ Rn×m, C ∈ Rn×m, and let
D ∈ Rm×m, with D + DT > 0. Then, the transfer
function matrix

H(jω) = D + CT (jωI −A)−1B (5)

is SPR if and only if the matrix

N =
[−A + BQ−1CT BQ−1BT

−CQ−1CT AT − CQ−1BT

]
,

with Q = D+DT , has no eigenvalues on the imag-
inary axis. The matrix N is called the Hamiltonian
matrix.

In many applications the assumption that D+DT >
0 does not hold. The following known observation
is useful in this context.

Observation: Let G denote the locus of eigenval-
ues of the matrix H(jω) + H(jω)∗ for all ω ∈
[−∞,∞]. Let Gr denote the locus of eigenvalues of
the matrix H( 1

jω ) + H( 1
jω )∗ for all ω ∈ [−∞,∞].

Then, G and Gr coincide.

In fact: any mapping that maps the ω axis to itself
will have this property and we shall explore one
such mapping when discussing Positive Realness.
Thus, if we can establish H( 1

jω ) + H( 1
jω )∗ is

positive definite for all 1
ω , then it automatically

follows that H(jω) + H(jω)∗ is such as well. To
this end we note the following easily established
result [17].

Theorem 2: Let H(jω) = D + CT (jωI − A)−1B
be a strictly proper SPR transfer function matrix.
Then, H( 1

jω ) = D̄ + C̄T (jωI − Ā)−1B̄, with Ā =
A−1, B̄ = −A−1B, C̄T = CT A−1, D̄ = D −
CT A−1B, and D̄ + D̄T > 0.

Theorem 2 implies that the locus of eigenvalues of
a transfer function matrix with D + DT ≥ 0, is
equivalent to the locus of eigenvalues of a transfer
function matrix with D̄ + D̄T > 0. The fact that
D̄+D̄T > 0 ensures that Hamiltonian methods can
be applied to this latter problem.

A. Strict positive realness

Theorem 3: [11] Let A be a stable [n × n] real
matrix. Let B ∈ Rn×m, C ∈ Rn×m, and let
D ∈ Rm×m, with D + DT singular. Then the
transfer function matrix H(jω) + H(jω)∗ > 0,
H(jω) = D + CT (jωI − A)−1B, for all finite ω,
if and only if H(0) + H(0)∗ > 0 and the matrix

N̄ =
[−Ā + B̄Q̄−1C̄T B̄Q̄−1B̄T

−C̄Q̄−1C̄T ĀT − C̄Q̄−1B̄T

]
,

with Q̄ = D̄ + D̄T , has no eigenvalues on the
imaginary axis except at the origin, with Ā = A−1,
B̄ = −A−1B, C̄T = CT A−1 and D̄ = D −
CT A−1B.

Comment: Note that the matrix A is replaced with
A−1, B by −A−1B, C by C̄T = CT A−1 and D
by C̄T = CT A−1. In the scalar case strict positive
realness of A, b, c, d is equivalent to determining
whether ẋ = Ax and ẋ = (A − 1

dbcT )x have a
common quadratic Lyapunov function. It is well
known (via a simple congruence argument) that
the CQLF existence problem for ẋ = Ax and
ẋ = (A− 1

dbcT )x is identical to the CQLF existence
problem for ẋ = A−1x and ẋ = (A − 1

dbcT )−1x.
It is easily verified that the system obtained via the
transformation ω → 1

ω corresponds to this CQLF
existence problem in the scalar case when d > 0.

Now we ask if there are efficient methods to check
positive realness. To this end the following Lemma
is useful.

B. Positive realness

Lemma 1: Let A be a stable matrix. Let H(jω) =
D + CT (jωI −A)−1B, with D + DT > 0. Then,

det
[
H(jω) + H(jω)∗

]
= S(ω)det

[
jωI + N

]
,

where S(ω) is a scalar function of ω such that
S(ω) < 0 for all ω ∈ (−∞,∞).

Comment: It follows that H(jω) is SPR if and only
if N has no eigenvalues on the imaginary axis.

If we assume that det[H(jω) + H(jω)∗] 6= 0 for
all frequencies then two special cases need to be
discerned.
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(i) Hamiltonian methods apply directly : This is
the case when D + DT and/or D̄ + D̄T are
invertible.

(ii) H(0)+H(0)∗ and D +DT are both singular.

Case (i): (Hamiltonian methods apply directly) Let
us assume without any loss of generality that D +
DT > 0.

Theorem 4: Let Ω be the distinct set of frequencies
for which det

[
H(jω) + H(jω)∗

]
= 0, with the

elements of Ω =
{

ω1, ω2, ..., ωs

}
, s ≤ n listed

in strictly increasing order. These frequencies are
the eigenvalues of N that are on the imaginary
axis. H(jω) is PR if and only if: (i) N has no
eigenvalues on the imaginary axis of odd multiplic-
ity; (ii) H(j∆i) + H(j∆i)∗ has only positive real
eigenvalues for all ∆i = ωi+ωi+1

2 , i ∈
{

1, s− 1
}

.

Case (ii): (H(0) + H(0)∗ singular) Suppose now
that both D + DT and H(0) + H(0)∗ are both
singular. Then, the Hamiltonian cannot be used to
test for positive realness. However, if we assume
that det

[
H(jω) + H(jω)∗

]
6= 0 for some ω ∈

(−∞,∞), then there must exist a ω0, such that
H(jω0) + H(jω0)∗ > 0 (a necessary condition
for positive realness). We can then make use of the
following observation.

Observation: Let G denote the locus of eigenval-
ues of the matrix H(jω) + H(jω)∗ for all ω ∈
[−∞,∞]. Let Gs denote the locus of eigenvalues of
the matrix H̃(jδ) + H̃(jδ)∗ for all δ ∈ [−∞,∞],
with δ = ω − ω0, and H̃(jδ) = H

(
j(δ + ω0)

)
.

Then, G and Gs coincide.

Note that H̃(jδ) = D + CT (jδI − Ã)−1B where
Ã = A − jω0I . By definition, H̃(0) + H̃(0) > 0,
and Hamiltonian methods can now be applied.

IV. A HAMILTONIAN EQUIVALENCE CLASS

The test for positive realness used a simple ob-
servation on the eigenvalue locus of a family of
matrices. In the main results of this paper we used
the fact that jω can be replaced with its reciprocal,
but in the section on positive realness, we noted
that other transformations can be used as well. In
some situations this latter observation is useful as
it can be used to improved the conditioning on

some of the matrices A,B, C,D. In this section
we identify entire classes of linear systems that
are equivalent from the spectral locus perspective.
Checking whether G(jω) + G(jω)∗ > 0 for any of
these systems immediately implies this statement
for any of the others. Thus one may choose a
system from this entire equivalence class based on
numerical conditioning considerations.

Consider four complex matrices A,B, C, D, where
jωI −A is invertible for all real ω. For z ∈ C and
zI −A invertible, define

σ(A,B,C, D; z) = Spec
[
D+C∗(zI −A)−1B

+(D+C∗(zI −A)−1B)∗
]

where C∗ is the Hermitian conjugate of C, and
where Spec is the spectrum, that is the set of eigen-
values. Define the spectral locus corresponding to
A,B, C, D to be

ρ(A, B,C, D) = ∪ω∈(−∞,∞) σ(A,B, C, D; jω)

where S denotes the closure of S. Now let a, b, c, d
be real numbers, where we assume that b, d are not
simultaneously zero. Define the following matrices:

A = (cA− jaI)(bI − jdA)−1

B = (bI − jdA)−1B

C = (ad + bc)(bI + jdA∗)−1C

D = D + jdC∗(bI − jdA)−1B

Theorem 5:

ρ(A,B, C,D) = ρ(A, B, C,D) (6)

Proof: Define the complex variable u by the follow-
ing fractional linear transformation:

z =
ja + bu

c + jdu

It follows that z is pure imaginary if and only if u
is pure imaginary. Direct substitution shows that

D + C∗(zI −A)−1B = D + C
∗
(uI −A)−1B

and hence

σ(A,B,C, D; z) = σ(A, B, C,D;u).

The mapping z 7→ u is one-to-one on the extended
imaginary axis (where the point at infinity is in-
cluded) and hence

∪Re(z)=0∪{∞} σ(A,B,C, D; z) =
∪Re(u)=0∪{∞} σ(A,B, C, D; u)
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The proof is completed by noting that

∪Re(z)=0∪{∞} σ(A, B,C, D; z) =

∪Re(z)=0 σ(A, B,C, D; z)

With these observations Theorem 1 can be refined.

Theorem 6: Let A be a stable [n × n] real matrix.
Let B ∈ Rn×m, C ∈ Rn×m, and let D ∈ Rm×m,
with D+DT ≥ 0. Then the transfer function matrix
H(jω) + H(jω)∗ > 0, H(jω) = D + CT (jωI −
A)−1B, for all finite ω, if and only if for every
a, b, c, d with Q = D + D

∗
> 0, the matrix

N̄ =
[−Ā + B̄Q̄−1C̄T B̄Q̄−1B̄T

−C̄Q̄−1C̄T ĀT − C̄Q̄−1B̄T

]
,

with Q̄ = D̄ + D̄T , has no eigenvalues on the
imaginary axis except possibly at the image of the
point ω = ∞ under the mapping z 7→ u has no
eigenvalues on the imaginary axis for any a, b, c, d
with Q̄ > 0, except at the mapping of ω = ∞.

V. CONCLUSION

Necessary and sufficient conditions for positive
realness of general transfer function matrices are
derived.
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