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Abstract— In this paper, the model reduction problem is
studied for a class of discrete-time switched linear parame-
ter varying systems under average dwell time switching. A
parameterized reduced-order model is constructed and the
corresponding existence conditions of such models are derived
via LMI formulation. The minimal average dwell time among
all the subsystems and the desired reduced system are obtained
such that the resulting model error system is exponentially
stable and has a guaranteed l2 − l∞ error performance. A
numerical example is given to demonstrate the potential and
effectiveness of the developed theoretical results.

I. INTRODUCTION

Switched systems have been extensively studied during

past decades and many useful results have been reported

in the literature, see, for instance, [1], [2], [6], [15], [17]

and references therein. Despite of a diversity of forms,

the switching patterns can be classified as autonomous or

controlled ones, which, respectively, developed by systems

themselves (objective behavior) [3] or designers’ intervention

(subjective behavior) [10]. The switching signals in both

autonomous and controlled switched systems can be repre-

sented as functions of time. As a result, considerable research

on the switched systems under arbitrary switching or average

dwell time (ADT) one have been conducted in recent years,

see, for example, [2], [5], [14], [15].

Arbitrary switching means that the switching time se-

quence (when to switch) is completely random and the

switching order of subsystems (which one is switched) is

real time accessible. Note that the so-called jump systems

governed by some kind of stochastic process can be included

in this category as a special case. The ADT switching

means that the time interval between consecutive switches

is required to be no less than a given positive number

on the average. As expected, such a switching rule not

only displays more flexible controlled switching mechanism

dependent on time, but also reflects the time property of

most autonomous and controlled switching logics, such as

hysteresis switching [4]. Therefore, many advanced results

for the switched systems with ADT switching have been

reported in the continuous-time context including both linear

and nonlinear case, see for example, [5], [11], [12]. Very

recently, motivated by practical applications such as active
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magnetic bearing system [8], missile autopilot system [7],

F-16 aircraft system [9], a special class of switched linear

parameter-varying systems (LPV) under ADT switching has

been modeled and studied. However, it must be noted that

the corresponding modeling process often results in a high-

order system, which needs to be simplified or reduced. Due

to the switching and parameters varying features, the model

reduction results for the underlying systems can not be strait-

forwardly achieved using the existing model simplification

techniques for general dynamic systems.

This paper presents the model reduction for a class of

switched linear discrete-time systems with time-varying pa-

rameters under ADT switching. A reduced-order model is

constructed to approximate the original system in the sense

of classical l2 − l∞ performance criterion, namely, energy

(of input signal) to peak (of output error) bounded. The

stability criterion for general discrete-time switched systems

is introduced and the µ-dependent technique, proposed in

[14], is adopted to obtain LMI-based existence conditions

for a parameterized reduced model. The basic functions and

gridding technique are utilized to solve the corresponding

parameterized convex problem. An illustrative example is

given to demonstrate the feasibility and efficiency of the

constructed reduced model.

Notation: The notation used in this paper is fairly standard.

The superscript “T” stands for matrix transposition, R
n

denotes the n dimensional Euclidean space and N represents

the set of nonnegative integers, the notation ‖ ‖ refers

to the Euclidean vector norm. l2[0,∞) is the space of

square summable infinite sequences and, for u = {u(k)} ∈
l2[0,∞), its norm is given by ‖u‖2 =

√

∑∞

k=0
|w(k)|2,

l∞[0,∞) is the space of all essentially bounded functions

and, for e = {e(k)} ∈ l∞[0,∞), its norm is given by

‖e‖
∞

=
√

sup
k

{eT (k)e(k)}. C1 denotes the space of con-

tinuously differentiable functions, and a scalar function β :
[0,∞) → [0,∞) is said to be of class K∞ if it is continuous,

strictly increasing, unbounded, and β(0) = 0. In addition, in

symmetric block matrices or long matrix expressions, we

use * as an ellipsis for the terms introduced by symmetry,

and diag{· · · } stands for a block-diagonal matrix. Matrices,

if their dimensions are not explicitly stated, are assumed to

be compatible for algebraic operations. The notation P > 0
(≥ 0) means that P is symmetric and positive (semi-positive)

definite. I and 0 represent, respectively, identity matrix and

zero matrix.
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II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a class of discrete-time switched linear systems

given by

x(k + 1) = Aσ(k)(ρ(k))x(k) + Bσ(k)(ρ(k))u(k)

y(k) = Cσ(k)(ρ(k))x(k), (1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

l is the input

vector which belongs to l2[0,∞), y(k) ∈ R
m is the output

vector. σ(k) is a piecewise constant function of time, called

a switching signal, which takes its values in the finite set

I = {1, . . . , N} , N > 1 is the number of subsystems.

At an arbitrary discrete time k, σ(k), denoted by σ for

simplicity, is dependent on k or x(k), or both, or other

switching rules. As in [2], we assume that the sequence of

subsystems in switching signal σ is unknown a priori, but

its instantaneous value is available in real time. Meanwhile,

for the switching time sequence k0 < k1 < k2 < ... of

switching signal σ, the holding time between [kl, kl+1] is

called the dwell time of the currently engaged subsystem,

where l ∈ N. In addition, when σ(k) = i ∈ I, the

matrices (Ai(ρ(k)), Bi(ρ(k)), Ci(ρ(k)), denoting the ith
subsystem, are known functions of measurable ρ(k), where

ρ(k) = [ρ1(k), ..., ρs(k)]
T

, |ρv(k)| ≤ ρ̄v,∀1 ≤ v ≤ s is

a vector of time-varying parameters, which belongs to a

compact set ℜi ∈ R
s.

For switching signal σ(k), we revisit the ADT property

from the following definition.

Definition 1: [5] For switching signal and any kv > ks >
k0, let Nσ(k)(ks, kv) be the switching numbers of σ(k) over

the interval [ks, kv]. If for any given N0 > 0, τa > 0, we

have Nσ(k)(ks, kv) ≤ N0+(kv−ks)/τa, then τa and N0 are

called average dwell time and the chatter bound, respectively.

Remark 1: Intuitively, the ADT property means the time

interval between consecutive switching is at least τa on the

average. Then, a basic problem in the analysis and synthesis

for such systems is to specify the minimal τa and the

corresponding admissible switching signals.

In this paper, we are interested in finding a reduced-

order model to approximate the original system under ADT

switching. Since the time-varying parameters are real-time

measurable, the desired reduced-order model can be con-

structed by:

x̂(k + 1) = Âi(ρk)x̂(k) + B̂i(ρk)u(k)

ŷ(k) = Ĉi(ρk)x̂(k), (2)

where x̂(k) ∈ R
q is the state vector of the reduced-order

system with q < n and Âi(ρk), B̂i(ρk) and Ĉi(ρk), i ∈ I
(we write ρ(k) as ρk for notation simplicity) are matrices

with compatible dimensions to be determined, with the same

parameter dependence as in system (1). Also, the desired

reduced model (2) is assumed to be switched synchronously

by the switching signal σ in system (1).

Denoting ξ(k) , [ xT (k) x̂T (k) ]T , e(k) , y(k)−ŷ(k)
and augmenting the model of (1) to include the states of

system (2), we obtain the following model error system

ξ(k + 1) = Āi(ρk)ξ(k) + B̄i(ρk)u(k)

e(k) = C̄i(ρk)ξ(k), (3)

where

Āi(ρk) =

[

Ai(ρk) 0

0 Âi(ρk)

]

,

B̄i(ρk) =

[

Bi(ρk)

B̂i(ρk)

]

,

C̄i(ρk) =
[

Ci(ρk) −Ĉi(ρk)
]

.

To present the main objective of this paper more clearly,

we also introduce the following definitions for switched

linear systems, which are essential for the later development.

Definition 2: The equilibrium x = 0 of system (1) is

exponentially stable under switching signal σ(k) if there

exist constants K > 0, 0 < β < 1 such that the solution x(k)
of the system satisfies ||x(k)|| ≤ Kβ(k−k0)||x(k0)||,∀k ≥
k0.

Definition 3: Given scalars γ > 0, system (3) is said

to be exponentially stable with a prescribed l2 − l∞ error

performance index γ if it is exponentially stable and, under

zero initial condition, ‖e‖
∞

< γ ‖u‖2 hold for all nonzero

u(k) ∈ l2[0,∞).
Therefore, the objective of this paper is to determine matri-

ces
{

Âi(ρk), B̂i(ρk), Ĉi(ρk)
}

of the parameterized reduced-

order model, and find out admissible switching signals such

that resulting model error system (3) is exponentially stable

and has a guaranteed l2 − l∞ error performance index.

Remark 2: Note that if we restrict [Âi(ρk), B̂i(ρk),
Ĉi(ρk)] , [Âi, B̂i, Ĉi] or select [Âi, B̂i, Ĉi] , [Â, B̂, Ĉ] in

(2), one will readily obtain the different non-parameterized

reduced-order models with different conservatism and com-

putational complexity.

Before ending this section, we present the following

lemmas which are employed for further derivation.

Lemma 1: Consider the discrete-time switched system

xk+1 = fσ(k)(xk), σ(k) ∈ I and let 0 < α < 1, µ > 1
be given constants. Suppose that there exists C1 functions

Vσ(k) : R
n → R, σ(k) ∈ I, and two class K∞ functions β1

and β2 such that ∀σ(k) = i ∈ I,

β1(|x|) ≤ Vi(x) ≤ β2(|x|) (4)

∆Vi(x) ≤ −αVi(x) (5)

and ∀(σ(kl) = i, σ(kl − 1) = j) ∈ I × I , i 6= j,

Vi(xkl
) ≤ µVj(xkl

), (6)

then the system is globally asymptotically stable for any

switching signals with the average dwell time

τa ≥ τ∗
a = − lnµ

ln(1 − α)
. (7)

Remark 3: The proof of Lemma 1 can be obtained simliar

to Section 3.2 of [6]. Note that if we increase the value of µ,
the existence likelihood of the multiple Lyapunov function

for the system stability will be increased, which means that
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the stability of system can be ensured at the expense of

increasing µ. In other words, for a given α, the system

stability will directly depend on µ.

Lemma 2: Consider model error system (3) and let α > 0,

γ > 0 and µ > 1 be given constants. If there exist matrix

functions Pi(ρk) > 0, ∀i ∈ I such that









−Pi(ρk+1) Pi(ρk+1)Āi(ρk)
[Pi(ρk+1)
×B̄i(ρk)]

∗ −(1 − α)Pi(ρk) 0
∗ ∗ −I









< 0

(8)

[

Pi(ρk) C̄T
i (ρk)

∗ γ2I

]

> 0 (9)

Pi(ρk) − µPj(ρk) ≤ 0 (10)

then system (3) is exponentially stable and has an l2 − l∞
error performance γ over the entire parameter set for any

switching signals with the ADT satisfying (7).

Remark 4: In Lemma 2, the desired l2 − l∞ performance

index for the underlying system in the paper is achieved

by setting γ = max{γi}i∈I , where γi corresponds to the

performance index for each subsystem. The proof of Lemma

2 can be readily obtained using Theorem 1 in [8] and Lemma

3 in [16].

III. MODEL REDUCTION

The following theorem presents sufficient conditions for

the existence of an l2 − l∞ reduced-order model in the form

(2).

Theorem 3: Consider switched linear system (1) and let

α > 0, γ > 0 and µ > 1 be given scalars. Then, an

admissible l2 − l∞ reduced-order model in the form (2)

exists if there exist matrices P̄1i(ρk) > 0, P̄3i(ρk) > 0,
and matrices P̄2i(ρk), Ri(ρk), Si(ρk), Ti, Ǎi(ρk), B̌i(ρk),
Či(ρk), ∀i ∈ I such that the following parameterized LMIs

hold:













Λi
11 Λi

12 RT
i (ρk)Ai(ρk)

∗ Λi
22 ST

i (ρk)Ai(ρk)
∗ ∗ −(1 − α)P̄1i(ρk)
∗ ∗ ∗
∗ ∗ ∗

EǍi(ρk) Λi
15

Ǎi(ρk) Λi
25

−(1 − α)P̄2i(ρk) 0
−(1 − α)P̄3i(ρk) 0

∗ −I













< 0 (11)





P̄1i(ρk) P̄2i(ρk) CT
i (ρk)

∗ P̄3i(ρk) −ČT
i (ρk)

∗ ∗ γ2I



 > 0 (12)













[P̄1i(ρk)
−µRT

i (ρk) − µRi(ρk)]
[P̄2i(ρk)

−µSi(ρk) − µETi]
∗ P̄3i(ρk) − µTT

i − µTi

∗ ∗
∗ ∗

RT
i (ρk) ETj

ST
i (ρk) Tj

−µ−1P̄1j(ρk) −µ−1P̄2j(ρk)
∗ −µ−1P̄3j(ρk)









≤ 0 (13)

where

Λi
11 , P̄i(ρk+1) − RT

i (ρk) − Ri(ρk),

Λi
12 , P̄2i(ρk+1) − Si(ρk) − ETi,

Λi
22 , P̄3i(ρk+1) − TT

i − Ti

Λi
15 , RT

i (ρk)Bi(ρk) + EB̌i(ρk),

Λi
25 , ST

i (ρk)Bi(ρk) + B̌i(ρk),

E ,
[

I 0
]T

, I ∈ R
q

Then, there exists a parameterized reduced-model such that

the corresponding model error system (3) is exponentially

stable with an guaranteed l2 − l∞ performance index γ
for any switching signals with the ADT satisfying (7).

Furthermore, if a feasible solution to above LMIs exists, then

an admissible l2 − l∞ reduced-order model in the form of

(2) are given by

[

Âi(ρk) B̂i(ρk)

Ĉi(ρk) 0

]

,

[

T−1
i 0
0 I

] [

Ǎi(ρk) B̌i(ρk)
Či(ρk) 0

]

(14)

Proof: By Lemma 2, system (3) is exponentially stable

with a prescribed l2 − l∞ error performance index γ if (8)-

(10) hold.

Then, consider an arbitrary matrix function Gi(ρk),∀i ∈ I
of compatible dimensions, which satisfies the inequalities

(Pi(ρk+1) − Gi(ρk))T P−1
i (ρk+1)

×(Pi(ρk+1) − Gi(ρk) ≥ 0

(Pj(ρk) − Gi(ρk))T P−1
j (ρk)

×(Pj(ρk) − Gi(ρk) ≥ 0

Thus we have

Pi(ρk+1) − Gi(ρk) − GT
i (ρk) ≥

−GT
i (ρk)P−1

i (ρk+1)Gi(ρk)

Pj(ρk) − Gi(ρk) − GT
i (ρk) ≥

−GT
i (ρk)P−1

j (ρk)Gi(ρk)

Therefore, if one has

Pi(ρk) − µ
[

Gi(ρk) + GT
i (ρk)

−GT
i (ρk)P−1

j (ρk)Gi(ρk)] ≤ 0 (15)
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then (10) is satisfied. Also, if the following inequality holds




Pi(ρk+1) − Gi(ρk) − GT
i (ρk) GT

i (ρk)Āi(ρk)
∗ −(1 − α)Pi(ρk)
∗ ∗

GT
i (ρk)B̄i(ρk)

0
−I



 < 0 (16)

it leads to




−GT
i (ρk)P−1

i (ρk+1)Gi(ρk) GT
i (ρk)Āi(ρk)

∗ −(1 − α)Pi(ρk)
∗ ∗

GT
i (ρk)B̄i(ρk)

0
−I



 < 0

Performing a congruence transformation in the last inequality

to above formula via diag{G−1
i (ρk)Pi(ρk+1), I, I} yields

(8) (note that Gi(ρk) is invertible, if it satisfies (16)).

In addition, by Schur complement, (15) is equivalent to
[

Pj(ρk) − µGi(ρk) − µGT
i (ρk) GT

i (ρk)
∗ −µ−1Pj(ρk)

]

≤ 0.

(17)

Now, let us show that conditions (11)-(13) ensure, respec-

tively, that (16), (9) and (17) are satisfied. Firstly, if (11)

holds, we have P̄3i(ρk+1)−TT
i −Ti < 0, thus we can infer

that TT
i + Ti > 0, which implies that Ti is nonsingular.

Then, one can always find nonsingular matrices G3i and

G4 satisfying Ti = GT
4 G−1

3i G4,∀i ∈ I. Now, introduce the

following matrices related to G3i and G4:

Vi ,

[

I 0
0 G−1

3i G4

]

,

Gi(ρk) ,

[

Ri(ρk) Si(ρk)G−1
4 G3i

G4E
T G3i

]

.

Performing a congruence transformation to (11)-(13) via

diag{V −1
i , V −1

i , I}, diag{V −1
i , I} and diag{V −1

i , V −1
j },

respectively, and defining matrix functions

Pi(ρk) , V −T
i P̄i(ρk)V −1

i

= V −T
i

[

P̄1i(ρk) P̄2i(ρk)
∗ P̄3i(ρk)

]

V −1
i

[

Âi(ρk) B̂i(ρk)

Ĉi(ρk) 0

]

,

[

G−T
4 0
∗ I

] [

Ǎi(ρk) B̌i(ρk)
Či(ρk) 0

] [

G−1
4 G3i 0
∗ I

]

(18)

we obtain (16), (9) and (17).

Meanwhile, from (18), we know that an admissible

reduced-order model for the underlying system can be ob-

tained setting

Âi(ρk) = G−T
4 Ǎi(ρk)G−1

4 G3i, B̂i(ρk) = G−T
4 B̌i(ρk),

Ĉi(ρk) = Či(ρk)G−1
4 G3i (19)

Now, denote the reduced-order model transfer function from

u(k) to e(k) by

T (z) = Ĉi(ρk)(zI − Âi(ρk))−1B̂i(ρk)

Substituting the matrices (Âi(ρk), B̂i(ρk), Ĉi(ρk)) in (19)

and considering Ti = GT
4 G−1

3i G4, we have

T (z) = Či(ρk)G−1
4 G3i(zI − G−T

4 Ǎi(ρk)G−1
4 G3i)

−1

×G−T
4 B̌i(ρk)

= Či(ρk)(zI − T−1
i Ǎi(ρk))−1T−1

i B̌i(ρk)

which implies that an admissible reduced-order model can

be given by (14), this completes the proof. �

Remark 5: From (7), it is easily seen that the ADT in

the solved switching signals will be not less than τ∗
a . Then,

one actually need to specify the minimal µ for a given

system decay degree α for the underlying systems, which

is analogous to the delay-dependent issues in time-delay

systems to determine the delay bounds. Therefore, the so-

called µ-dependent idea, proposed in [14], is adopted here

for the underlying system, and the results obtained with this

concept will be less conservative than the ones within the

“µ-independent” framework such as those based on switched

Lyapunov function [2] or global Lyapunov function.

Remark 6: Conditions (11)-(13) are formulated in terms

of a set of parameterized LMIs, which involve not only

matrix variables but also the scalar γ2. Therefore, the scalar

can be optimized by a µ-dependent convex optimization

problem for a fixed system decay degree as follows.

Problem 1:

Min δ subject to (11)-(13),∀i ∈ I, with δ = γ2

over P̄1i(ρk), P̄3i(ρk), P̄2i(ρk), Ri(ρk), Si(ρk), Ti,
Ǎi(ρk), B̌i(ρk), Či(ρk)

The minimum error performance index is then obtained

setting γ =
√

δ∗, where δ∗ is the optimal value of δ, and

the matrices of the corresponding reduced model are given

by (14).

As shown in the LPV literature [13], by choosing ap-

propriate basis functions {fl(ρk)}nf

l=1, the matrix functions

Yi(ρ) = {P̄1i(ρk), P̄3i(ρk), P̄2i(ρk), Ri(ρk), Si(ρk), Ti,
Ǎi(ρk), B̌i(ρk), Či(ρk)} in above convex problem can be

represented as:

Yi(ρ) =

nf
∑

l=1

fl(ρk)Y l
i (20)

where fl(ρk) and nf can be chosen by designers according

to the dependence structure in system (1), and consequently,

Y l
i = {P̄ l

1i, P̄ l
2i, P̄

l
3i, Rl

i, Sl
i, Ǎl

i, B̌l
i, Čl

i} serves as the

corresponding decision variables in Problem 1. Also, one can

utilize the gridding technique to eliminate the dependence on

the parameter vector ρk in the parameterized LMIs emerging

in LPV systems (see [13] for more details).
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IV. NUMERICAL EXAMPLE

Consider the following discrete-time switched linear sys-

tems consisting of two subsystems with time-varying param-

eters:

A1 =









0.78 0.82 −0.50 0.31
0.19 −0.18 0.74 −0.23 + 0.12ρk

−0.23 −0.19 −0.15 −0.46
−0.66 0.82 0.11 0.78









,

B1 =









0.74
0.70
0.62
−0.31









,

A2 =









0.77 0.73 −0.45 0.28
0.18 −0.04 0.67 −0.21
−0.21 −0.18 −0.07 −0.42 + 0.15ρk

−0.60 0.74 0.11 0.78









,

B2 =









0.74
0.70
0.55
−0.31









,

C1 = C2 =
[

0.47 0.59 0.51 −0.24
]

,

where ρk = cos(0.2πk) are the time-varying measurable

parameters.

Our purpose is to design a parameterized reduced-order

model in the form of (2) and find out the admissible ADT

switching signals for the above switched system such that the

resulting model error system is exponentially stable and has

a guaranteed l2 − l∞ performance for a given decay degree

α.

According to the structure of the parameter dependence in

the above system, we choose the basic functions in (20) as

follows

f1(ρk) = 1, f2(ρk) = cos(0.2πk)

Gridding the parameter space of ρk with 10 uniform grid,

assigning α = 0.1 and varying µ, and solving Problem 1,

we obtain different ADT τ∗
a and different optimal l2 − l∞

performance indices γ∗, as shown in Table 1. It is clear that

γ∗ depends on µ for a given system decay degree α, and we

obtain the minimal µ = 1.08 such that the underlying system

can achieve the l2 − l∞ performance indices. Note that the

larger µ corresponds to the smaller γ∗, but the corresponding

longer ADT are demanded in the system.

In addition, an admissible reduced model can be also

obtained by solving Problem 1. For instance, the desired

2nd-order reduced model corresponding to µ = 1.40 with

the accessible parameters ρk = cos(0.2πk) is determined

TABLE I

µ-dependent OPTIMAL γ∗ FOR GIVEN α = 0.1

µ 1.07 1.08 1.25 1.40 1.60
τ∗a 0.64 0.73 2.11 3.19 4.46
γ∗ infeasible 3.33 2.79 2.78 2.78

as:

AF1 =

[

0.95 0.86
−0.10 −0.02

]

+ ρk

[

−0.19 −0.50
−0.17 0.49

]

,

BF1 =

[

−0.14
−1.58

]

+ ρk

[

−10.5
10.9

]

CF1 =
[

−0.58 −0.60
]

+ ρk

[

−0.04 −0.05
]

(21)

AF2 =

[

0.74 0.69
0.08 0.13

]

+ ρk

[

−0.18 −0.21
−0.16 0.18

]

,

BF2 =

[

−0.51
−0.90

]

+ ρk

[

−1.34
1.27

]

CF2 =
[

−0.62 −0.65
]

+ ρk

[

−0.02 −0.03
]

(22)

Furthermore, consider the input signal

u(k) = 0.1 exp(−0.03k) sin(0.02πk)

and apply the solved reduced-order model (21)-(22), Figures

1 and 2 show the output trajectories of the original system

and 2nd-order reduced model for given two different switch-

ing signals (both are with τa = 4 > 3.19 for µ = 1.40);

Figure 3 and 4 present the output errors between original

system and the reduced-order system. It is clearly observed

from the simulation curves that for given energy bounded

input u(k), the model error system is stable against time-

varying parameters under different switching signals, which

thereby implies that the designed reduced-order model is

feasible and effective.

V. CONCLUSIONS

The model reduction problem is studied for a class of

discrete-time switched linear parameter varying systems un-

der average dwell time switching. A parameterized reduced

model is designed and the corresponding existence condi-

tions of such reduced-order models are derived via LMI

formulation. By solving a convex optimization problem, the

minimal ADT and the desired reduced model can be obtained

for a given decay degree to ensure that the resulting model

error system is exponentially stable and has a guaranteed

l2− l∞ error performance. A numerical example is provided

to show the effectiveness and applicability of the developed

reduced model.
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Fig. 1. Output trajectories of the original system and 2nd-order reduced
model for given switching signal 1
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Fig. 2. Output trajectories of the original system and 2nd-order reduced
model for given switching signal 2
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Fig. 3. Output errors between original system and the reduced-order system
for given switching signal 1
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Fig. 4. Output errors between original system and the reduced-order system
for given switching signal 2
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