
Robust source-seeking hybrid controllers for nonholonomic vehicles∗

Christopher G. Mayhew, Ricardo G. Sanfelice, and Andrew R. Teel †

Abstract— We develop a hybrid controller that drives a
nonholonomic vehicle to the source of a radiation-like signal.
The control signal depends only on measurements of the
signal, which may be corrupted by noise, and internal states
of the controller. The control strategy is inspired by a line
minimization-based algorithm for unconstrained optimization
of nonlinear functions without gradient information. We state
the main properties of the algorithm and then discuss its
implementation in a hybrid controller that coordinates the
optimization algorithm with vehicle steering. We present semi-
global practical convergence and stability results for the closed-
loop system. These results are illustrated by simulation and
experiment.

I. INTRODUCTION

In this paper we examine the problem of steering an

autonomous vehicle to the source of a radiation-like signal.

We assume that only measurements of the signal are available

and that they may be corrupted by noise. The radiation signal

may be thought of as a potential function in the vehicle’s

environment, taking a maximum (or minimum) value at its

“source.” Hence, one could view this as an unconstrained

optimization problem, where a vehicle must be steered to

collect measurements for the optimization routine.

This problem has received much attention in the recent

literature, with approaches ranging from gradient descent

with a single vehicle [5] or multiple vehicles [3] to executing

a simplex-inspired optimization algorithm with a team of two

vehicles [4]. Strategies using extremum seeking were also

suggested for nonholonomic vehicles in [15], [6].

In this paper, we consider steering a constant-velocity

nonholonomic vehicle with a bounded angular rate to the

source. We extend the strategy proposed by Mayhew et al.

in [11] to the “Dubins vehicle,” state a global convergence

result for a class of functions, and illustrate this convergence

with experimental results and simulations. We begin with a

precise statement of the problem and vehicle model.

II. PROBLEM STATEMENT AND NOTATION

We consider the problem of navigating an autonomous

vehicle to the source of a scalar radiation-like signal existing

in the environment. We assume that this signal is described

by a continuously differentiable function ϕ : R
2 → R.

Letting rge ϕ = {y ∈ R : y = ϕ(x)}, we assume that

†{mayhew,teel}@ece.ucsb.edu, Center for Control Engineering and Com-
putation, Electrical and Computer Engineering Department, University of
California, Santa Barbara, CA 93106-9560.
sricardo@mit.edu, Laboratory for Information and Decision Systems,

Massachusetts Institute of Technology, MA 02139, Tel (617) 324-8498,
∗Research partially supported by the National Science Foundation under

Grant no. CCR-0311084, Grant no. ECS-0622253, and Grant no. ECS-
0242798 and by the Air Force Office of Scientific Research under Grant
no. F9550-06-1-0134.

for every c ∈ rgeϕ, Lϕ(c) = {x ∈ R
2 : ϕ(x) ≤ c} is

compact, that ϕ has a unique global minimum of ϕ(x∗) and
∇ϕ(x) = 0 if and only if x = x∗.

We assume that prior knowledge of the function is not

available; instead, only noise-corrupted measurements of the

function are available. Additionally, these measurements can

only be taken at the current position of the vehicle. As a

further constraint inspired by autonomous vehicles in GPS-

denied environments, we do not assume that measurements

of vehicle position are available.

In this paper, we use a common nonholonomic vehicle

model that has a state (x, θ), where x = (x1, x2) ∈ R
2

and θ ∈ R denote the absolute position and heading of the

vehicle. The state evolves according to

ẋ = γ

[
cos(θ)
sin(θ)

]

θ̇ = ω, (1)

where γ is a positive constant defining forward velocity and
ω is a control input for angular velocity, constrained by
|ω| ≤ γ/ρ, where ρ is the minimum turning radius. This
nonholonomic vehicle model is commonly referred to as

the Dubins vehicle [7] in the literature. In this setting, the

objective is design a control system that steers the vehicle,

from any initial condition, to a neighborhood of x∗.

Additionally, we make the following notational conve-

niences. The set S
n−1 = {v ∈ R

n : ‖v‖2 = 1} denotes
the unit 2-sphere in R

n. Given v ∈ S
n, the vector v⊥ ∈ S

n

denotes the unit-vector orthogonal to v, i.e., vT v⊥ = 0.
The set Z>0 denotes the set of integers greater than zero,

i.e., {1, 2, . . .}. We denote by Qn, the set of all functions

f : R
n → R such that f = f∗ + (x − x∗)⊤P (x − x∗) with

P = P⊤ > 0. We denote the closed unit ball in R
n centered

at ξ ∈ R
n of radius ǫ as ξ + ǫB = {y ∈ R

n : |ξ − y| ≤ ǫ}.
For a given function Γ : X → X , we denote Γn as the

composition of Γ n times, that is,

Γn = Γ ◦ . . . ◦ Γ
︸ ︷︷ ︸

n times

.

Finally, we denote a vector rotation of α radians in R
2 by

the rotation operator Rα.

III. ROBUST OPTIMIZATION & VEHICLE STEERING: A

HYBRID HARMONY

We propose a control scheme that coordinates an uncon-

strained optimization algorithm with vehicle path planning

to solve the source-seeking problem posed in Section II.

Our optimization algorithm, presented in Section III-A, stems

from the ideas of Smith [14], Powell [12], and Rosenbrock

[13], who utilized conjugate directions to minimize func-

tions of several variables. Through vehicle path planning,

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThB09.1

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 2722

it is possible to collect function measurements for such an

algorithm. As we describe here (and as shown in [11] for a

point-mass vehicle without nonholonomic constraints), such

a synergy is possible with a hybrid controller. This is a

natural approach, as the vehicle is an inherently continuous-

time system, while an optimization algorithm is an inherently

discrete-time system.

The following discussion relies on the notion of a line

minimization, which is the essential component of our opti-

mization algorithm. Given a function ϕ : R
n → R, a point

x0 ∈ R
n, and a non-zero vector v ∈ R

n, a line minimization

from x0 in the direction of v consists of finding the value
λ ∈ R such that x0 + λv is the unique minimum of ϕ along
v from x0. We denote the operation of performing a line

minimization from a point x0 ∈ R
n along a direction v ∈ R

n

on a function ϕ and returning the value λ as a mapping
µϕ : R

2 ×R
2 → R. This operation is equivalently known as

a “line search.”

A. The Recursive Smith-Powell Algorithm (RSP)

Given x0 ∈ R
2 and v ∈ S

1,

Step 1) Calculate x∗1 = x0 + µϕ(x0, v)v.
Step 2) Calculate x∗2 = x∗1 + µϕ(x∗1, v⊥)v⊥.
Step 3) Calculate x∗3 = x∗2 + µϕ(x∗2, v)v.
Step 4) Update the direction v with the vector v+ =
Φ(µϕ(x∗1, v⊥)v⊥, µϕ(x∗2, v)v, v),
Step 5) Set x0 = x∗3 and go to Step 1).

The function Φ : R
2 × R

2 × S
1 → S

1 updates v by

Φ(α, β, v) =

{
α+β

‖α+β‖ α 6= 0 and β 6= 0

Π(v) otherwise.
(2)

Note that if α and β are taken as in Step 4), then α + β =
x∗3 − x∗1. When α = 0 or β = 0, the direction is updated
by the function Π : R

2 → R
2, which is designed to force the

algorithm to explore a large set of directions. Precisely, Π is
such that ∀u0 ∈ S

1, the set {u ∈ S
1 : u = Πm(u0), m ∈

Z>0} is dense in S
1. One could design Π to rotate the vector

by a rational angle (in radians). The simulations in the sequel

use this implementation.

Fig. 1 illustrates a typical execution of RSP on a quadratic

function with an initial position x0 ∈ R
2 and initial search

direction v ∈ S
1. When ϕ ∈ Q2, each line minimization in

a direction v projects the algorithm position onto a line, lv ,
that passes through the minimizer. After the first three line

minimizations, RSP calculates v+ = x∗3−x∗1

‖x∗3−x∗1‖ which points

towards x∗ from x∗3 and is conjugate to v.

Fig. 1 also suggests the result stated in the following

Theorem. The proof of this result relies on results relating

the conjugacy of vectors and quadratic functions in [12].

Theorem 3.1: Given ϕ ∈ Q2, for any initial point x0 ∈
R

2 and for any initial direction v ∈ S
1, the RSP algorithm

converges to x∗, the global minimum of ϕ, in no more than

four line minimizations.

Fig. 1. A typical execution of RSP on a quadratic function. Convergence
to x∗ is achieved after four line minimizations. The ellipses (gray) denote
level sets of the quadratic function. The lines lv and lv⊥

denote the set of
points which are minima in the direction of v and v⊥, respectively.

B. RSP with a Practical Line Minimization

The line minimization is the backbone of RSP; however,

calculating the exact minimum along a line may be imprac-

tical or even impossible without more information about the

function. This has motivated several methods for conducting

a practical line minimization. We propose a method which

takes fixed steps of length d in the current search direction
until the possibility of a sufficient decrease is exhausted.

Many line minimization algorithms employ the idea of

computing a bracket (see [9]), which is an interval known

to contain a local minimum; then, a line minimization

consists of locating a bracket, then finding the minimum of

ϕ within the bracket. A general algorithm for conducting a
line minimization this way is pictured in Fig. 2.

Fig. 2. A flowchart for conducting a line minimization from x0 in the
direction v. A bracket is located when both positive and negative movements
of d from a point do not yield a sufficient decrease in ϕ along v.

2723

We implement a practical line minimization which we call

a discretized line minimization with σ threshold (a (d, σ)-
DLM). During a (d, σ)-DLM, ϕ is sampled at every step.
After each step (blocks 1a & 1b), the question “Did ϕ
decrease?,” (blocks 2a & 2b) is answered by comparing the

samples. If the samples of ϕ show a decrease of at least σ,
then the answer is “yes.” When the answer is “no,” the (d, σ)-
DLM terminates its search and estimates the minimum. The

(d, σ)-DLM simply picks the last measurement point of ϕ
that yielded a decrease of σ as the minimum. Fig. 3 illustrates
this entire process. Here, the vehicle first detects an increase

in ϕ and must search in the opposite direction. A bracket
is eventually located when an increase in ϕ over a step is
detected directly after a decrease in ϕ in the previous step.

Fig. 3. A (d, σ)-DLM illustration. Green (lighter) dots represent measure-
ments of ϕ where the vehicle has decided to proceed. The red (darker) dots
represent the points where the measurement did not indicate a sufficient
decrease.

The result of a (d, σ)-DLM in the direction of v from x0

is a point x̂∗ that satisfies ϕ(x̂∗) ≤ ϕ(x̂∗ ± dv) + σ. We
denote the set of these points as the (d, σ)-turning tube for

the direction v,

Tϕ(d, σ, v) = {x ∈ R
2 : ϕ(x) ≤ ϕ(x ± dv) + σ}. (3)

To facilitate the analysis of the hybrid controller, we first

analyze a constrained discrete-time system corresponding

to RSP with a (d, σ)-DLM. We define the states (x, ξ) ∈
R

2 × R
κ, where ξ = (λ1, λ2, v, p, k) ∈ Υ ⊂ R

κ and

Υ = R
2×R

2×S
1×{−1, 1}×{0, 1, 2}. The states included

in ξ are similar to those in [11]: λ1, λ2 record the vectors

traveled during the current and previous line minimizations,

respectively, v stores the current search direction, p is a logic
variable that defines the orientation along the current search

direction, and k is a logic variable defining the state of RSP .

Considering only trajectories which start from B := R
2 ×Υ

(this set is also invariant for the following system). We define

the following sets and functions,

D = {(x, ξ) ∈ B : ϕ(x + dv) ≤ ϕ(x) − σ}

D = {(x, ξ) ∈ B : ϕ(x + dv) ≥ ϕ(x) − σ}

g =
[
(λ1 + dv)T λT

2 vT p k
]T

D1 = {(x, ξ) ∈ B : p = 1 and ‖λ1‖2 ≤ d}

g1 =
[
λT

1 λT
2 −vT −p k

]T

D2 = {(x, ξ) ∈ B : (p = 1 and ‖λ1‖2 ≥ d) or p = −1}

g2 =
[
0 λT

1 V(ξ) 1 (k + 1)mod 3
]T

,

where

V(ξ) =

Rπ/2v k = 0

R−π/2v k = 1

Φ(λ1, λ2, v) k = 2

and mod denotes the modulo operator. Then, the con-

strained discrete-time system is given as

x+ =

{

x + dv (x, ξ) ∈ D

x (x, ξ) ∈ D

ξ+ =

{

g(ξ) (x, ξ) ∈ D

gi(ξ) (x, ξ) ∈ D ∩ Di, i = 1, 2

(x, ξ) ∈ B.

(4)

Remark 3.2: The system above can be written to satisfy

certain regularity properties for discrete-time nonlinear sys-

tems. This involves explicitly defining the maps for (x+, ξ+)
as set-valued at points of discontinuity. For example, take

x ∈ D ∩ D, then, x+ ∈ {x + dv, x}.

We define A = {0}×{0}×S
1×{−1, 1}×{0, 1, 2} ⊂ B,

and the Lyapunov function V (x, ξ) = ϕ(x) − ϕ(x∗). With
these, one can use existing Lyapunov stability theory, in-

variance principles, and notions of detectability for discrete-

time nonlinear systems to prove the following results. Due

to space constraints, the proofs will not be reported here.

Theorem 3.3: For the system (4), the set A′ = {x∗} × A
is stable. Moreover, (x, ξ) converges to Rϕ(d, σ)×A, where

Rϕ(d, σ) =
⋂

v∈S1

Tϕ(d, σ, v). (5)

Theorem 3.3 uses the construction of Φ and Π to arrive at the
result through invariance principles. Using the mean value

theorem, one can also assert the following result.

Lemma 3.4: For every ǫ > 0 there exist d > 0 and σ > 0
such that for all x ∈ Rϕ(d, σ), ‖∇ϕ(x)‖ < ǫ.

The following theorem is a result of Lemma 3.4 and the

assumptions of continuous differentiability of ϕ.

Lemma 3.5: Let c ∈ rgeϕ. Then, for every ǫ > 0, there

exists d > 0 and σ > 0 such that Rϕ(d, σ)∩Lϕ(c) ⊂ x∗+ǫB.

Then, from Theorem 3.3 and Lemma 3.5, we can assert a

semi-global, practical convergence result.

Theorem 3.6: Let M ⊂ B be compact and let ǫ > 0.

Then, there exist d > 0 and σ > 0 such that for all solutions

of (4) starting from M , (x, ξ) converges to (x∗ + ǫB) ×A.

C. Steering the Dubins Vehicle

We solve the open-loop control problem for (1):

Given (xi, θi) and (xf , θf), compute a control law
ω(t) which drives the state of (1) from (xi, θi) to
(xf , θf) in finite time.

We parameterize a “bang-bang” control law:

ω(t) =

0 t ∈ [0, t1)
ω̄ t ∈ [t1, t2)
0 t ∈ [t2, t3)
ω̄ t ∈ [t3, t4],

(6)

2724

where |ω̄| = γ/ρ. In this way, the vehicle is made to go
straight (S) when ω(t) = 0. When ω(t) = ω̄, the vehicle
follows a curve (C) of radius ρ. Note that we allow only
right-hand turns or only left-hand turns. This is pictured in

Fig. 4, where the Si’s denote the straight paths traveled by the

vehicle and the Ci’s denote the curves traversed. Following

the notation in [7], a path that is made from concatenated

C or S segments is denoted as a string of C’s and S’s. For
example, a CSC path means that the vehicle path from some
point xi to xf is made up of 3 distinct segments, a curve, a

straight segment, and a curve, in that order.

Fig. 4. Steering the Dubins vehicle to an arbitrary state. The vehicle starts
at an initial state (xi, θi) and is driven to a final state (xf , θf) in finite
time along a path consisting of straight line segments (Si) and curves (Cj)
of radius ρ.

To compute the times ti, we solve a two-point boundary-
value problem. After integration, we arrive at the following

system of equations:

θf = ω̄(t2 − t1 + t4 − t3)
x1f

γ − t1 −
sin(θf)

ω̄ = (t3 − t2) cos(ω̄(t2 − t1))

−
x2f

γ + 1
ω̄ −

cos(θf)
ω̄ = (t3 − t2) sin(ω̄(t2 − t1)).

(7)

Making the substitutions,

z1 =
x1f

γ − t1 −
sin(θf)

ω̄ r = t3 − t2

z2 = −
x2f

γ + 1
ω̄ −

cos(θf)
ω̄ φ = ω̄(t2 − t1),

(8)

we arrive at a set of equations in polar form,

z1 = r cos(φ) z2 = r sin(φ), (9)

which is easily solved for r and φ, in terms of t1. From (7),
(8), and (9), we can find t2, t3, and t4 in terms of t1. We note
here that t1 is free for us to choose and is usually taken to
be zero (which corresponds to a CSC path); however, when
xi and xf are close together compared to the length of the

turning radius, ρ, t1 can be selected to obviate unnecessary
turns, instead producing a SCS path (making t4 − t3 = 0)
that is shorter than a CSC path.
While optimal paths have been studied for the Dubins

vehicle, our solution above is sub-optimal. As pointed out

in [8, Appendix], these control laws are easy to generate

and save on computational resources.

While the derivation above solves the open-loop control

problem in a general fashion, we will apply it in only

specific situations. Following Fig. 2, in order to carry out

the algorithm posed in Section III-B, the autonomous vehicle

must be able to execute the following maneuvers.

1) (Blocks 1a,b) Drive the vehicle forward to the next

measurement;

2) (Block 3) Turn the vehicle around to the previous

measurement in the opposite direction;

3) (Block 5) When a bracket is found, turn the vehicle to

the estimated minimum, ready to proceed in the next

direction (according to the algorithm).

Maneuver 1) is easily conducted by setting ω = 0 for d/γ
seconds. Maneuvers 2) and 3) use the derived control law for

the initial state (0, 0) and final state (−d, θf), where θf = π
when 2) is needed. For reasons derived from geometric and

trigonometric arguments, we use the derived control law with

the following arguments. When θf ∈ [−π/2, π/2] and d <
d∗ := |ρ(1− cos(θf))/ sin(θf)|, t1 = (d∗−d)/γ, otherwise,
t1 = 0. The sign of the angular rate, ω̄, is opposite to the
sign of θf . We denote the control law using these functions

and parameters as ω∗(t, θf). Given θf , we denote the time

required by ω∗ to reach (−d, θf) (time t4 in (6)) as Tω(θf).

With these values, it can be shown that the following

holds. It states that during open-loop turns, which take a

finite amount of time, the x state remains in a compact set.

Lemma 3.7: There exists T ∗ > 0 and K∗ > 0 such that,

for every θf ∈ [0, 2π], the control law ω∗(t, θf) satisfies

Tω(θf) ≤ T ∗ and |x(t) − xf | < K∗ ≤ d + γT ∗ for all

t ∈ [0, Tω(θf)].

D. The Hybrid Closed Loop

In this section, we integrate the discrete-time optimization

algorithm (4) with the vehicle control strategy presented in

Section III-C. The vehicle has a state (x, θ) ∈ R
2 × R.

The controller has the state ξ, as present in (4), and also,
(z, τ,m) ∈ R × R × {0, 1}. The state z stores the previous
measurement of ϕ(x), τ is a timer needed for open-loop
maneuvers, and m is a logic variable. When m = 0,
the vehicle is conducting a line minimization (and going

straight); when m = 1, the vehicle is turning to the previous
measurement in a new search direction. We group these states

as ζ = (x, θ, ξ, z, τ,m) and define the sets

B′ = R
2 × R × Υ × R × [0, T ∗] × {0, 1}

D
′
= {ζ ∈ B′ : ϕ(x) ≤ z − σ}

D′ = {ζ ∈ B′ : ϕ(x) ≥ z − σ}

D′
1 = {ζ ∈ B′ : (x, ξ) ∈ D1}

D′
2 = {ζ ∈ B′ : (x, ξ) ∈ D2}

M0 = {ζ ∈ B′ : m = 0}

M1 = {ζ ∈ B′ : m = 1}

D = {ζ ∈ B′ : m = 0 and τ = d/γ or

m = 1 and τ = Tm(r(ξ))}

C = {ζ ∈ B′ : m = 0 and τ ≤ d/γ or

m = 1 and τ ≤ Tm(r(ξ))}.

2725

Then, the hybrid closed-loop system is

ẋ = γ

[
cos(θ)
sin(θ)

]

θ̇ = ω

ξ̇ = 0

ż = 0

τ̇ = 1

ṁ = 0

ω =

{

0 m = 0

ω∗(τ,ΘR(ξ)) m = 1

ζ ∈ C

x+ = x

θ+ = θ

ξ+ =

g(ξ) ζ ∈ M0 ∩ D
′

ξ ζ ∈ M0 ∩ D′

gi(ξ) ζ ∈ M1 ∩ D′
i, i = 1, 2

z+ = ϕ(x)

τ+ = 0

m+ =

{

0 ζ ∈ (M0 ∩ D
′
) ∪ M1

1 ζ ∈ M0 ∩ D′

ζ ∈ D

(10)

The function ΘR(ξ) calculates the angle between the
current search direction, v, and the next search direction,
either −v or V(ξ), depending on ξ. With this implementation,
the vehicle samples ϕ, then drives forward to take the next
measurement. If this next measurement is σ less than the
previous, the vehicle continues along the current search

direction, otherwise, the open-loop control law ω∗(τ,ΘR(ξ))
steers the vehicle back to the previous measurement in the

new search direction.

The essential property of this system is that it behaves

much like the discrete-time system (4). By examining the

solutions of (10) and applying the results of Section III-B,

one can assert the following convergence and stability results.

Theorem 3.8: For any initial condition, ζ, of (10), so-

lutions remain bounded. Moreover, for every ǫ > 0, there

exist δ > 0, d > 0, σ > 0, and initial conditions for

(ξ, z, τ,m) such that for every initial condition of (x, θ),
with x ∈ x∗ + δB, x remains in x∗ + (K∗ + ǫ)B.

Theorem 3.9: Let M ⊂ B′ be compact. Then, for every

ǫ > 0, there exist d > 0 and σ > 0 such that for all solutions

of (10) starting from M , every state remains bounded and

the x trajectories converge to x∗ + (K∗ + ǫ)B.

Remark 3.10: Theorems 3.9 and 3.8 state that the stability

and semi-global practical convergence of the discrete-time

system (4) is preserved by the hybrid system (10), modulo

the extra maneuvers that the vehicle must take to re-orient

itself (this is where K∗ manifests itself). It is possible to ini-

tialize (ξ, z, τ,m) so that the behavior of the hybrid system
does not immediately mirror the behavior of the discrete-

time system (4) (although, this discrepancy disappears after a

bounded amount of time). The initial conditions in Theorem

3.8 are just those initializing RSP to its first step.

Remark 3.11: We consider hybrid systems as described in

[10], where the dynamics are given by a flow map F , a flow
set C, a jump map G, and a jump set D. The function F
governs continuous evolution of the state when x ∈ C and
G governs discrete jumps of the state when x ∈ D. Benefits
of this framework are revealed when the data of the hybrid

system, (F,G,C,D), satisfy mild regularity properties. In
this case, a wide range of robust stability analysis tools

including invariance principles are available. The system (10)

can be written to satisfy these regularity conditions following

Remark 3.2.

IV. EXPERIMENTAL AND SIMULATION RESULTS

To illustrate the convergence results presented in Section

III-D, we present data from an experiment with a simulated

quadratic potential function. The experiment was conducted

with an ActivMedia Robotics Pioneer 2-DXE [1] mobile

robot and a Vicon MX motion capture system [2]. The

experimental setup, pictured in Fig. 5, allows the mobile

robot to query the motion capture system for real-time

position and orientation information.

Fig. 5. An experimental setup involving a vision system, mobile robot,
and a wireless network. A Vicon camera system is used to measure the
position of the robot. Position measurements are sent to the robot and used
to simulate the function to be minimized. The hybrid controller on the robot
uses the function values to steer the robot towards the minimum.

Using the Real Time Workshop capabilities in

MATLAB/Simulink, executable code was compiled for

the mobile robot which queried the Vicon MX motion

capture system for robot position information, simulated

the potential function with the position data, implemented

the proposed hybrid controller, and ultimately steered the

vehicle. For implementation in a digital computer, the Real

Time Workshop discretized the continuous elements of the

hybrid controller using a fixed sampling period Ts.

The following experiment was conducted with ϕ(x) =
0.1(x1 + 2.44)2 + (x2 + 0.61)2 and the following param-
eters in Table I. Results of the experiment are shown in

Figures 6(a) & 6(b), along with a computer simulation of the

same scenario. No artificial measurement noise was added to

ϕ(x), although measurement errors in x are inherent in the
camera system. Fig. 6 illustrates the convergence of the

algorithm and the closeness of solutions under small pertur-

bations. Differences in the trajectories are mainly attributed

2726

Parameter Value

x1(0) [m] 1.80
x2(0) [m] 1.60
θ(0) [rad] −1.01

d [m] 0.1
σ 0.01

Ts [s] 1/25
γ [m/s] 0.35
ρ [m] 0.25

ω̄ [rad/s] 1.4

TABLE I

EXPERIMENTAL PARAMETERS

−3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Level Sets

Simulation Data

Robot & Vision Data

x
2

[m
]

x1 [m]

(a) Vehicle trajectories

0 10 20 30 40 50
0

2

4

6

8

Time [s]

F
u

n
c
ti
o

n
 v

a
lu

e

Simulation Data

Robot & Vision Data

(b) Function value vs. time

Fig. 6. A comparison of the robot data taken during an experiment
with its predicted data from a computer simulation. The robot reaches a
neighborhood of the minimum. Behavior of the robot differs slightly from
the simulation.

to a delay in the control signal sent to the motors on the

robot.

Fig. 7 depicts a simulation of the proposed controller

converging to the neighborhood of a non-convex function,

ϕ(x) =
√

10(x2 − x2
1)

2 + 5(1 − x1)2. (11)

In this simulation, the calculation of conjugate directions aids

the vehicle in traversing the narrow valleys of the function.

V. ACKNOWLEDGMENTS

The authors would like to thank Shari Eskenas and

Mehmet Usta for their participation in generating the ex-

perimental results.

−6 −4 −2 0 2

−2

0

2

4

6

8

10

12

(a) Vehicle trajectory

0 20 40 60 80
0

5

10

15

20

25

30

35

40

45

Time [s]

F
u

n
c
ti
o

n
 v

a
lu

e

(b) Function value

Fig. 7. A simulation of the algorithm on the function (11). d = 0.05,
σ = 0.01, and γ = 1. (a) The thicker black line is the path that the
algorithm takes. The thinner green line denotes where the vehicle is turning.

REFERENCES

[1] ActivMedia Robotics. http://www.activrobots.com/.
[2] Vicon. http://www.vicon.com/.
[3] R. Bachmayer and N.E. Leonard. Vehicle networks for gradient
descent in a sampled environment. In Proceedings of the 41st IEEE

Conference on Decision and Control, volume 1, pages 112–117, 2002.
[4] J. Borges de Sousa, K.H. Johansson, J. Silva, and A. Speranzon. A
verified hierarchical control architecture for coordinated multi-vehicle
operations. International Journal of Adaptive Control and Signal

Processing, 21:159–188, 2006.
[5] E. Burian, D. Yoerger, A. Bradley, and H. Singh. Gradient search
with autonomous underwater vehicles using scalar measurements. In
Proceedings of the 1996 Symposium on Autonomous Underwater

Vehicle Technology, pages 86–98, 1996.
[6] J. Cochran and M. Krstic. Source seeking with a nonholonomic
unicycle without position measurements and with tuning of angular
velocity - Part I: Stability analysis. In Proceedings of the 46th IEEE

Conference on Decision and Control, pages 6009–6016, 2007.
[7] L. E. Dubins. On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents. American J. of Mathematics, 79(3):497–516, July 1957.

[8] J. A. Farrell, S. Pang, and W. Li. Chemical plume tracing via an au-
tonomous underwater vehicle. IEEE Journal Of Oceanic Engineering,
30(2):428–442, April 2005.

[9] R. Fletcher. Practical methods of optimization; (2nd ed.). Wiley-
Interscience, New York, NY, USA, 1987.

[10] R. Goebel and A.R. Teel. Solutions to hybrid inclusions via set and
graphical convergence with stability theory applications. Automatica,
42(4):573–587, April 2006.

[11] C.G. Mayhew, R.G. Sanfelice, and A.R. Teel. Robust source seeking
hybrid controllers for autonomous vehicles. In Proceedings of the

2007 American Control Conference, pages 1185–1190, 2007.
[12] M.J.D. Powell. An efficient method for finding the minimum of

a function of several variables without calculating derivatives. The

Computer Journal, 7(2):155–162, 1964.
[13] H. H. Rosenbrock. An automatic method for finding the greatest or

least value of a function. The Computer Journal, 3(3):175–184, 1960.
[14] C.S. Smith. The automatic computation of maximum likelihood

estimates. Technical Report S.C. 846/MR/40, N.C.B., 1961.
[15] C. Zhang, D. Arnold, N. Ghods, A. Siranosian, and M. Krstic. Source

seeking with nonholonomic unicycle without position measurement –
Part I: Tuning of forward velocity. In Proceedings of the 45th IEEE

Conference on Decision and Control, 2006.

2727

