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Abstract— The algorithms for the optimal filter and control
have been obtained for systems with polynomial first degree
drift term in the state and observations equations. Two cases
are presented: systems with disturbances in L2 and systems with
Brownian motion and parameter ε multiplying both in the state
and observation equations. The algorithms of the optimal risk-
sensitive filter are obtained in each case and their performance
is verified and compared with the algorithms of the optimal
Kalman-Bucy filter through an example. The solution to the
optimal control risk-sensitive problem for stochastic system,
and log-exp-quadratic cost function to be minimized is obtained.
This algorithms are obtained using value function as solution of
PDE HJB. These algorithms are compared with the traditional
control algorithms through numerical example. The optimal
risk-sensitive filter and control show better performance for
large values of the parameter ε.

I. INTRODUCTION

Since the linear optimal filter was obtained by Kalman

and Bucy (60’s), numerous works are based on it. I could

mention some as [2], [3],[12], [21], of the variety of all those.

More than thirty years ago, Mortensen [16] introduced a

deterministic filter model which provides an alternative to

stochastic filtering theory. In this model, errors in the state

dynamics and the observations are modeled as deterministic

”disturbance functions,” and a mean-square disturbance error

criterion is to be minimized. In this case, special conditions

for the existence, continuity and boundedness of f (x(t)) in

the state equation, which is considered nonlinear, and for the

linear function h(x(t)) in the observation equation, are given.

A concept of the deterministic estimator, which is introduced

more recently by McEneaney [13], is reviewed and applied

to system with disturbances in L2, where f (x) has a nonlinear

form in the dynamics of the system and linear observations.

The problem statement uses a dynamical model of the form

Ẋ(t) = f (X(t))+w(t) (1)

where X is the state, f (x(t)) represents the nominal dynam-

ics, w(t) ∈ L2 is a deterministic process. This model is in

contrast to the the diffusion model

dX(t) = f (X(t))dt +
√

εdW (t) (2)

where W is a Brownian motion. The equations (1), (2) are

introduced in [4] and [15] where f (X(t)) is a nonlinear

function. This paper presents an application of the algorithms

obtained in [4] and [15] for singular form of f (x(t)). The

The author would like to thank W. M. McEneaney and Efrain Alcorta
Garcı́a for helpful discussions. UCMEXUS-CONACyT Foundation for
financial support under Posdoctoral Research Fellowship Program, UANL-
PAICYT num. CA1480-07, and CONACYT num.52930.

goal of this work is to obtain the optimal filter and control

risk-sensitive equations for these models, when f (x(t)) and

h(x(t)) take a polynomial of first degree form in the state

and observation equation, respectively. The performance of

the risk-sensitive optimal filter and control (stochastic case)

algorithms is checked doing a comparison to the algorithms

of the optimal Kalman-Bucy filter and traditional control

through an example, for large values of ε. A long tradition

of the optimal control design for nonlinear systems (see, for

example, [1], [7], [11]) has been developed. Since the optimal

linear control problem has been solved in 60’s [9], [6], the

basis of the optimal control theory is Dynamic Programming

equation or Hamilton-Jacobi-Bellman equation [6], and the

maximum principle of Pontryagin [17]. Following the theory

of control and estimation, other method used in stochastic

systems, is the finite time horizon case. Whittle [20] regarded

it, using small noise asymptotic. When the process being

controlled is governed by stochastic differential equation,

the Whittle’s formula for the optimal large-derivations rate

was obtained using partial differential equation viscosity

solution method in [5], [4], [15]. Runolfsson [18], used

Ponsker-Varadham-type large-derivations ideas to obtain a

corresponding stochastic differential game for which the

game payoff is an ergodic (expected average cost per unit

time) criterion. In this method is considerate the risk-averse

stochastic problem and its solution is obtained taking in

account a value function which is a viscosity solution to the

dynamic programming equation (H-J-B)[14]. An advantage

of risk-sensitive criteria is the robustness of the obtained

solution with respect to noise level. Indeed, since the solution

to the classical LQ problem is independent of noise level, it

occurs to be too sensitive to parameter variations in noise in-

tensity. On the other hand, the risk-sensitive problem assumes

explicit presence of the small parameters in the criteria. This

leads to a more robust solution, which correctly responds to

parameter variations and results in close criterion values for

both, large and small, parameter values. A future work is

to obtain the risk-sensitive filtering and control algorithms

when f (x(t)) takes other polynomial forms, as quadratic or

cubic, and do a comparison with the polynomial filtering and

control algorithms previously obtained. The performance of

the obtained risk-sensitive regulator and filter for stochastic

first degree polynomial systems is verified in a numerical

example against the conventional linear-quadratic regulator

and Kalman-Bucy filter, through comparing criteria values

for both regulators and the estimator error, in both filters,

for large values of ε , respectively. This work is organized as

follows: The problem statement for system with disturbances
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in L2 and for systems with Brownian motion is presented in

Section II.A and II.B. In Section III is given the solution.

The general form of the optimal risk-sensitive stochastic non

linear control problem is given in Section IV.In Section V

is presented the optimal control r-s solution. In Section VI

an numerical example is solved applying the risk-sensitive

optimal filter algorithms and the algorithms of Kalman-Bucy

optimal filter; risk-sensitive and traditional control. Section

VII are the conclusions.

II. FILTERING PROBLEM STATEMENT

A. Deterministic case

For the first case, the state to be estimated x(t) has

differential equation (1) where w(t) is the state disturbance

and x(0) = xo. The observation equation is given by:

y(t) = h(x(t))+ v(t) (3)

where v(t)∈ L2 is the observation disturbance. Where x(t)∈
Rn,w(t) ∈ Rm,y(t),v(t) ∈ Rp, f ,h ∈ Rn with fx,hx bounded
is assumed throughout. Here hx is the matrix of partial
derivatives of h and in the same form for Zx. Taking
f (x(t)) = A(t)+ A1(t)x(t), h(x(t)) = E(t)+ E1(t)x(t), with
A(t)∈Rn,A1(t),∈Mn×n,E(t)∈Rp,E1(t)∈Mn×p where Mi× j

denotes the field of matrices of dimension i× j. The follow-
ing system equations is obtained:

Ẋ(t) = A(t)+A1(t)x(t)+w(t), (4)

y(t) = E(t)+E1(t)x(t)+ v(t).

Taking in account the state equation (1) and the observation
equation (3), replacing the observation trajectory y· by an ac-
cumulated observation trajectory: Y (t) =

∫ t
0 ysds· In [4], you

can see that taking in account the accumulated observations,
the function J(T,x;w) has the form:

J (T,x;w·) = −{φ(x0)+

∫ T

0
[
1

2
|w(t)|2 + (5)

1

2
|h(x(t))|2 +(Y (t) ·h(x(t)))x · ( f (x(t))+w(t))]dt},

Z(T,x) = supwJ (T,x;w), then, the value function associ-
ated is given by:

W (T,x) = Y (T ) ·h(x)+Z(T,x), (6)

it is shown [4] that Z(T,x) is continuous, and that Z is a
viscosity solution of the dynamic programming PDE:

−ZT − f ·Zx −
1

2
|h|2 − (Y (T ) ·h)x · f +

1

2
|(Zx + (7)

(Y (T ) ·h)x)σ |2 = 0, Z(0,x) = −φ(x).

As was proposed in [13], and taking in account [4],

in this case, W (T,x) takes the form W (T,x) = 1
2
(X −

C(T ))T Q(T )(X −C(T ))+ ρT + 1
2

∫ T
0 /y(t)/2dt, where C(T )

denotes the estimate vector, QT is a quadratic, positive

definite symmetric matrix and ρ is a parameter with values in

final time T. The filtering problem is to find the best estimate

of the state x(t), which minimizes the quadratic criterion (5),

where Z(T,x)(6), is a viscosity solution of (7).

B. Filtering Stochastic case

Consider the following stochastic model (2), in which X(t)
denotes the state process. X(t) satisfies (2), and the equation
for Y (t)is given by:

dYt = (E(t)+E1(t)x(t))dt +
√

εdB̃(t), Y0 = 0, (8)

where ε is a parameter and B and B̃ are independent Brow-
nian motions in themselves and both are independent of the
initial state X0. X0 has probability density kε exp(−ε−1φ(x0))
for some constant kε . The rest of the paper are verify
assumptions (A1)-(A5) (from [4]). Besides, it is assumed
that

qε (0,x) = exp(−ε−1φ(x)) (9)

qε (T,x) = pε (T,x)exp[ε−1Y (T ) ·h(x)]

where pε(T,x) is called pathwise unnormalized filter den-
sity. Taking log transform: Zε(T,x) = εlogpε(T,x), which
satisfies the nonlinear parabolic PDE

∂ Zε

∂T
=

ε

2
tr(Zε

xx)+Aε ·Zε +
1

2
Zε

x ·Zε
x +Bε , (10)

with initial data Zε
x (0,x) =−φ(x). The risk-sensitive optimal

filter problem consists in found the estimate C(T )ε , of the
state x(t) through verification that

Zε (T,x) =
1

2
(x−C(T )ε )T Q(T )ε (x−C(T )ε )+ρε

T (11)

−Y (T ) ·h(x(t))

is a viscosity solution of (10), and Qε
T is Riccati matrix

equation (Q(T )ε is symmetric matrix). In [4] it is proved,
that the equation (10)(stochastic case) converges to the equa-
tion (7)(deterministic case) as ε goes to zero. Substituting
f (x(t)),h(x(t)) in (2) as in deterministic case (4), the next
stochastic equations system is obtained:

dX(t) = A(t)+A1(t)X(t)+
√

εdB(t) (12)

dY (t) = E(t)+E1(t)X(t)+
√

εdB̃(t),

where A(t),A1(t),E(t),E1(t) are the same as in (4). The

filtering problem is the same as Section A.

III. FILTERING SOLUTION

Taking in account the system of state and observation
equations (4), the partial derivatives of (6) are obtained. Upon
substituting into (7) and collecting x terms, the next filter
equation is obtained, where C(T ) denotes the estimator of
x(t), which is the solution of the next differential equation:

dC(T ) = (A(t)+A1(t)C(T ))dt −Q(T )−1E1(t)(dY (t)−
(E1(t)

TC(T )+E(t))dt),C0 = co. (13)

where the symmetric matrix Q(T ) is obtained collecting x2

terms and is the solution of the next Riccati matrix equation:

Q̇(T ) = −A1Q(T )−Q(T )AT
1 +

(Q(T ))2 −E1(t)
T E1(t), Q0 = qo. (14)

Here Q(T )ε is a symmetric matrix and the initial condition

Qε
0 = qε

o is gotten from the equilibrium condition Q̇(T )ε = 0.

Where if Q is one solution. Then, should be qε
0 ≤ Q, for

which Q̈ε(Q) < 0, where Q is one of two equilibrium points.

Taking Zε(T,x) and following the steps of the deterministic

case, it is easy to verify that the equation for the optimal

risk-sensitive stochastic estimator is the same obtained in

the deterministic case.
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IV. CONTROL PROBLEM STATEMENT

The next stochastic risk-sensitive control problem has
dynamics:

dX(t)ε = f (t,X(t)ε ,u(t))dt +

√

ε

2γ2
dB(t), (15)

X(s)ε = x, and log-exp-quadratic cost criterion

I(s,x,u) = εlogEs,xexp{1

ε
[

∫ T

s
L(t,X(t)ε ,u)dt + (16)

ψ(X(T ))]}.

Where f (t,X(t),u(t)) is a nonlinear function which repre-

sents the nominal dynamics with control u(t) taking values

in U ∈ Rl and {B, F} is an m-dimensional Brownian motion

on the probability space (Ω,F,P) where F0 contains all the

P-negligible elements of F. ε will be a measure of the risk-

sensitivity and scales the diffusion term in (15) above so

that the cost below will remain bounded (for each x as a

function of ε), 0 ≤ s ≤ T < ∞,T is a fixed terminal time,

L(t,X(t)ε ,u(t)) is the quadratic running cost, and ψ(X(T ))
is the quadratic terminal cost. We define the following cost

functions:

Aε(s,x,u,ω) =
∫ T

s
L(t,X(t),u)dt +ψ(X(T ))

Jε (s,x,u) = Es,xexp[
1

ε
Aε (s,x,u,ω)]. (17)

So that

Iε(s,x,u) = εlogJε(s,x,u) = εlogEs,xexp[
1

ε
Aε(s,x,u,ω)].

Taking in account that the controller u(t) is minimizing, and
w∈Rn is a maximizing control, the following value functions
are considered:

V ε (s,x) = in fu∈As,ν
Iε (s,x,u) (18)

where As,v is the set of progressively measurable controls
with values in U.

ϕε (s,x) = in fu∈As,ν
Jε (s,x,u) (19)

The proof can be found in [15] under certain conditions,
where f (t,X(t),u(t)) is a nonlinear function, V ε is a viscos-
ity solution of the dynamical programming equation

0 = V ε
s +

ε

2γ2 ∑V ε
xix j

+minu∈U{ f (t,X(t)ε ,

u(t))∇xV
ε +L(t,X(t),u(t))+

1

2γ2
∇V εT ∇V ε}

V ε (x(t),T ) = ψ(X). (20)

The next lemma shows that when f (t,X(t)ε ,u(t)) = A(t)+
A1(t)X(t)ε +u(t), V ε is a viscosity solution of the dynam-
ical programming equation(20). Taking V ε = εlogϕε , and
substituting in (20) it is obtained the equation for ϕε :

0 = ϕε
s +

ε

2γ2 ∑ϕε
xix j

+minu∈U{ f (t,X(t)ε , (21)

u(t))∇xϕε +L(t,X(t),u(t))φ ε},ϕε (x(t),T ) = ψ(X)

The optimal control problem is to show that V ε is a viscosity
solution to the dynamic programming equation (20) when
f (t,X(t)ε ,u(t)) is polynomial of first grade, to find the
optimal control which minimize the quadratic criterion J

and find the optimal trajectory x∗, substituting u∗ in to the
state equation (15). The conditions for f ,L,ϕ ,U proposed in
[15] are true when f (t,X(t)ε ,u(t)) takes the form proposed
previously. As in [15], ”cut off” problem is important,
because the possibility unbounded functions f ,L and ψ are
replaced by bounded counterparts f k,Lk and ψk in (20) and
(21). The next lemma provides of proof that V ε,k is the
unique, bounded, classical solution to (20), taking in account
that f (t,X(t),u(t)) polynomial of first degree, the proof for
f (t,X(t),u(t)) non linear can see in [15].
Lemma The solution to (20) is the value function V ε,k and
the solution to (21) is the value function ϕε,k. An admissible
feedback solution exists which yields the minimum. Further-
more, V ε,k is the unique, bounded, classical solution to (20).
Proof: Let ϕ a solution of (21). The first part is to show
ϕ(s,x) ≤ Jε,k(s,x,u), for all u ∈ As,v and (s,x) ∈ Q(T ) =
[0,T ]×Rn. For a fixed Ft− progressively measurable control,
the solution to the stochastic differential equation, xk (which
would be denoted as x throughout the remainder of this
proof) is a continuous semi-martingale, with in fact, square-
integrable martingale part. Thus, since ϕ ∈C1,2, and applying
Itô’s rule to yield:

ϕk(t,x(t)) = ϕk(s,x)+

∫ t

s
(

∂ϕk(s,x(r))

∂ s
+

∂ϕ(s,x(r))

∂x(r)
× (22)

f k(x(r))+
ε

4γ2

∂ 2ϕ

∂x(r)2
)dr +

√

ε

2γ2

∫ t

s

∂ϕk(s,x(r))

∂ s
dB(r),

if

∂ϕk(s,x(r))

∂ s
= ϕk

r ,
∂ϕk(s,x(r))

∂x(r)
= ▽ϕk,

∂ 2ϕk(s,x(r))

∂xi(r)∂x j(r)
= △ϕk,

then

ϕk(t,x(t)) = ϕk(s,x)+

∫ t

s
(ϕk

r (r,x(r))+▽ϕk(r,x(r)) f k(r,

x(r),u(r))+
ε

4γ2
△ϕk(r,x(r)))dr +

√

ε

2γ2

∫ t

s
▽ϕk(r,x(r))dB(r),

where
∫

▽ϕ(r,x(r))dB(r) = ∑
∫

ϕk
xi
(r,x(r))dB(r)(i). (23)

Since the lemma 2.3.1 in [15] states that the solution
to (20) is bounded, we have from Ladyz̆enskaja et al.
[10], theorem 5.3.1 that | ▽V | is also bounded. Conse-
quently the solution to (21) satisfies |ϕ |, | ▽ ϕ | bounded
also. Then exists a such that | ▽ ϕ| ≤ a for all (s,x) ∈
QT which implies E

∫ T
s |▽ϕ|2dt ≤ a2T, and consequently

∫ t
s ▽ϕ(r,X(r)) · dBr is a square-integrable martingale. Thus

ϕ(t,X(t)) is also a continuous semi-martingale. Since Lk

is bounded, εt ≡ exp[ 1
ε

∫ t
s Lk(r,X(r),u(r))dr] is a continuous

semi-martingale with zero martingale part. Therefore we
may apply the stochastic integration by parts formula to the
product εtϕ(t,x(t)) to yield:

εtϕ
k(t,X(t))−ϕk(s,x) =

∫ t

s
εr[

∂ϕk

∂ r
+

∂ϕk

∂x
· f k(x(t))+ (24)

ε

4γ2

∂ 2ϕ

∂x2
]dr +

∫ t

s
ϕk(r,x(r))

1

ε
Lk(r,X(r),u(r))εrdr

+

√

ε

2γ2

∫ t

s
εr

∂ϕk

∂x
dB(t).

Using PDE (21) to eliminate the first two terms on the right,

we have:

εtϕ
k(t,X(t))−ϕk(s,x) ≥

√

ε

2γ2

∫ t

s
εr

∂ϕk

∂x
dB(t).
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Since Lk and ▽ϕk are bounded, so is εr ▽ϕ(r,X(r)). Thus,

by the same argument as above,
∫ t

s εr ▽ϕk(r,x(r))dBr is a

square-integrable martingale. Therefore, taking t = T ,

ϕk(s,x) ≤ Es,x[εT ϕ(T,X(T ))],

and substituting ε and the terminal condition in (21), we
have:

Es,x[εT ϕ(T,X(T ))] = Es,xexp{1

ε
[

∫ T

s
Lk(t,X(t),u(t))dt +

ψ(X(T ))]} = Jε ,k(s,x,u). (25)

Now suppose there exists u∗ ∈ As,v such that

u∗ ∈ argminu∈U [ f k(t,X(t)∗,v)▽ϕ(t,X(t)∗)+

1

ε
Lk(t,X(t),u(t))ϕ(t,X∗)],∀t ∈ [s, t].

Then the equality in the above is rigth, and consequently,

ϕ(s,x) = Jε,k(s,x,u∗).

It is easily seen from [6], Appendix B, that exists a Borel
measurable function g(t,x) such that:

g(t,x) ∈ argminu∈U [ f k(t,x(t),u)ϕk
xi
(x, t)+

ϕk(t,x)

ε
Lk(t,X(t),u(t))],∀(t,x) ∈ QT . (26)

Consider the SDE:

dX(t) = f k(t,X(t),g(t,X(t)))dt +
ε

2γ2
dB(t). (27)

By Veretennikov [19], Theorem 1, it has a unique strong

solution for any reference probability system, ν . Letting u∗ =
g(t,x(t)) for the strong solution yields u∗ ∈ As,ν . Therefore

ϕ(s,x) = minu∈As,ν Jε,k(s,x,u) = ϕε,k(s,x)

To prove the uniqueness claim, suppose there exists another

bounded, classical solution, ϕ̃ . Then, by the same proof as

above, it is equal to the value function ϕε,k. The result for

ϕ is proved. The result for V follows similarly.♦.

V. CONTROL SOLUTION

Taking in account that f (t,X(t)ε ,u(t)) = A(t) +
A1(t)X(t) + b(t)u(t) and substituting in (15), the next
state equation is obtained:

dX(t)ε = (A(t)+A1(t)X(t)+b(t)u(t))dt +

√

ε

2γ2
dB(t),(28)

Xε
s = x, where X(t),u(t),A(t) ∈ Rn,A1(t) ∈ Mnxn, where

Mnxn denotes the field of matrices of dimension nxn,
and dB(t) is as in (15), u(t) is the control input. Let
L(t,X(t)ε ,u) = XT

t GXt + uT
t Rut , the exponential-quadratic

cost criterion has the form:

I(s,x,u) = εlogEs,x{exp[
1

ε
[

∫ T

s
(XT

t GXt + (29)

uT
t Rut)dt +XT

T ψXT ]]/Yt}

G,ψ are non-negative symmetric matrices, R is a positive
definite symmetric matrix. As is proposed in [13], in this
case, the value function

V ε (s,X) =
1

2
(X(t)−C(s))T P(s)(X(t)−C(s))+ r(s) (30)

(C(s),P(s),r(s) are functions of s ∈ [0,T ],C(s) ∈ Rn,P(s)
is a symmetric matrix of dimension nxn and r(s) is a scalar
function) as a viscosity solution of the dynamic programming
equation

0 = Vs +
ε

2γ2 ∑Vxix j
+minu∈U{(A+ (31)

A1(t)X(t)+u(t))∇xV +X(t)2 +u(t)2 +
1

2γ2
∇V T ∇V}

V (x(t),T ) = ψ(X) where Vs,Vx are the partial derivatives
of V respect to s,x respectively and ∇V is the gradient
of V. Then the partial derivatives of V ε are obtained and
substituting these in (31), when f (t,x(t),u(t)) is polynomial
of first degree, following the steps as in the filter, the r-s
control solution is obtained:

Ṗ(t) = P(t)T (
b(t)R−1b(t)T

2
− 1

γ2
)P(t) (32)

−AT
1 (t)P(t)−P(t)A1(t)−2G

Ċ(t) = AT
1 (t)C(t)+2C(t)T P(t)−1 +A(t)

ṙ(s) = −C(t)T GC(t)− ε

2γ2

n

∑
i=1

Pi j

with terminal conditions: P(T ) = ψ,C(T ) = 0 and from
(31), the optimal control law which minimizes the quadratic
criterion is given by:

u∗(t) = −1

2
P(t)bT (t)R−1(X −C(t)) (33)

VI. APPLICATIONS

A. Risk-sensitive optimal filter

For the dynamical system (12), if f (x(t)) = 1 −
0.1x(t), h(x(t)) = 1 + x(t), the following stochastic state
and observation equations are obtained:

dx(t) = (1−0.1x(t))dt +
√

εdB(t), (34)

dy(t) = (1+ x(t))dt +
√

εdB̄(t)

where x(t) ∈ R,dB(t),dB̄(t) are independent Brownian mo-
tions, ε = 1000000. Proposing (11) as a viscosity solution

of (10), getting the derivatives Zε
x ,Zε

xx,
∂Zε

∂ T
of (11) and

substituting in (10), the next equations are obtained for the
estimate C(T )ε and for the symmetric matrix QT , which are
equivalent to substituting the corresponding values in (13)
and (14):

Q̇(T ) = 0.2Q(T )+Q2(T )−1 (35)

dC(T )ε = (1− (0.1)C(T )ε )dt − 1

QT
(dY (T )−C(T )ε dt)

The last equations (35) are simulated using MatLab7. The

initial conditions for the simulation are x0 = y0 = 0, Qε
0 =

−0.0001, C(T )ε = 1000, T = 10seg. The graph of the

absolute values of the difference between state x(t), and the

estimate C(T )ε , that is: error = |x(t)−C(T )ε | , is shown in

Figure 1.
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Time R-s estimator error K-B estimator error

0.2seg 0 944.1
2seg 16.11 244
4seg 8.8 40

6.250seg 0 3.262
6.7552seg 1.694 0

TABLE I

COMPARISON OF ERRORS R-S AND K-B

B. Kalman-Bucy optimal filter equations.

Applying the Kalman-Bucy optimal filter algorithms [8] to
the state equations (34), the equations for the estimate vector
m(t) and symmetric covariance matrix P(t) are obtained:

dm(t) = (−0.1m(t)+1)dt +
P

ε
(dY − (m(t)+1)dt)

Ṗ(t) = −0.2P(t)+ ε − P2(t)

ε

This system of equations is simulated with the initial

conditions: m(0) = 1000, P(0) = 10000. The graph of the

absolute value of the difference between state x(t), and the

estimate m(t), that is: error = |x(t)−m(t)| , can be seen in

Figure 2. Table 1 presents some values of the risk-sensitive

error and Kalman-Bucy error, you can see that the risk-

sensitive error converges to zero in less time that the Kalman-

Bucy error. Besides you can see that the values of K-B

estimator error are monotonous, which is hopped, because

ε is into the estimation equation, which increase their value

when ε increase, while the r-s estimator works for large

values of ε, and the values of the r-s estimation error are

not monotonous.

C. Optimal r-s stochastic control

Give the next linear stochastic state equation:

dx(t) = (1+0.1x(t)+u(t))dt +

√

ε

2γ2
dB(t) (36)

L(t,x(t),u(t)) = x(t)2 +u(t)2;ψ(x(t)) = x(t)2

where A(t) = 1,A1(t) = 0.1,σ = 1 ε = 0.01,γ = 2. The
values of ε,γ are obtained of (38). The quadratic cost
criterion takes the form:

J(s,x(t),u(t)) = εlogEs,xexp(
1

ε

∫ T

s
(x(t)2 +u(t)2)dt + x(T )2) (37)

Substituting the values of A,A1 into the equations (32), and
(33), are obtained the next equations in reverse time:

dP

dt
= −0.2P(s)−2+P(s)2(

1

2
− 1

γ2
)

dC(s)

dt
= 1+(0.1)C(s)+2

C(s)

P(s)
(38)

u∗ = −1

2
P(s)(x−C(s)).

The system (38), is stable if |γ| ≥ 1.40. The final conditions

in T = 5seg are: P(5) = 1,C(5) = 0, the initial condition for

x(0) = 0;γ = 2. Solving this system of equations (38), the

values of the optimal control law u∗, the optimal trajectory:

ẋ∗ = (1 + (0.1)x(t)− 1/2P(s)(x−C(s))) +
√

(ε/2γ2)dB(t),
are obtained, substituting the optimal control u∗ in to the

state equation (36). The value of the criterion quadratic to

be minimized J at time T is obtained. The graph of the state

x(t), the optimal control u(t), the criterion J can be seen in

the Figure 4. The value of J was approximated using Monte

Carlo method.
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Fig. 1. Graphs of the absolute values of the difference between x(t) and
the linear r-s estimate C(T ).
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Fig. 2. Graphs of the absolute values of the difference between x(t) and
the linear Kalman-Bucy estimate m .

D. Optimal Linear Quadratic Control

Taking in account the state equation (36), the traditional

optimal non homogeneous control [6] is obtained: u(t)∗ =
R−1bT (t)(Q(t)x(t)+ p(t)), where Q(t) is the solution of the

gain equation:

˙Q(t) = −0.2Q(t)+1−Q2(t)

and p(t) is the solution of: ṗ(t) = −Q−0.1p(t)−Q(t)p(t)
with final conditions: Q(5) = −2, p(5) = 0 The optimal

trajectory takes the form: dx(t) = (1+(0.1)x(t)+(Q(t)x(t)+
p(t)))dt +

√

(ε/2γ2)dB(t). The quadratic criterion to be

minimized is the same in both controls. The graphics of the

state, optimal control and criterion, for ε = 1000 can see in

Figure 3.

VII. CONCLUSIONS

The equations of the risk-sensitive optimal filter and

control when the drift term is polynomial of first grade

in state and observation equations (for the filtering case)

and quadratic criterion (for the control case) are obtained.

These algorithms are valid when the disturbances in the
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Fig. 3. Graphs of the optimal state variable x(t), the optimal control u∗

and the criterion J for the L-Q control.

0 1 2 3 4 5
−2

0

2

         time

s
ta

te
 x

0 1 2 3 4 5
−5

0

5

         time

c
o
n
tr

o
l

0 1 2 3 4 5
0

5

10

15

         time

c
ri
te

ri
o
n

Fig. 4. Graphs of the state variable x(t), the optimal control u, and the
criterion J for the risk-sensitive control.

ε J(r-s control) J(trad. control)

0.1 9.875 7.9152
1 9.8982 8

10 10 8.278
100 10.5616 9.4371
1000 14.8716 15.774
10000 53.7456 62.5252
100000 429.1228 477.4969

TABLE II

VALUES OF J, FOR SOME ε VALUES, WITH ALGORITHMS RISK-SENSITIVE

AND L-Q CONTROL

dynamical system are in L2, and when Brownian motion

is present in the dynamical system. A numerical example

is solved in the stochastic case with multiplier ε on the

weak derivative of Brownian motion and with parameter

γ in the control problem. The optimal filter risk-sensitive

algorithms and Kalman-Bucy optimal filter are obtained,

and compared. When ε grows, the estimate risk-sensitive

converges in less time to the real value than the Kalman-

Bucy estimate, as shown in Figure 1 and 2. The optimal

control risk-sensitive algorithms and traditional optimal con-

trol are obtained, and compared, using the log-exp-criterion

quadratic of risk-sensitive method. When ε takes small

values, the performance of traditional control is verify, when

ε grow, the performance of risk-sensitive control is verify

(values of J are lowest).
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