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Abstract— The problem of robust reliable controller de-
sign against actuator faults for systems with polytopic type
uncertainty is addressed. The strategy that using sampled-
data control with high-order hold is adopted to tackle the
situations that no sampled-data controller with zero-order hold
in existence. This problem is formulated in terms of solutions to
a set of linear matrix inequalities. The efficiency of the proposed
method is demonstrated by a numerical example.

I. INTRODUCTION

More and more advanced technological systems rely on
sophisticated control systems to increase their safety and
performances. In the event of system component failures,
the conventional feedback control designs may result in
unsatisfactory performances or even instability, especially for
complex systems such as aircrafts, space craft ,nuclear power
plants, etc. This has ignited enormous research activities in
search for new design methodologies for accommodating the
component failures and maintaining the acceptable system
stability and performances, so that abrupt degradation and
total system failures can be avoided. This types of control is
often known as fault-tolerant control (FTC).

The main task of this study is to design a sampled-data
passive FTC Controller, or the so-called reliable controller
for continuous-time uncertain linear systems with polytopic
uncertainties such that the closed-loop system is reliable and
robust stable. Reliable control problems have been exten-
sively studied, and several approaches have been proposed.
Such as, for linear systems, there are coprime factorization
approach [15], algebraic Riccati equation (ARE) approach
[14] [13] [2] [2]; pole region assignment technique [6],
Youla parametrization approach [7], linear matrix inequality
(LMI) approach [3] [4] [8]; for nonlinear systems, there are
Hamilton.Jacobi inequality (HJI) approach [1] [14], variable
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structure control approach [12], T-S fuzzy model based
approach [8][9] [10] [11] and so on.

Form the system modeling point of view, using uncertain
models instead of LTI models is more suitable in many real-
world safety-critical systems such as aircrafts since there
are multiple operating points and the accurate value of
parameters is not available. For example, a F-16 aircraft is
modeled in polytopic convex polyhedron in [4]. However,
only few papers [4] [5] [24] have been investigated on the
reliable control design for the uncertain systems, which is a
more challenging problem since the controller is needed not
only to be robust with respect to the uncertainties but also
reliable to accommodate the failures of actuators.

The last decade has witnessed a remarkable improvement
in the analysis and the design of systems with polytopic-type
uncertainties, ([22] opened a new horizon for linear matrix
inequality based approach by virtue of parameter-dependent
lyapunov variables. In the following years, many researchers
have Struggled for more accurate results with further less
conservatism by introducing extra auxiliary variables (see
[23] [27] [26] and references there in). However, those
improved LMI conditions are almost all of sufficiency, in
other words, there may no feasible solutions exist in some
cases, and naturally, the probability of infeasibility will be
increased while take the actuator failures into consideration.
Thus, new control strategy should be resorted to in those
situations.

The idea of using generalized sampled-data hold functions
instead of the conventional zero-order hold (ZOH) in control
systems was first proposed in [16] [21]. Several properties
and applications such as decentralized control have been
investigated in [17] [18] [19] [20]. However, the problems
studied in those papers were formulated as a two-boundary
point differential equation whose analytical solution is cum-
bersome. Here, the high-order sampled data hold function is
suggested since the problems can be formulated in finding
the coefficients of the HOH function which can transform to
a LMI problem.

In this paper, reliable static output feedback with HOH
sampled-data control strategy for uncertain continuous-time
linear time-invariant systems with convex polytopic uncer-
tainties is presented. The problem is converted to find the
generalized gain (coefficient) matrix firstly, and on account-
ing of using the properties of the null space of output matri-
ces, sufficient conditions for the reliable controller design
are given in terms of solutions to a set of linear matrix
inequalities.

This paper is organized as follows. SectionII presents
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a introduction about sampled-data control with high-order
and gives the problem under consideration and the useful
lemmas. In III, a reliable controller design method is pro-
posed. IV presents a illustrative example. Finally, Section V
concludes the paper.

Notation: The superscript T stands for matrix transposition
and the notation M−T denotes the transpose of the inverse
matrix of M . C⊥ denotes the matrix such that CC⊥ = 0.

II. PRELIMINARIES AND PROBLEM STATEMENTS

In this section, we introduce the high-order sampled data
control strategy first and give the considered problem in the
sequel.

A. High-order Sample-data Control

Consider the following linear time invariant continuous-time
systems

x(t) = Ax(t) + Bu(t) (1)

where x ∈ Rn is the system state vector, u(t) ∈ Rm is the
control input. Then, a sampled-data controller with H-order
hold function can be represented as

uj(t + κT )

= h1
j (t)x1[κT ] + h2

j (t)x2[κT ]+, ..., hn
j (t)xn[κT ]

j = 1, ..., m, 0 ≤ t < T, κ = 0, 1, 2, ...,

(2)

where




h1
j (t) = (k1

j0
+ k1

j1
t+, ...,+k1

jH
tH)

h2
j (t) = (k2

j0
+ k2

j1
t+, ...,+k2

jH
tH)

...
hn

j (t) = (kn
j0

+ kn
j1

t+, ...,+kn
jH

tH)

(3)

then the (2) can be denoted by the following compact form

uj(t) = [1, t, ..., tH ]Kjx[k] (4)

where Kj ∈ R(H+1)×n

Kj :=




Kj0

Kj1
...

KjH


 =




k1
j0

k2
j0

· · · kn
j0

k1
j1

k2
j1

· · · kn
j1

...
...

. . .
...

k1
jH

k2
jH

· · · kn
jH


 (5)

It is known that the state of the system (1) under the control

law
m∑

j=1

uj(t) is given by:

x(t) = e(t−λT )Ax(λT ) +
∫ t

kT
e(t−τ)ABu(τ)dτ,

λT ≤ t < (λ + 1)T, λ = 0, 1, 2, ...,
(6)

By substituting t = (λ + 1)T in (6), the continuous time
system (1) can be represented in the following discretized
form

x((λ+1)T ) = Adx(λT )+BdKx(λT ) λ = 0, 1, 2, ...,
(7)

where

Ad = DA(A, T, H) = eAT (8)

Bd = DB(B, T,H) =
[

Bd0 Bd1 · · · BdH

]





Bd0 :=
∫ T

0
e(T−τ)ABdτ

= (eAT − I)A−1B

Bd1 :=
∫ T

0
e(T−τ)AtBdτ

= 2(eAT − I)A−2B − TA−1B
...

BdH
:=

∫ T

0
e(T−τ)AtHBdτ

= H(eAT − I)A−(H+1)B −
H∑

i=1

T iA−(H+1−i)

(9)

K =
[

KT
0 KT

1 · · · KT
H

]T

Ki =
[

KT
1i

KT
2i

· · · KT
mi

]T for i = 0, ..., H
(10)

B. Problem Description

Consider the following continuous-time system

ẋ(t) = Acx(t) + Bc
1d(t) + Bcu(t)

z(t) = Cc
1x(t) + Dc

12u(t)
y(t) = Ccx(t)

(11)

where x ∈ Rn is the system state vector, u(t) ∈ Rm is the
control input, d(t) ∈ Rp is the disturbance, y ∈ Rr is the
measurement output, z(t) ∈ Rq is the controlled output. The
matrices Ac, Bc

1, B
c, Cc

1, D
c
12 and Cc are appropriately di-

mensioned with partially unknown parameters. They belong
to the following uncertainty polytope:

Ω =
{

(Ac, Bc
1, B

c, Cc
1, D

c
12, C

c)

(Ac, Bc
1, B

c, Cc
1, D

c
12, C

c)

=
N∑

i=1

αi(Ac
i , B

c
1i, B

c
i , C

c
1i, D

c
12i, C

c
i ), αi ≥ 0,

N∑
i=1

αi = 1
}

(12)
Without loss of generality, the output matrices Cc

i , 1 ≤ i ≤
N are assumed to be of full row rank, and let invertible
matrices Ti, 1 ≤ i ≤ N , such that

Cc
i Ti =

[
I 0

]
for 1 ≤ i ≤ N (13)

Remark 1. For each Cc
i , the corresponding Ti generally

is not unique. A special Ti can be obtained by following
formula,
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Ti =
[

CcT
i (Cc

i CcT
i )−1 Cc⊥

i

]
(14)

To investigate the reliable control problem in the event of
actuator faults, the fault model must be established first.
Let uF (t) represent the control input vector after failures
have occurred. Then the following actuator fault model [4]
is adopted for this study:

uF (t) = wLu(t), L = 1, 2, ..., lp, lp ≤ 2m − 1 (15)

where the scaling factor wL(L = 0, 1, ..., lp, lp ≤ 2m − 1)
satisfies

wL ∈ Ωf
∆= {wL = diag [wL1, wL2, ..., wLm]

wLj = 0 or 1, j = 1, 2, ...m} .
(16)

Obviously, when wLj = 0 for 1 ≤ j ≤ m, the fault model
(15) corresponds to the case of jth actuator outage. When
wLj = 1, it corresponds to the case of no fault in the jth
actuator. Without loss of generality, we assume that w0 =I,
namely, L = 0 corresponds to the normal control input
vector uF (t) = u(t).

The objective of this paper is to design a sampled-data static
output feedback controller with H-order hold function for
the uncertain systems (11)

u(t + κT ) = [1, t, ..., tH ]Kx[κT ]

0 < t < T, κ = 0, 1, 2, ...
(17)

where the gain matrix K is defined by (10), such that the
resulting closed-loop system is not only robust stable with
respect to the uncertainties but also reliable with respect to
the actuator failures.

The following preliminary lemmas will be used in this
sequel.

Lemma 1. [25] Let ξ ∈ Rn, P = PT ∈ Rn×n, and
H ∈ Rm×n such that rank(H) = r < n. The following
statements are equivalent:

1) ξTPξ < 0, for all ξ 6= 0, Hξ = 0;

2)∃X ∈ Rn×m such that P + XH+HTX T < 0.

This lemma is known as Finsler’s Lemma.

Lemma 2. [23] If the symmetric matrices Vij ∈ Rn×n are
such that

Vij + Vji ≤ 0, 1 ≤ j < i ≤ N
N∑

i=1

(Vij + Vji) ≤ 0, j = 1, ..., N
(18)

then the following inequlity

N∑

i=1

N∑

j=1

αiαjVij ≤ 0 ∀α ∈ Λ (19)

holds, where Λ is the simplex

Λ :=

{
α ∈ RN : αi ≥ 0,

N∑

i=1

αi = 1

}
(20)

III. MAIN RESULTS

In this section, we assume the system (11) is disturbance free
(i.e.d(t) = 0). Then the discretized uncertain system can
be represented in the following form without consideration
about the controlled output z(t)

x(κ + 1) = Ax(κ) + Bu(κ)
y(κ) = Cx(κ) (21)

The matrices A,B, C are belong to the following discretized
uncertainty polytope:

Ω =
{

(A,B, C)(A,B, C) =
N∑

i=1

αi

(Ai, Bi, Ci), αi ≥ 0,
N∑

i=1

αi = 1
} (22)

where 



Ai = DA(A, T, H)
Bi = DA(B, T,H)
Ci = Cc

i

(23)

To make the expression more concise, we denote that

BLi = Bi

[
wL wL ... wL

]

then BLi can be viewed as the generalized input matrix with
actuator faults. The following theorem presents a reliable
static output feedback controller design for the uncertain
system (11).

Theorem 1. If there exist symmetric matrices PLi ∈
Rn×n, VLij ∈ R2n×2n and matrices GLi ∈ Rn×n, Y ∈
R(H+1)m×n 1 ≤ i ≤ N , 1 ≤ L ≤ lp, with the following
structure

GLi =
[

G11 0
GLi

21 GLi
22

]

VLij =
[

V Lij
11 V Lij

12

(V Lij
12 )T V Lij

22

]

Y =
[

Y1 0
]

(24)

satisfying the following LMIs,



−TiGLi −GT

LiT
T
i ∗ ∗

AiGLi + BLjY −PLi + V 11
Lij ∗

PLj (V 12
ij )T −PLj + V 22

Lij


 < 0

1 ≤ i, j ≤ N,
(25)
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Vij + Vji ≤ 0, 1 ≤ j < i ≤ N

N∑
i=1

(Vij + Vji) ≤ 0, j = 1, ..., N
(26)

where Ti, i = 1, ..., N , satisfying (34) and are nonsingular,
then the system (11) is said to be reliable stable with the
H-order sampled-data hold controller (17), where

K = Y1G
−1
11 (27)

Proof. From the structure of L, Si and (30), (27), we can
obtain

Y =
[

KG11 0
]

=
[

K 0
] [

G11 0
GLi

21 GLi
22

]

= KCiTiGLi

(28)

Substituting Y for KCiTiGi in (25), then the (25) can be
rewritten as follows:




−TiGLi −GT
LiT

T

AiTiGLi + BLjKCiTiGLi

PLj

∗ ∗
−PLi + V 11

Lij ∗
(V 12

Lij)
T −PLj + V 22

Lij


 < 0

1 ≤ i, j ≤ N,
(29)

Let SLi = (TiGLi)−1 and pre- and post-multiplying (29) by



ST
Li 0 0
0 I 0
0 0 I


 (30)

and its transpose, it follows that




−SLi − ST
Li ∗ ∗

Ai + BLjKCi −PLi + V 11
Lij ∗

PLjSLi (V 12
Lij)

T −PLj + V 22
Lij


 < 0

1 ≤ i, j ≤ N,
(31)

Multiplying (31) by αiαj and summing them, then we have




−SL −S T
L ∗ ∗

Ad + BdLKCi −PL ∗
PLSL 0 −PL




+




0
0
0

∗ ∗

VL


 < 0

(32)
where

SL =
N∑

i=1

αiSLi

PL =
N∑

i=1

αiPLi

VL =
N∑

i=1

N∑
j=1

αiαj

[
V 11

Lij V 12
Lij

(V 12
Lij)

T V 22
Lij

]
=

N∑
i=1

N∑
j=1

αiαjVij

(33)
let WL = S −1

L and pre- and post-multiply (32) by



W T
L 0 0
0 I 0
0 0 I


 (34)

and its transpose, then we can obtain




−WL −W T
L ∗ ∗

(Ad + BdLKCi)WL −PL ∗
PL 0 −PL




+




0
0
0

∗ ∗

VL


 < 0

(35)
Applying Lemma 2 to the inequalities (26), it follows
thatVL < 0, from (35), then we have




−WL −W T
L ∗ ∗

(Ad + BdLKCi)WL −PL ∗
PL 0 −PL


 < 0 (36)

which is equivalent to
[

PL −WL −W T
L ∗

(Ad + BdLKCi)WL −PL

]
< 0 (37)

Denoting that

P =
[

PL 0
0 −PL

]

H =
[ −I (A + BLKC )

]

ξ =
[

xT (κ + 1) xT (κ)
]T

X =
[

W T
L 0

]T

(38)

then by applying Finsler’s Lemma to (37), we can conclude
that

ξT

[
PL 0
0 −PL

]
ξ < 0 (39)

we can conclude that the system (21) is stable not only with
respect to uncertainties but also with respect to the actuator
failures from the lyapunov stability theory. Moreover,
from (25) , we can deduce that the matrices TiGLi are
positive-definite (not necessarily symmetric) which implies
that the matrices GLi, and implicity G11, are invertible
because Ti are invertible. Then Y1 = KG11 admits the

4347



solution (27). Thus, the proof is complete.

Remark 2. Theorem 1 given a sufficient condition for
the design of sampled-data controller with H-order hold
function, if H = 0, then the controller is of the conventional
zero-order hold controller. Compared with HOH, the ZOH
controller is suggested if the LMIs (25)(26) is feasible.

IV. Numerical Example

To illustrate the effectiveness of our results, a numerical
example and its simulation results are given in this section.

Example 1. Consider a uncertain system which belongs to
the 2-polytopic convex polyhedron in the form of (11) with
d(t) = 0 and

Ac
1 =

[
0.4994 1.5831
−0.0841 −0.4500

]

Bc
1 =

[
1.2608 1.2934
0.9794 −0.3834

]
Cc

1=
[

0.6603 1.6629
]

Ac
2 =

[
0.9134 −0.6648
−0.0681 −1.9108

]

Bc
2 =

[
0.5673 1.7751
−0.8611 0.3467

]
Cc

2=
[

1.7925 0.8523
]

(40)
With conventional ZOH sampled-data control and sampling
period T = 1s, the discretized model are:

A0
1=

[
1.5667 1.6477
−0.0875 0.5785

]
C0

1=Ca
1

B0
1 = B10 =

[
2.3971 1.3334
0.7145 −0.3567

]

A0
2=

[
2.5195 −0.5557
−0.0569 0.1589

]
C0

2=Ca
2

B0
2 = B20 =

[
1.1736 2.8186
−0.4039 0.1050

]

(41)

It can be checked that there exist a robust controller to
stabilize the (40) via LMIs in Theorem 1 while no actuator
failures take into consideration. Here, we assume that the 2th
actuator is prone to be failed, which means that

w1 =
[

1 0
0 1

]
w2 =

[
1 0
0 0

]
(42)

Considering the fault case with the above discrete model, the
LMIs of Theorem 1 are infeasible. Now we resort to HOH
sampled-data control strategy, and letting H = 1, then the
discretized model can be represented as

A1
1 = A0

1 A1
2 = A0

2

B1
1 =

[
B10 B11

]
B1

2 =
[

B20 B21

]
C1

1 = C0
1 C1

2 = C0
2

(43)

where

Fig. 1. Evolution curves of the vertex (A1, B1, C1)

Fig. 2. Evolution curves of the vertex (A2, B2, C2)

B11=
[

1.0049 0.6583
0.4008 −0.1824

]

B21=
[

0.4773 1.2032
−0.2563 0.0836

] (44)

Now, the LMIs of Theorem 1 is feasible, and one of solutions
can be obtained as

K =




−3.0472
−0.7922
5.2180
1.6383


 (45)

then the sampled data controller can be described as

u(t + κT ) =
{

(−3.0472 + 5.2180t)y(κT )
(−0.7922 + 1.6383t)y(κT )

0 ≤ t < T, κ = 0, 1, 2, ....
(46)

To verify the effectiveness of the proposed method, the
simulation are given with the following initial condition
xT (0) = [5,−5] and it is assume that the 2th actuator failed
at 2s. Fig.1 and Fig.2 show the simulation results.
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Fig.1 is the responses curves of the system’ states and control
inputs with the vertex (A1, B1, C1). Fig.2 is the responses
curves of the uncertain system’ states and control inputs with
the vertex (A2, B2, C2). It can be observed from the Fig.1
and Fig.2 that the 1-order sampled-data hold controller (46)
renders the system (40) not only robust stable with respect
to the polytopic uncertainties but also reliable stable with
respect to the actuator failures.

V. CONCLUSIONS

In this paper, a reliable static output feedback controller
design method for uncertain systems have been proposed
based on the high-order sampled-data control strategy. The
sampled-data control with HOH was introduced firstly, then,
a sufficient condition for the controller design was given
in terms of solutions to a set of linear matrix inequalities.
A numerical example has shown the effectiveness of the
proposed method. The further study will extend the method
to H2 control to take the intersample ripple effect into
account.
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