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Abstract— In this paper, we address the problem of con-
trolling a nonlinear system in the presence of parametric
uncertainties. The adaptive controller proposed includes a a
nominal controller which is based on gain-scheduling and an
adaptive component where adjustable parameters are self-tuned
in order to accommodate the system uncertainties. The resulting
closed-loop system is shown to have globally bounded solutions
when the command signals that need to be tracked vary
sufficiently slowly. The reported stability results are validated
using nonlinear flight simulation models of a high performance
aircraft.

I. INTRODUCTION

One of the popular methods of nonlinear control design
is the gain-scheduling [1], [2] and it has been used in a
wide range of applications including flight control [3], [4],
process control [5], and wind-turbine control [6]. The main
idea behind the gain-scheduling approach is to decompose
the nonlinear control design task into a family of linear
control design methods and schedule this family of linear
controllers based on the command signal so as to ensure that
the original nonlinear system follows the desired dynamics.
When the gain-scheduled variable is slowly varying, stability
results of almost time-invariant systems can be called upon to
establish stability of the underlying closed-loop linear time-
varying system and therefore to assess stability properties of
the original nonlinear system [1], [2].

Often, the nonlinear control problem discussed above is
faced with yet another difficulty, which is the presence of
uncertainties due to modeling errors, unknown aerodynam-
ics, as well as anomalies in the control inputs. Actuators
are often affected by a number of factors including control
saturation, degradation of control effectiveness, or control
failures. It is therefore important that a gain-scheduled con-
troller designed using the procedures described in [1], [2] is
able to adequately cope with any or all of the uncertainties
mentioned above. This motivates the problem considered in
this paper. It is shown that by augmenting a gain-scheduling
controller with an adaptive controller, the desired behavior of
the original nonlinear closed-loop dynamics can be achieved,
if the gain-scheduled variable changes sufficiently slowly.
In [7], adaptive gain-scheduling controllers are proposed
for HVDC systems, where in simulations it is shown that
they result in a better performance. In this paper, a formal
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description to construct an adaptive gain-scheduled controller
is provided as well as stability analysis for nonlinear flight
dynamics.

II. PROBLEM STATEMENT

We consider a nonlinear plant of the form

Ẋ = F(X)+G(X)U. (1)

where X ∈ℜn is the system state and U ∈ℜm represents the
control input. It is assumed that the system can be written
as

Ẋp = f (Xp, Xg)+g(Xp, Xg)U1

Ẋg = h(Xg, U2)
(2)

where the system state X is partitioned into two vector
components, Xp ∈ ℜnp and Xg ∈ ℜng , so that the former
represents the fast changing controlled output, relative to
the slow state component Xg. The latter will become the
gain-scheduled variable. It is also assumed that sufficient
information is available about the nonlinearity h so that an
outer-loop controller, U2 = hc(Xg, Xgc), can be chosen so that
Xg(t) tracks Xgc(t), its desired command signal, and satisfies
the following assumption:

Assumption 1. Xgc(t) is continuously differentiable and
slowly varying, i.e.∥∥Ẋgc(t)

∥∥< ε1, ∀t ≥ t0. (3)

The problem is to design U1 in (2) such that the controller
ensures that the closed-loop system has globally bounded
solutions in the presence of parametric uncertainties in f and
g. In order to control the nonlinear system in (2) for arbitrary
initial conditions and a large family of command signals, we
consider a family of operating points in the vicinity of Xgc(t)
as

σg =
{

Xg,1, Xg,2, · · · , Xg,k
}

. (4)

The dimension of Xg,i is ng and its rth component is Xgr ,i.

Definition 1. Xg,i and Xg, j are separated operating points if
Xgr ,i 6= Xgr , j for 1≤ i, j ≤ k and 1≤ r ≤ ng.

In Figure 1, Xg,1 and Xg,2 are not separated operating
points since both have the same velocity, but Xg,1 and Xg,5
are separated operating points.

Assumption 2. There exist k operating points to satisfy the
following condition for all separated operating points Xg,i
and Xg, j

max
1≤i≤k

[
min

1≤ j≤k

∥∥Xg,i−Xg, j
∥∥]< ε2. (5)
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This assumption implies that over the operating envelope, a
large number of operating points are required so that adjacent
operating points are close enough. For each frozen operating
point Xg,i, we can obtain a family of equilibrium states and
inputs

σp =
{

Xp(Xg,1), Xp(Xg,2), · · · , Xp(Xg,k)
}

(6)

σu =
{

U1(Xg,1), U1(Xg,2), · · · , U1(Xg,k)
}

(7)

That is,

f (Xp(Xg,i), Xg,i)+g(Xp(Xg,i), Xg,i)U1(Xg,i) = 0.

and σg, σp, and σu are tabulated off-line. By using a
linear interpolation in σp and σu, we can construct desired
trajectories of the state and the input (X∗p(t), U∗1 (t))

X∗p(t) = Xp(Xg,i)+Mi(Xg(t)−Xg,i)

U∗1 (t) = U1(Xg,i)+Ni(Xg(t)−Xg,i)
(8)

where Mi and Ni are constant matrices which map Xg into
Xp and U respectively. Using these trajectories, we linearize
the plant in (1) about (Xg(t), X∗p(t), U∗1 (t)) as

ẋp = Ap(t)xp +Bp(t)u+ εx(t) (9)

where xp = Xp−X∗p(t), u = U1−U∗1 (t) and

Ap(t) =
∂ f
∂Xp

∣∣∣∣
(X∗p (t),Xg(t))

+
∂g

∂Xp

∣∣∣∣
(X∗p (t),Xg(t))

U∗1 (t)

Bp(t) = g(X∗p(t), Xg(t))

εx(t)= f (X∗p(t),Xg(t))+g(X∗p(t),Xg(t))U∗1 (t)−Ẋ∗p(t)+O(x2
p).

The following proposition quantifies allowable slow varia-
tions in Xg(t), which is the gain-scheduling variable.

Proposition 1. Under Assumptions 1 and 2,

‖εx(t)‖ ≤ aε1 +bε2 (10)

where a and b are positive constants.

Proof. Due to space limitations, the proof is omitted.

Remark 1. By making ε1 and ε2 suitably small, εx can be
made arbitrarily small. In other words, if the gain-scheduling
variable is varying sufficiently slowly, and operating points
are sufficiently close to each other, εx can be made arbitrarily

Fig. 1. A schematic of operating points the Xg space(k=12)

small.

The problem that we consider in this paper is the control
of the system in (9) subject to Assumptions 1 and 2 in the
presence of uncertainties introduced due to control anoma-
lies. In particular, we assume that the nonlinear dynamics in
(2) is of the form

Ẋp = f (Xp, Xg)+g(Xp, Xg)ΛU1. (11)

where Λ is an unknown diagonal matrix with nonzero
diagonal entries, and represents a loss of effectiveness in
the control input. By linearizing the nonlinear dynamics in
(11) about the same trajectory in (8), we get

ẋp = Apλ (t)xp +Bp(t)Λ(u+d(t))+ εx(t) (12)

where

Apλ (t) =
∂ f
∂Xp

∣∣∣∣
(X∗p (t),Xg(t))

+
∂g

∂Xp

∣∣∣∣
(X∗p (t),Xg(t))

ΛU∗1 (t)

d(t) = (I−Λ
−1)U∗1 (t)

and d(t) is the input disturbance due to Λ. Therefore, when
there is no uncertainty in the control input, i.e. Λ = I,
d(t) becomes zero. The problem is to design an adaptive
augmentation of a baseline gain-scheduling controller for the
plant in (12) under Assumptions 1 and 2 such that closed-
loop stability and tracking is maintained in the presence of
the system uncertainties.

III. ADAPTIVE CONTROLLER

A. Reference Model and Baseline Controller

In order to achieve desired closed-loop dynamics in the
presence of uncertainties, we propose to augment a baseline
gains-scheduling controller with a direct adaptive compo-
nent. For the purpose of the nominal controller design, we
utilize the principles of gain-scheduling, similar to those in
[1], [2], and develop a time-varying controller, under the
premise that no uncertainties are present. The details of the
gain-scheduled controller are given below.

We linearize the nonlinear plant in (2), where no uncer-
tainties are present, at every frozen equilibrium point and
obtain the linearized plant as

ẋp = Ap,ixp +Bp,iui (13)

where

Ap,i =
∂ f
∂Xp

∣∣∣∣
(Xp(Xg,i),Xg,i)

+
∂g

∂Xp

∣∣∣∣
(Xp(Xg,i),Xg,i)

U1(Xg,i)

Bp,i = g(Xp(Xg,i), Xg,i).

The nominal controller at ith equilibrium point is chosen as

unom,i = K>i xp (14)

The feedback gain matrix, Ki, is found by the LQR method
[8] which provides suitable closed-loop responses of (13)
combined with (14). The reference model at each equilibrium
point is defined as

ẋm = Am,ixm (15)
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where Am,i = Ap,i + Bp,iK>i and Am,i is Hurwitz. Since the
nominal controller is designed based on several fixed equi-
librium points, the controller gain needs to be interpolated
or scheduled as

unom(t) = K(t)>xp (16)

where K(t) = Ki + Li(Xg(t)− Xg,i) and Li is a constant
matrix which represents a linear mapping from Xg into K.
Correspondingly, we choose a time-varying reference model
that the plant in (12) is required to track as

ẋm = Am(t)xm (17)

where Am(t) = Ap(t)+ Bp(t)K(t)>. It is straight forward to
show that if the control input in (9) is chosen as

u(t) = unom(t) (18)

under Assumptions 1 and 2, the closed-loop nonlinear system
is globally bounded [14].

B. Adaptive Controller Design

In order to maintain tracking performance in the presence
of uncertainties, we augment the nominal controller with
an adaptive component. The total control input u in (12)
is chosen as

u = unom +uad (19)

The adaptive control input, uad , is designed as

uad = θ
>

ω (20)

where θ = [θ>x θ>d ]>, ω = [x>p 11×3]>. It is assumed
that an ideal control parameter, θ ∗(t), exists such that

Apλ(t)+Bp(t)Λ(K(t)+θ
∗
x(t))

>=Am(t),θ ∗>d (t)=−d(t). (21)

We define the tracking error to be e = x−xm and the adaptive
parameter error to be θ̃ = θ−θ ∗. Subtracting (17) from (12),
the tracking error dynamics is obtained as

ė = Am(t)e+Bp(t)Λθ̃
>

ω + εx(t). (22)

The adaptive law is designed as in [9]

θ̇ =−Γωe>PBp(t)sign(Λ)−θ

(
1− ‖θ‖

θ ∗max

)2

f (θ) (23)

where
f (θ) =

{
1 if ‖θ‖> θ ∗max
0 otherwise.

P = P> > 0 is the solution of A>mP+PAm =−Q for a given
Q = Q> > 0, Γ > 0 is a diagonal matrix which represents
adaptation rate, sign(Λ) = diag(sign(λ1), · · · ,sign(λm1)),
‖θ ∗‖ ≤ θ ∗max, θ ∗max is a known constant.

IV. STABILITY ANALYSIS

Since the adaptive control basically attempts to enforce the
unknown plant to track a given reference model, stability of
the reference model should be guaranteed first.

Assumption 3. Given Q = Q> > 0, there exist P(t) =
P>(t) > 0 and ε3 > 0 such that

A>m(t)P(t)+P(t)Am(t) =−Q,
∥∥Ṗ
∥∥≤ ε3 < q0 (24)

where q0 = mineig(Q).

The above assumption implies that P(t), and Am(t), are
slowly varying. This, in turn, implies that time-derivative of
the positive definite function

W = x>mP(t)xm (25)

along (17) is given by

Ẇ = x>m(−Q+ Ṗ)xm ≤−x>m(q0− ε3)xm < 0. (26)

and hence the origin is the asymptotically stable equilibrium
of (17).

Remark 2. Assumption 3 is introduced primarily for the
purpose of accommodating a linear time-varying reference
model as in (17). Such a reference model may often be
desired in an application in order to accommodate different
transient characteristics at different points in the operating
envelope.

We now prove the main result of the paper.

Theorem 1. Under Assumptions 1, 2, and 3, the plant in
(12) with the controller in (19) and the adaptive law in (23),
has globally bounded solutions for all t ≥ t0.

Proof. A Lyapunov candidate function is chosen as

V = e>Pe+ trace
(

θ̃
>

Γ
−1

θ̃ |Λ|
)

(27)

where a time-derivative is given by

V̇ =− e>
(
Q− Ṗ

)
e+2e>Pεx−2trace

(
θ̃
>

Γ
−1

θ̇
∗
)

−2trace

[
θ̃
>

Γ
−1

θ |Λ|
(

1− ‖θ‖
θ ∗max

)2

f (θ)

]
(28)

where |Λ|= sign(Λ)Λ.
Two cases are considered, (i)‖θ‖≤ θ ∗max and (ii)‖θ‖≥ θ ∗max.
Case (i): ‖θ‖ ≤ θ ∗max
‖θ‖ ≤ θ ∗max implies that ‖θ̃‖ ≤ 2θ ∗max and f (θ) = 0 from
which we obtain

V̇ =−e>
(
Q− Ṗ

)
e+2e>Pεx−2trace

(
θ̃
>

Γ
−1

θ̇
∗
)

. (29)

By taking bounds on the right-hand side of (29), we have

V̇ ≤−(qo− ε1)‖e‖2 +2‖P‖‖εx‖‖e‖+2
‖θ̇ ∗‖
γmin
‖θ̃‖ (30)

where γmax(min) is the maximum(minimum) of the diagonal
elements of Γ. Hence, V̇ ≤ 0 outside of the compact set

D1 =

{(
e, θ̃
)∣∣∣(‖e‖−‖P‖‖εx‖

qo−ε1

)2

≤k1,‖θ̃‖ ≤ 2θ
∗
max

}
(31)

where

k1 =
4‖θ̇ ∗‖θ ∗max

γmin(qo− ε1)
+
‖P‖2‖εx‖2

(qo− ε1)2 .

3418



This implies (x(t), θ(t)) are globally bounded.
Case (ii): ‖θ‖ ≥ θ ∗max
Time derivative of V in (27) becomes

V̇ =− e>
(
Q− Ṗ

)
e+2e>Pεx−2trace

(
θ̃
>

Γ
−1

θ̇
∗
)

−2trace
(

θ̃
>

Γ
−1

θ |Λ|
)(

1− ‖θ‖
θ ∗max

)2 (32)

From (32), we have the following inequality as

V̇ ≤−(qo− ε3)‖e‖2 +2‖P‖‖εx‖‖e‖+2
‖θ̇ ∗‖
γmin
‖θ̃‖

−2
λmin

γmax
‖θ̃‖

(
‖θ̃‖− λmaxγmax

λminγmin
‖θ ∗‖

)(
1− ‖θ‖

θ ∗max

)2 (33)

where λmax(min) is the maximum(minimum) of the diagonal
elements of |Λ|. We define a constant a0 and K by

a0 =
λmaxγmax

λminγmin
, K = 1+a0 + ε4 ε4 > 0. (34)

We consider two sub-cases as follows.
Sub-case (a): θ ∗max < ‖θ‖ ≤ Kθ ∗max
For a given condition on ‖θ‖, we have the following in-
equalities while using K−1 = a0 + ε4

‖θ̃‖ ≤ (K +1)θ ∗max,

(
1− ‖θ‖

θ ∗max

)2

≤ (a0 + ε4)2

‖θ̃‖− λmaxγmax

λminγmin
‖θ ∗‖ ≤ (K +1+a0)θ ∗max.

(35)

Consequently,

V̇ ≤−(qo− ε3)‖e‖2 +2‖P‖‖εx‖‖e‖+2
‖θ̇ ∗‖
γmin
‖θ̃‖

+2
λmin

γmax
(K +1)(K +1+a0)(a0 + ε4)2

θ
∗2
max

(36)

Therefore, V̇ ≤ 0 outside of the compact set

D2=

{
(e, θ̃)

∣∣∣∣(‖e‖−‖P‖‖εx‖
qo−ε3

)2

≤k2,‖θ̃‖≤(K+1)θ ∗max

}
(37)

where

k2 =
2(K +1)‖θ̇ ∗‖θ ∗max

γmin(qo− ε3)
+
‖P‖2‖εx‖2

(qo− ε3)2

+
2λmin(K +1)(K +1+a0)(a0 + ε4)2θ ∗2max

γmax(qo− ε3)
.

Since k2 > k1, we note that D2 ⊃ D1.
Sub-case (b): ‖θ‖> Kθ ∗max
In this case, we get:

‖θ̃‖ ≥ (a0 + ε4)θ ∗max,

(
1− ‖θ‖

θ ∗max

)2

≥ (a0 + ε4)2,

‖θ̃‖− λmaxγmax

λminγmin
‖θ ∗‖ ≥ ‖θ̃‖−a0θ

∗
max ≥

ε4

a0 + ε4
‖θ̃‖.

(38)

Using (33), we obtain:

V̇ ≤−(qo− ε3)‖e‖2 +2‖P‖‖εx‖‖e‖

−2
λmin

γmax
ε4(a0 + ε4)‖θ̃‖2 +2

‖θ̇ ∗‖
γmin
‖θ̃‖.

(39)

Hence, outside of the compact set

D3 =

{
(e, θ̃)

∣∣∣ (‖e‖− ‖P‖‖εx‖
qo− ε3

)2

+
k3

qo− ε3

(
‖θ̃‖− ‖θ̇

∗‖
γmink3

)2

≤ k4

} (40)

with

k3 = 2
λmin

γmax
ε4(a0 + ε4), k4 =

‖P‖2‖εx‖2

(qo− ε3)2 +
‖θ̇ ∗‖2

γ2
mink3(qo− ε3)

all signals are bounded. We define a compact set D to be
D = D2∪D3. Then, outside of D, V̇ ≤ 0 and this guarantees
global boundedness of (e, θ̃), which implies of boundedness
of xp and θ . This, in turn, proves that the control input u is
globally bounded.

Remark 3. The above proof establishes that outside the
compact set, V̇ < 0, which in turn implies that all trajectories
converge to the compact set. This in turn implies that the
tracking error is of the order of the variations in the gain-
scheduling variable.

V. SIMULATIONS

In this section, we demonstrate efficiency of the proposed
controller using a nonlinear 6-DOF high performance aircraft
simulation environment [10]. Aerodynamic model of the
NASA X-15 discussed in [11] is employed to validate the
proposed adaptive controller. Dynamics of the NASA X-15
aircraft can be cast into the form of (2)

Xp = [α β p q r]>, U1 = [δa δe2 δr]>

Xg = [V h]>, U2 = [δe1 δT ]>.

Right and left elevons are employed as pitch (elevator) and
roll (aileron) devices by

δe =
1
2
(
δLe f t +δRight

)
, δa =

1
2
(
δLe f t −δRight

)
. (41)

A. Nominal Controller Design

The nominal controller consists of two controllers: outer-
loop and inner-inner loop. The outer-loop controller is used
to adjust V and h, and two fixed PID (with approximated
derivative) controllers to ensure that V and h track the
desired commanded signals Vcmd and hcmd , respectively.
These are designed using errors between the actual and
commanded signals. The PID gains are tuned based on
Ziegler-Nichols tunning rule [12]. 44 operating points are
selected for nominal (inner-loop) controller design as shown
in Figure 2 in (V, h) space. Intervals between the operating
points are selected such that linearization error, εx(t), in
(12) is sufficiently small. During the first 160 seconds, the
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Fig. 2. Operating points on V -h diagram and command Xgc .

(a) Open-loop plants, Ap,i

(b) Reference models, Am,i

Fig. 3. Poles of the open-loop plants and the reference models

command, Xgc , is given as shown in Figure 2. The initial
altitude is 50,000ft and it increases up to 100,000ft, while
the velocity increases by more than 4,500fps (Mach 5).
Green circles on the command line in Figure 2 represent
way-points for every 10s. By linearizing the nonlinear plant
in (2), we obtain Ap,i and Bp,i, and design the inner loop
nominal controller for each operating points. Figure 3(a)
shows pole location of the open-loop system at three different
operating points: (2,000fps, 40,000ft), (5,000fps, 60,000ft),
and (5,000fps, 120,000ft). One can see that characteristics
of the plant change significantly depending on the operating
points. This observation justifies the use of a gain-scheduling

(a) Velocity

(b) Altitude

Fig. 4. Velocity and altitude profile in the presence of control failure

controller. In Figure 3(b), poles of the reference model are
shown for the same three operating points. As seen in Figure
3(b), poles of the reference models at different operating
points are located close to each other, which ensures that
Am(t) is slowly varying. This, in turn, implies that P(t) is
slowly varying. Thus, Assumption 3 holds.

B. Simulation Results

The control failure Λ = diag([1 0.8 1]) is introduce at 30s.
This failure implies 20% loss of the right flap effectiveness.
The adaptive controller is placed in the outer loop of the
nominal controller where the adaptation rate Γ is chosen
based on the heuristic method from [13]. In practice, the
NASA X-15 aircraft model has input saturation limits. We
included these input constraints in the simulation studies.
Actuator limits for the elevator, aileron,and rudder surfaces
were set to: ±30, ±30, and ±15 degrees, correspondingly.

Figure 4shows simulation results, that were obtained using
the proposed controller. It can be seen that the adaptive
controller ensures satisfactory command following while
the nominal controller fails to stabilize the plant. Figure 5
shows the closed-loop system state variables which include
angle of attack (α), sideslip angle (β ), roll rate (p), pitch
rate (q), and yaw rate (r). When the control failure occurs
at 30s, the system becomes unstable with the nominal
controller whereas with the added adaptive controller, the
instability is removed and the desired tracking performance
is restored. For comparison purposes, the case where only
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(a) α

(b) β

(c) p

(d) q

(e) r
Fig. 5. State variables

the adaptive controller is used without the baseline gain-
scheduling controller is also simulated. Even though stability
is guaranteed in this case, it has undesirable oscillations
when the control failure occurs. This demonstrates that the
augmented adaptive controller inherits a better performance.
Control inputs are shown in Figure 6. With only the nominal
controller, the control inputs grow unbounded.

VI. CONCLUSIONS

In this paper, we proposed a systematic control design pro-
cedure for a class of nonlinear uncertain dynamic systems.
Our control architecture consisted of a nominal baseline-
controller and a direct adaptive model-following controller.
The adaptive law was derived based on the Lyapunov sta-
bility theory. We presented sufficient conditions for uniform
boundedness of the closed-loop dynamics. Nonlinear 6-DOF
flight dynamics of a hypersonic aircraft is employed to val-
idate stability, performance, and robustness of the proposed

(a) Elevator

(b) Aileron

(c) Rudder
Fig. 6. Control surfaces

robust adaptive flight controller.
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