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Abstract— The discrete multi-agent rendezvous problem we
consider in this paper is concerned with a specified set of
points in the plane, called “dwell-points,” and a set of mobile
autonomous agents with limited sensing range. Each agent is
initially positioned at some dwell-point, and is able to determine
its distances to dwell-points within sensing range, and also
the bearings of those dwell-points with respect to a local
reference of the agent. An agent can also determine if each
dwell-point within sensing range is occupied by at least one
agent. We do not, however, assume that an agent can count
the number of agents occupying a dwell-point. We say the
agents have “rendezvoused” if all the agents have moved to
a set of dwell-points all within sensing radius of each other.
The goal is to devise distributed motion strategies for each
agent which will cause all the agents to rendezvous in the
sense just defined, without any active communication among the
agents. We propose a distributed motion rule and use graphs
to characterize a class of dwell-points in the plane for which
rendezvous is guaranteed under the rule.

I. INTRODUCTION

Growing interest in cooperative control of large multi-
agent systems has led to a number of distributed algorithms
aimed at causing autonomous agents to perform various tasks
in the absence of a centralized control [1], [2], [3], [4], [5],
[6], [7], [8]. The aim of this paper is to study a discrete
version of the so-called “multi-agent rendezvous problem”
considered previously in [9], [10], [11] and elsewhere. The
version of the problem addressed in [10], [11] is concerned
with the collective behavior of a group of n > 1 mobile
autonomous agents, labelled 1 through n, which can all move
in the plane. Each agent is able to continuously track the
positions of all other agents currently within its “sensing
region” where by an agent’s sensing region is meant a
closed disk of positive radius r centered at the agent’s
current position. The multi-agent rendezvous problem is to
devise “local” control strategies, one for each agent, which
without any active communication between agents, cause all
members of the group to eventually rendezvous at single
unspecified location. In [11], a family of distributed strategies
was proposed which solved the multi-agent rendezvous prob-
lem by performing a sequence of “stop-and-go” maneuvers.
A stop-and-go maneuver takes place within a time interval
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consisting of two consecutive sub-intervals. The first, called
a sensing period, is an interval of fixed length during which
the agent is stationary. The second, called a maneuvering
period, is an interval of variable length during which the
agent moves from its current position to its next ‘way-point’
and again come to rest. Successive way-points for each agent
are chosen to be within rM units of each other where rM is a
pre-specified positive distance no larger than r. It is assumed
that there has been chosen for each agent i, a positive number
τMi , called a maneuver time, which is large enough so that
the required maneuver for agent i from any one way-point to
the next can be accomplished in at most τMi seconds. The
work in [10], [11] deal exclusively with devising high level
strategies which dictate when and where agents are to move.
Accordingly, these works use point models for agents. In this
context multiple agents may be positioned at a point in R2.
In addition, issues concerned with with how maneuvers are
actually carried out or with how vehicle collisions are to be
avoided are not addressed.

In this paper we will continue to use point models for
agents; however, in sharp contrast with [10], [11], we will
not assume that an agent’s next way-point can be just any
point within rM units of its prior way-point. Rather we will
assume that for each given possible way-point x of each
agent there are at most a finite number of candidate positions
which can serve as the agent’s next way-point, and these
points are all within rM units of x. These candidate way-
points will be referred to as the dwell-points of point x. We
assume that only dwell-points can be way-points, and that
for each given dwell-point x there is a finite set of dwell-
points N (x) within rM units of x. Thus if agent i’s current
way-point is at dwell-point x, the next way-point to which
agent i must move must be in the set N (x). We will assume
that x ∈ N (x), and that x ∈ N (y) for each y ∈ N (x).
Furthermore, if two dwell-points w and z are within sensing
range, then w ∈ N (z) and z ∈ N (w).

A point in R2 is said to be occupied if there is at least one
agent positioned at the point. An agent can determine which
dwell-points of its current way-point are occupied; however,
we do not assume the agent is able to count the number
of agents positioned at an occupied dwell-point. We say the
agents have rendezvoused if each agent is positioned such
that all the agents are within sensing radius of each other. The
discrete multi-agent rendezvous problem is to devise local
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control rules, one for each agent, which without any active
communication between agents, will cause all the agents to
rendezvous in the sense just defined, at an unspecified set of
points.

Our interest in formulating the discrete multi-agent prob-
lem is rooted in practical considerations that arise when the
environment in which the agents are situated is hostile. In
this case, it is not desirable for agents to be stationary at
arbitrary points in the plane. Moreover, there may be only
a finite and discrete set of points, i.e. where watchtowers
and protected areas are located, where the agents may dwell
when deciding on the next move. Also, since the agents
in our framework are not limited to being actual vehicles,
discrete rendezvous can also be regarded as a problem in
networking. For example, the agents may represent files or
packets moving from computer to computer over a network
of computers.

In this paper, we propose a family of stop-and-go strate-
gies, and use graphs to characterize a class of dwell-points
for which rendezvous is guaranteed under the proposed
strategies. The agent strategies we propose are mutually
synchronized in the sense that all depend on a common
clock. In Section II, we give the terms and definitions to be
used in the exposition that follows, and we propose a family
of distributed motion strategies for the agents. In Section
III, we give the graphical characterization of dwell-point
sets for which rendezvous is guaranteed under the proposed
strategies. We conclude with future work in Section IV.

II. OCCUPIED DWELL-POINT INDUCED MOTION RULES

Each maneuver takes place within a time interval that
consists of an interval during which the agent is stationary
followed by an interval during which the agent moves from
its current position to its next “way-point.” Successive way-
points for each agent are restricted to the set of dwell-points
of the agent’s current way-point. The real time axis can be
partitioned into a sequence of time intervals [0, t1], (t1, t2],
. . . , (tk−1, tk], . . .. For a positive integer k, the kth time
period denotes the time interval (tk−1, tk]. Each time interval
consists of a “sensing period” followed by a “maneuvering
period,” where each maneuvering period is of fixed length
τM , and τM > τMi for each agent i. The kth sensing
period denotes the time interval (tk−1, tk−τM ), and the kth
maneuvering period denotes the time interval [tk − τM , tk].

In the kth sensing period, each agent determines the
positions in its local coordinate system of the dwell-points
of its current way-point, and which of those dwell-points
are occupied. Each agent then computes its next way-point,
which is the dwell-point the agent is to move to by time
tk. The kth way-point of an agent is restricted to the set
of dwell-points of the agent’s current way-point. In the kth
maneuvering period, each agent moves to its kth way-point,
after which it comes to rest until the next maneuvering
period. Agent motions are synchronized in the sense that the
agents only move during the maneuvering period of each
time interval which are the same for all agents.

Let N (x) denote the set of dwell-points of agent i’s
(k − 1)th way-point x, and let W(x) denote the subset of
N (x) consisting of dwell-points which are within sensing
range of all occupied dwell-points in N (x). Agent i is
said to satisfy the inter-agent motion constraint during time
period k if its next way-point is restricted to the occupied
dwell-points of set W(x). Motivated by [11], we will only
be interested in strategies possessing the property whereby
if a pair of agents are within sensing range in sensing
period k, then the agents are also within sensing range
in all subsequent sensing periods. It is easy to see that
this property is possessed by any strategy satisfying the
following assumption:

Cooperation Assumption: During each maneuvering
period k, each agent restricts its motions to satisfy the
inter-agent motion constraint.

Let N (x) and W(x) be as defined above. Let O(x)
be the set of all dwell-points in W(x) − {x} which are
occupied. Consider the following rule for determining the
kth way-point of agent i:

1) If O(x) 6= ∅, then let the kth way-point of agent i be
any point in O(x)

2) If O(x) = ∅, then agent i does not move in the kth
maneuvering period.

In the following, we will refer to the above as the occupied
dwell-points induced motion rule. Obviously, the occupied
dwell-points induced rule satisfies the cooperation assump-
tion. In the sequel, we will give graphical conditions for
when rendezvous will occur under the occupied dwell-points
induced rule.

III. GRAPHICAL CHARACTERIZATIONS

In this section, we will use graphs to characterize dwell-
point configurations for which agents will rendezvous. We
begin with some terms and definitions.

For k ≥ 1, let G(k) denote the graph whose vertex set
V(k) corresponds to the set of points in the plane that are
occupied by one or more agents in the kth sensing period.
The edge set of G(k), denoted E(k), is the set of all (i, j)
where the point corresponding to j is a dwell-point of the
point corresponding to i. We say that G(k) is the graph
induced by the occupied dwell-points in the kth time period.
For vertex v of G(k), let N (v, k) denote the vertices adjacent
to v in G(k).

Suppose G(k) is connected, and let i and j be any pair
of agents. Since G(k) is connected, we have that in the kth
sensing period, there is a sequence of agents a1, . . . , an such
that i is within sensing range of a1, j is within sensing range
of an, and each agent ai, i < n, is within sensing range of
agent ai+1. Since the occupied dwell-points induced rule
satisfies the Cooperation Assumption, we have that if two
agents are within sensing range in the kth sensing period,
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then the two agents must also be within sensing range in the
(k +1)th sensing period. Therefore, in the (k +1)th sensing
period, agent i is within sensing range of a1, j is within
sensing range of an, and each agent ai, i < n, is within
sensing range of agent ai+1. If G(k + 1) is not connected,
then there must exist a pair of agents i and j for which the
above does not hold. We have just shown the following:

Property 1: If G(k) is connected, then G(k + 1) is also
connected.

Under the occupied dwell-points induced motion rule,
agents restrict their next way-points to be only occupied
dwell-points. An obvious consequence of this is that:

Property 2: Graph G(k + 1) is an induced subgraph of
G(k).

In the following sections, we will characterize some graphs
G(k) for which each G(k+i), i ≥ 1, is a proper subgraph of
G(k+ i−1) assuming the agents have not yet rendezvoused,
i.e. G(k + i− 1) is not a complete graph. For if such is the
case, then rendezvous will occur in a finite number of steps.

A. Acyclic Graphs

A graph is said to be acyclic if the graph does not contain
any cycles. It is easy to see that all subgraphs of an acyclic
graphs must also be acyclic. Hence, it follows directly from
Property 2 that:

Lemma 1: If G(k) is acyclic, then G(k+1) is also acyclic.

If the graph induced by the occupied dwell-points in
some time period is acyclic and not complete, then it is
easy to show that each occupied dwell-point corresponding
to a vertex of degree one will no longer be occupied in the
next sensing period. It is straightforward to show that:

Theorem 1: If G(1) is connected and G(k) is acyclic for
some k, then the agents will rendezvous.

Hence, rendezvous will always occur if the graph induced
by the occupied dwell-points in some time period is acyclic
and connected. In particular, consider the graph whose vertex
set corresponds to the set of dwell-points, and where two ver-
tices are adjacent when the corresponding dwell-points are
within sensing range. If this graph is acyclic, then rendezvous
of the agents is guaranteed regardless of which dwell-points
are initially occupied, so long as G(1) is connected.

B. Generalized Wheel Graphs

A cycle of length m is a graph whose vertices can be
ordered as c1, c2, . . . , cm, m ≥ 3, so that ci is adjacent to
cj just in case |i − j| = 1 or |i − j| = m − 1. A wheel
graph consists of a cycle of length three or more, and an
additional spoke vertex that is adjacent to each vertex of the
cycle. A wheel graph consisting of four vertices is also by

definition a complete graph, i.e. a graph whereby each vertex
is adjacent to all other vertices. We say a wheel graph is
proper if it has five or more vertices. It is easy to see that if
the occupied dwell-points induced graph of some time period
is a proper wheel graph, then all the agents will rendezvous
at the dwell-point corresponding to the spoke vertex in the
next time period.

A cycle of length three is called a triangle, and a graph
is said to be triangle free if it has no subgraph which is a
triangle. The key properties of a proper wheel graph that
enable rendezvous in one step are that the graph induced by
the non-spoke vertices is triangle free, and each non-spoke
vertex is adjacent to two other non-spoke vertices. Hence,
we define the generalized wheel graph as a graph whose
vertex set is the disjoint union of non-empty subsets K and
F where vertices in K induce a complete graph, vertices
in F induce a triangle free graph where each vertex has
degree at least two when |F| ≥ 3, and each vertex of F is
adjacent to each vertex of K.

Lemma 2: If G(k) is a generalized wheel graph for some
k, then the agents will rendezvous in the (k + 1)th time
period.

A path of length m is a graph whose vertices can be
ordered as p1, p2, . . . , pm, m ≥ 2, so that pi is adjacent to
pj just in case |i− j| = 1. A broken wheel graph consists of
a path of length two or more, and an additional spoke vertex
that is adjacent to each vertex of the path. We say a broken
wheel graph is proper if it has five or more vertices. It is
easy to see that if the occupied dwell-points induced graph
of some time period is a proper broken wheel graph, then
all the agents will rendezvous. In the next section we will
use wheel graphs and broken wheel graphs to characterize a
class of graphs for which rendezvous is guaranteed if G(k)
belongs to this class for some k.

C. Union of wheel graphs
For subgraphs H1 and H2, the union of H1 and H2,

denoted H1∪H2, is the graph whose vertex (edge) set is the
union of the vertex (edge) sets of H1 and H2. For a graph
G, let V (G) denote the set of vertices in G. Two proper
wheel subgraphs W1 and W2 with spoke vertices s1 and
s2 respectively are said to be adjacent if the graph induced
in W1 ∪W2 by V (W1) ∩ V (W2) is the union of two non-
identical triangles T1 and T2, each of which contains (s1, s2)
as an edge. If G is the union of proper wheel subgraphs

T
1

T
2

s
1

s
2

Fig. 1. Adjacent proper wheel graphs

W1, . . . ,Wm of G, then define the reduced graph of G
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corresponding toW1, . . . ,Wm, denoted Ḡ(W1, . . . ,Wm), as
the graph with m vertices labelled 1, . . . ,m so that vertex i
corresponds to Wi, and vertices i and j are adjacent just in
case the corresponding wheel subgraphs are adjacent.

Let T be a connected acyclic graph. A vertex of T
adjacent to just one other vertex is called a leaf vertex of
T. For any two distinct vertices u and v of T, the path from
u to v is the unique path subgraph of T containing u and
v in which both u and v are leaf vertices. For vertices u, v
in T, let l(u, v) denote the number of edges in the path
from u to v in in T. For a vertex r of T, we say that T is
balanced with respected to vertex r if l(r, u) = l(r, v) for
all leaf vertices u and v of T. For vertices r and u of T, let
P(r, u,T) denote the set of vertices v where l(r, v) ≤ l(r, u)
in T. Let C(r, u,T) denote the set of vertices v where
l(r, v) > l(r, u) and the path from v to r in T contains u.
Let C̄(r, u,T) denote the vertices in C(r, u,T) which are
adjacent to u.

Lemma 3: The agents will rendezvous at one dwell-point
if there is some time period k ≥ 1 such that the following
hold:

1) G(k) is the union of proper wheel graphs
W1, . . . ,Wm.

2) T(k) = Ḡ(k)(W1, . . . ,Wm) is acyclic and connected.
3) T(k) is balanced with respect to some vertex r of T(k).
4) If vertex i of T(k) is a leaf and i is adjacent to j in
T(k), then for all vertices u in V (Wi)− V (Wj), u is
not in any Wl, l ∈ {1, . . . , m} − {i}.

5) If vertex i of T(k) is not a leaf, then for all vertices
u in Wi, there is a set M(u) ⊂ ({u} ∪ N (u, k)) ∩⋃

h∈P(r,i,T(k))∪C̄(r,i,T(k)) V (Wh) such that the vertices
in M(u) induce a proper (broken) wheel in G(k) with
spoke u, and no vertex in N (u, k)−M(u) is adjacent
to all vertices of M(u).

6) If vertex i of T(k) is not a leaf, and i is adjacent to j
in T(k) where l(r, j) = l(r, i) − 1, then each vertex
in V (Wi)− V (Wj) is not a vertex of any wheel Wh,
h ∈ {1, . . . , m} − ({i} ∪ C(r, i,T(k))).

See Figure 2 for an example of a graph G(k) satisfying the
conditions of Lemma 3.

IV. CONCLUSION

In this paper, we have formulated a discrete version of the
multi-agent rendezvous problem, which lends a combinatoric
aspect to the problem that was not present in the continuous
case. As we noted in the introduction, discrete multi-agent
rendezvous have important practical applications, and they
are not limited to actual mobile agents moving in a plane.
Agents may also represent computer files such as viruses
that can transmit themselves from computer to computer
on a network. Such viruses may be generated at different
computers in a network and seek to congregate at either one
or a cluster of computers.

We have presented the occupied dwell-points induced mo-
tion rule, and gave graphical conditions for when the agents

Fig. 2. Graph satisfying conditions of Lemma 3

will rendezvous under the rule. We have conjectures for
more general results, and we aim to prove those conjectures
as part of future work. Also, the synchronous motion rule
we propose in this paper is not truly distributed because it
requires that all agents possess a common clock. As a first
step towards developing a completely distributed strategy for
discrete rendezvous, we will study the occupied dwell-points
induced rule in the asynchronous case.

V. APPENDIX: PROOFS

Theorem 1 If G(1) is connected and G(k) is acyclic for
some k, then the agents will rendezvous.

Proof From property 1, we have that G(k) must be
connected since G(1) is connected. If G(k) has less
than three vertices, then the agents will have already
rendezvoused, so suppose G(k) has at least three vertices.

If a vertex in G(k) has degree one, then we call it a leaf
vertex. Since G(k) is acyclic, that means there must be at
least one leaf vertex. Since G(k) is acyclic with at least three
vertices, it must be that G(k) has at least one leaf vertex.

We will show in the following that at each occupied dwell-
point corresponding to a leaf vertex of G(k) will no longer
be occupied in the (k + 1)th sensing period.

Let v be a leaf vertex of G(k), and suppose v is adjacent
to u in G(k). It follows from the occupied dwell-points
induced rule that each agent positioned at the dwell-point
corresponding to leaf vertex v must have as its next way-
point the dwell-point corresponding to vertex u. If vertex
u is also a leaf, then u can only be adjacent to v, which
implies either G(k) is not connected or G(k) has only two
vertices. Hence, vertex u cannot be a leaf, and so vertex u
must be adjacent to some vertex w in G(k) where w 6= v.
No vertex adjacent to u can be adjacent to v for that would
imply v is not a leaf. Hence, no agent positioned at the
dwell-point corresponding to vertex u can move in the kth
time period under the occupied dwell-point induced rule.
And since vertex v is only adjacent to vertex u, the previous
imply that the dwell point corresponding to vertex v cannot
be the kth way-point of any agent, which implies the dwell
point corresponding to vertex v will no longer be occupied
in the (k + 1)th sensing period.
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We have just shown that if G(k) is acyclic with three or
more vertices, then at least one dwell-point that is occupied
in the kth sensing period will no longer be occupied in the
(k + 1)th sensing period. Hence, G(k + 1) will consist of at
least one vertex less than G.

From lemma 1 and property 1, we have that G(k + 1)
must also be acyclic and connected. By induction, we have
that at least one occupied dwell-point in each time period
will become unoccupied in the subsequent time period until
the graph induced by the occupied dwell-points consists of
just one vertex, or is the complete graph on two vertices. In
which case the agents will have rendezvoused. ¤

Lemma 2 If G(k) is a generalized wheel graph for some k,
then the agents will rendezvous.

Proof Let the vertex set of G(k) be the disjoint union of
non-empty subsets K and F where vertices in K induce a
complete graph, vertices in F induce a triangle free graph
where each vertex has minimal degree two when |F| ≥ 3,
and each vertex of F is adjacent to each vertex of K. Since
each vertex of F is adjacent to each vertex of K, we have
that each vertex of K is adjacent to all vertices in F . For
each vertex v of G(k), let D(v) denote the dwell point
corresponding to v.

1. If |F| = 1, then G(k) is the complete graph in which
case rendezvous has already occurred.

2. If |F| = 2, then let a, b be the elements of F. If a and b
are adjacent, then G(k) is again a complete graph. If a and
b are not adjacent, then let u be any vertex of K. Since u
is adjacent to both a and b, but a and b are not adjacent to
each other, that means neither D(a) nor D(b) can be the kth
way-point of any agent at D(v). Clearly, D(a) cannot be the
kth way-point of any agent at D(b) and D(b) cannot be the
kth way-point of any agent at D(a). Hence, neither D(a)
nor D(b) are the kth way-points of any agent. On the other
hand, since the graph induced by vertices in K is complete,
and a is adjacent to all vertices in K, that means the kth
way-point of each agent at D(a) must be some dwell-point
D(v), v ∈ K. Similarly, the kth way-point of each agent at
D(b) must be some dwell-point D(v), v ∈ K. Therefore,
the vertex set of G(k + 1) must be a subset of K. Since
K induces a complete graph in G(k), and G(k + 1) is an
induced subgraph of G(k), we have that G(k + 1) must be
a complete graph, in which case rendezvous has occurred.

3. Suppose |F| ≥ 3 and no vertex in F is adjacent to
all the other vertices of F . First consider v ∈ K. As noted
previously, v is adjacent to all vertices of F . Since no vertex
in F is adjacent to all the other vertices of F ., we have that
D(a) for all a ∈ F cannot be the kth way-point of any agent
at D(v). Now consider a ∈ F . Let M(a) denote the vertices
adjacent to a in F . By assumption a is adjacent to at least
two vertices in F so there are at least two vertices in M(a).
If any vertex in M(a), say b, is adjacent to any other vertex
in M(a), say c, then a, b and c must induce a triangle, which
contradicts the assumption that the graph induced in G(k)

by F is triangle free. This implies the kth way-point of any
agent at D(a) must be D(w) for some w ∈ K. Therefore,
the vertex set of G(k + 1) must be a subset of K. Since
K induces a complete graph in G(k), and G(k + 1) is an
induced subgraph of G(k), we have that G(k + 1) must be
a complete graph, in which case rendezvous has occurred.

Now suppose |F| ≥ 3 and there is exactly one vertex in
F which is adjacent to all the other vertices of F . Let this
vertex be s. Note that there cannot be two such vertices
because if there were then the two vertices and any other
vertex of F would induce a triangle. Since F induce a
triangle free graph, we have that vertices u, v ∈ F , where
u, v 6= s, cannot be adjacent. Therefore, if F has q vertices,
then the graph induced by vertices of F consists of the q
vertices and q − 1 edges, each of which is incident on s.
Since s is adjacent to all vertices of K, we have that the
graph induced by K ∪ {s} is complete. Consider an agent
positioned at dwell point D(s). Clearly, no D(u), u ∈ F ,
u 6= s, can be a kth way-point of the agent. Consider an
agent positioned at D(v), v ∈ K. Since v is adjacent to all
vertices of F , and each w ∈ F − {s} is only adjacent to
s of F , we have that D(w), w ∈ F − {s}, cannot be the
kth way-point of any agent at dwell point D(v). For an
agent positioned at D(w), w ∈ F − {s}, its kth way-point
must be some dwell point D(u), u ∈ K ∪ {s}. The above
implies in the (k + 1)th time period, i.e. after the agents
have moved to their kth way-points, all the dwell points
D(w), w ∈ F − {s}, will be unoccupied. Hence, G(k + 1)
is a graph induced by a subset of K ∪ {s}. Since the graph
induced by K∪{s} is complete, so is any graph induced by
a subset of K∪{s}, hence we get that G(k +1) is complete
and the agents rendezvous in the (k + 1)th time period. ¤

Proof of Lemma 3 If m = 1, then rendezvous will occur in
the next time period at the spoke vertex of W1. So suppose
m > 1. This implies T(k) has at least two vertices. Note
that since T(k) is balanced, it must be the case that r cannot
be a leaf vertex of T(k), for otherwise l(r, u) = 0 for all
leaf vertices in T(k), which would imply T(k) has only one
vertex. Hence, r must be adjacent to at least two vertices in
T(k). Hence, that T(k) is balanced and m > 1 imply m ≥ 3.

For notational convenience, we will say that an agent is
positioned at vertex i of G(k) if the agent is positioned at a
dwell-point corresponding to vertex i. We say that wheelWi,
i ∈ {1, . . . , m}, is a leaf wheel of G(k) if vertex i in T(k) is
a leaf. The following is a direct consequence of assumption
5:

Claim 1: If Wi, i ∈ {1, . . . ,m}, is a non-leaf wheel of
G(k), then no agent positioned at any dwell-point corre-
sponding to a vertex in Wi moves in the kth maneuvering
period.

The following is a direct consequence of assumption 4:
Claim 2: If Wi, i ∈ {1, . . . , m}, is a leaf wheel of G(k)

adjacent to Wj , then any any vertex of Wi not in Wj will
not be in G(k + 1).

Let the non-leaf wheels of Wi, i ∈ {1, . . . , m}, of
G(k) be Wi1, . . . ,Wiq . Claims 1 and 2 imply that after
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the agents move in the kth maneuvering period, G(k + 1)
will be the union of Wi1, . . . ,Wiq , and T(k + 1) = Ḡ(k +
1)(Wi1, . . . ,Wiq) will be the graph induced in T(k) by the
non-leaf vertices of T(k). The latter implies that l(r, u) =
l(r, v) for all leaf vertices u and v in T(k+1) since T(k+1)
is obtained from T(k) by removing the leaf vertices of
T(k). Hence, assumptions 1, 2 and 3 hold for G(k + 1)
and Ḡ(k + 1)(Wi1, . . . ,Wiq).

Now we show that leaf and non-leaf vertices of T(k + 1)
satisfy 4, 5 and 6.
G(k + 1) satisfies 6: Let i be a non-leaf of T(k + 1),

and suppose i is adjacent to j in T(k + 1) where l(r, j) =
l(r, i)− 1 in T(k +1). Note that l(r, j) = l(r, i)− 1 in T(k)
as well since T(k + 1) is obtained from T(k) by removing
leaf nodes only. So Wj is in G(k + 1).

Suppose some vertex v of Wi not in Wj is a vertex of a
wheel Wh, h ∈ {i1, . . . , iq}− ({i}∪C(r, i,T(k+1))). Note
that h is in T(k + 1), and so cannot be a leaf of T(k). Now
we show that h ∈ {1, . . . , m} − ({i} ∪ C(r, i,T(k))). Since
T(k+1) is obtained from T(k) by removing the leaf vertices
of T(k), we have that C(r, i,T(k + 1)) ⊂ C(r, i,T(k)), and
the vertices in C(r, i,T(k))−C(r, i,T(k+1)) are leaf vertices
of T(k). This implies h /∈ C(r, i,T(k)) − C(r, i,T(k + 1))
since h is not a leaf of T(k).

Since h ∈ {i1, . . . , iq}−({i}∪C(r, i,T(k+1))), we have
that h /∈ ({i}∪C(r, i,T(k +1))). If h ∈ {i}∪C(r, i,T(k))),
then h must necessarily be in C(r, i,T(k))−C(r, i,T(k+1)).
But as noted above, h /∈ C(r, i,T(k)) − C(r, i,T(k + 1)).
Hence, h /∈ {i}∪C(r, i, k)), which implies h ∈ {1, . . . ,m}−
({i} ∪ C(r, i,T(k))). From this, we get that v of Wi not in
Wj is a vertex of wheel Wh, h ∈ {1, . . . ,m} − ({i} ∪
C(r, i,T(k))), which contradicts the assumption that 6 holds
for G(k + 1).
G(k+1) satisfies 4: Let i be a leaf of T(k+1), and suppose

i is adjacent to j in T(k + 1). Since i, j are in T(k + 1), we
have that i, j were not leaf vertices in T(k). Hence, both i
and j were in T(k). This implies both Wi and Wj are in
G(k + 1).

Now consider all h ∈ C̄(r, i,T(k)). If vertex h is not a leaf
vertex of T(k), then h is in T(k + 1). Since T(k + 1) is ob-
tained from T(k) by removing just the leaf vertices, we have
that i cannot be a leaf of T(k+1). Therefore, C(r, i,T(k)) =
C̄(r, i,T(k)), so all wheels Wh, h ∈ C(r, i,T(k)) were leaf
wheels in G(k). Since i is not a leaf in T(k) we have from
6 that each vertex w of Wi not in Wj is not a vertex of any
wheel not in Wh, h ∈ {i} ∪ C(r, i,T(k)). Since all wheels
Wh, h ∈ C(r, i,T(k)) were leaf wheels, none of those wheels
are in G(k + 1), we have that each vertex of Wi not in Wj

cannot be in any wheel Wl, l 6= i, in G(k + 1). Hence, the
leaf wheels of G(k + 1) satisfy 4.
G(k + 1) satisfies 5: Let i be a non-leaf of T(k + 1).

This and 3 imply i was not a leaf and nor was it adjacent to
any leafs in T(k). Since T(k + 1) is obtained from T(k) by
removing just the leaf vertices, we have that P(r, i,T(k +
1)) = P(r, i,T(k)) and C̄(r, i,T(k + 1)) = C̄(r, i,T(k)).

Recall that M(u) ⊂ ({u} ∪ N (u, k)) ∩⋃
h∈P(r,i,T(k))∪C̄(r,i,T(k)) V (Wh). Since M(u) induce

a (broken) wheel with spoke u, it follows that each element
of M(u) in

⋃
h∈P(r,i,T(k))∪C̄(r,i,T(k)) V (Wh) is also in

N (u, k).
Since P(r, i,T(k + 1)) = P(r, i,T(k))

and C̄(r, i,T(k + 1)) = C̄(r, i,T(k)), we
have that

⋃
h∈P(r,i,T(k))∪C̄(r,i,T(k)) V (Wh) =⋃

h∈P(r,i,T(k+1))∪C̄(r,i,T(k+1)) V (Wh), so M(u) ⊂⋃
h∈P(r,i,T(k+1))∪C̄(r,i,T(k+1)) V (Wh). Moreover, each

element of M(u) in
⋃

h∈P(r,i,T(k+1))∪C̄(r,i,T(k+1)) V (Wh)
is also adjacent to u, and therefore M(u) ⊂
{u} ∪N (u, k + 1). Hence, M(u) ⊂ ({u} ∪N (u, k + 1)) ∩⋃

h∈P(r,i,T(k+1))∪C̄(r,i,T(k+1)) V (Wh).
Since G(k+1) is an induced subgraph of G(k), it follows

that M(u) induce the same graph in G(k + 1) as it does in
G(k), namely a proper (broken) wheel with spoke u. Let w
be any vertex of N (u, k + 1) not in M(u). Since G(k + 1)
is a subgraph of G(k), we have that N (u, k+1) ⊂ N (u, k),
which implies w ∈ N (u, k), so w cannot be adjacent to all
vertices of M(u). So 5 holds for G(k + 1) and T(k + 1).

The above imply that after the agents move in the kth
maneuvering period, G(k+1) will again satisfy assumptions
1-6, and moreover, G(k + 1) is the union of a proper subset
of the graphs Wi, i ∈ {1, . . . , m}.

It follows by induction that G(k+L) must be equal toWr,
where L = l(r, u) for any leaf vertex u of T(k), in which
case rendezvous will occur at the dwell-point corresponding
to the spoke vertex of Wr in the next time period. ¤
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