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Abstract: In this paper, adaptive control of kinematically

redundant robot manipulators is considered. An end-effector

tracking controller is designed and the manipulator’s kine-

matic redundancy is utilized to integrate a general sub-task

controller for self-motion control. The control objectives are

achieved by designing a feedback linearizing controller that

includes a least-squares estimation algorithm to compensate

for the parametric uncertainties.

I. INTRODUCTION

When the number of joints of a robot manipulator is

greater than the dimension of its task-space position vec-

tor then it is called a kinematically redundant robot ma-

nipulator. In many applications, robot manipulators with

such additional degrees of freedom are preferred to execute

complicated tasks. This kinematic redundancy can result in

joint motion in the null space of the Jacobian matrix that

does not affect the end-effector position, this phenomenon

is commonly referred to as self-motion. There are generally

an infinite number of solutions for the inverse kinematics of

redundant robot manipulators [1], [2], [3], this complicates

the control of kinematically redundant robot manipulators

since it is difficult to select a reasonable desired joint

trajectory for a given desired task-space trajectory.

In our previous work [4], an adaptive full-state feedback

quaternion based controller developed in [5] was utilized

and a general sub-task controller was designed. In [4],

the sub-task controller was systematically integrated into

the stability analysis and specific sub-task objectives (such

as singularity avoidance, joint limit avoidance, bounding

the impact forces and bounding the potential energy) were

introduced to make use of the kinematic redundancy. In

[6], configuration control of redundant robot manipulators

was investigated. The proposed controller achieved task-

space tracking and the redundancy was utilized to impose

kinematic and dynamic constraints or posture control. In

[7], Hsu et al. proposed a dynamic feedback linearizing

control law that guarantees asymptotic tracking of a desired

task-space trajectory. However, the controller in [7] required
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that the exact dynamic model of the robot manipulator be

known. Zergeroglu et al. [8] used the controller in [7] as a

basis and developed an adaptive controller to compensate

for the parametric uncertainty in the dynamic model. In

both [7] and [8], the researchers provided control of the

redundant link velocities to accomplish desirable sub-task

objectives. In [9], Peng et al. proposed two compliant motion

controllers for redundant manipulators where the redundancy

was utilized to realize additional constraints that optimize a

user defined objective function. For a more detailed overview

of the research on redundant robot manipulators, the reader

is referred to [1], [5], [8], [10], [11], [12], [13] and the

references therein.

The control objectives for a redundant robot manipulator

can be classified as either task-space objectives or joint

motion (sub-task) objectives. In this work, the task-space

control objective is to guarantee end-effector tracking of a

time-varying desired trajectory. The joint motion objectives

are to track a null-space velocity vector and to incorporate a

sub-task controller to make use of the kinematic redundancy.

In this paper, the feedback linearizing controller in [7]

is redesigned to compensate for parametric uncertainties

present in the dynamic model. This work demonstrates a

major improvement to our previous work [4] by proving

that the null-space velocity tracking error goes to zero. By

controlling the joint velocities in the null-space, we can

integrate sub-task control objectives and achieve a stable

system. In essence, the extra degrees-of-freedom are utilized

to integrate sub-task objectives. The reader is referred to

[4] and [14] for specific sub-task objectives. Review of the

adaptive redundant robot control literature (such as [4] and

[8]) suggests that researchers typically prefer gradient-type

algorithms for parameter estimation. The design proposed

here uses a least-squares algorithm in a seemingly novel

departure from adaptive redundant robot control. Lyapunov-

based stability analysis techniques are utilized in the design

of the nonlinear control strategy.

II. DYNAMIC AND KINEMATIC MODEL

The dynamic model for an n-joint (n ≥ 6), revolute,

direct drive robot manipulator is described by the following

expression

M(θ)θ̈ + N(θ, θ̇) = τ (1)

where θ(t), θ̇(t), θ̈(t) ∈ R
n denote the position, velocity,

and acceleration in the joint-space, respectively. In (1),

M(θ) ∈ R
n×n represents the inertia effects, N(θ, θ̇) ∈ R

n

represents other dynamic effects (centripetal-Coriolis effects,
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gravitational effects, dynamic frictional effects), and τ(t) ∈
R

n represents the control input torque vector. The subsequent

development is based on the following properties [15].

Property 1: The inertia matrix M(θ) is symmetric and

positive-definite, and satisfies the following inequalities

m1 ‖ξ‖
2 ≤ ξT M(θ)ξ ≤ m2 ‖ξ‖

2 ∀ξ ∈ R
n (2)

where m1, m2 ∈ R are positive constants and ‖·‖ denotes

the standard Euclidean norm.

Property 2: The left-hand side of (1) can be linearly

parameterized as

M (θ) θ̈ + N(θ, θ̇) = Y
(

θ, θ̇, θ̈
)

φ (3)

where φ ∈ R
p contains the constant system parameters

and the regression matrix Y (·) ∈ R
n×p contains known

functions dependent on the signals θ(t), θ̇(t), and θ̈(t).
The kinematic model for the robot manipulator is de-

scribed by the following expression

ẋ = J (θ) θ̇ (4)

where x (t) ∈ R
m is the task-space position and J (θ) ∈

R
m×n is the manipulator Jacobian matrix. The subsequent

development is based on the assumption that x (t), ẋ (t),
θ (t), and θ̇ (t) are measurable.

Remark 1: The dynamic and kinematic terms for a general

revolute robot manipulator, denoted by M (θ), N
(

θ, θ̇
)

,

J (θ) and J+ (θ), are assumed to depend on θ (t) only as

arguments of trigonometric functions, and hence, remain

bounded for all possible θ (t). During the control develop-

ment, the assumption will be made that if x (t) is bounded

then θ (t) is a bounded signal.

III. PSEUDO-INVERSE AND ITS PROPERTIES

The pseudo-inverse of the Jacobian, denoted by J+(θ) ∈
R

n×m, is defined as follows

J+ , JT
(

JJT
)−1

. (5)

From (5), it is clear that J+(θ) satisfies the following1

JJ+ = Im. (6)

As shown in [1], the pseudo-inverse defined by (5) satisfies

the Moore-Penrose conditions given below

JJ+J = J , J+JJ+ = J+, (7)

(J+J)
T

= J+J , (JJ+)
T

= JJ+. (8)

In addition to the above properties, the matrix (In − J+J)
satisfies the following properties

(

In − J+J
) (

In − J+J
)

= In − J+J (9)
(

In − J+J
)T

=
(

In − J+J
)

(10)

J
(

In − J+J
)

= 0n×1 (11)
(

In − J+J
)

J+ = 0n×1. (12)

1Throughout the paper, In and 0m×r will be used to represent an n×n

standard identity matrix and an m× r zero matrix, respectively.

The following expression can be obtained for the time

derivative of J+J

d

dt

{

J+J
}

= Jφ + J+J̇
(

In − J+J
)

(13)

where Jφ (t) ∈ R
n×n is an auxiliary function defined as

follows

Jφ , J̇+J + J+J̇J+J. (14)

It should be noted that Jφ (t) satisfies the following property

JJφ =
(

JJ̇+ + JJ+J̇J+

)

J

=
d

dt

{

JJ+
}

J

= 0n×n (15)

where (6) was utilized. In addition, the following property

will also be utilized throughout the subsequent analysis
(

In − J+J
)

Jφ = Jφ − J+JJφ

= Jφ (16)

where (15) was utilized.

Remark 2: During the subsequent control development,

the assumption is made that the minimum singular value

of the manipulator Jacobian matrix, denoted by σm, is

greater than a known small positive constant δ > 0, such

that max {‖J+(θ)‖} is known a priori and all kinematic

singularities are always avoided.

IV. TASK-SPACE CONTROLLER DEVELOPMENT

The primary control design objective is to formulate a

control input that ensures that the end-effector of the ma-

nipulator tracks a desired trajectory. The task-space tracking

error denoted by e (t) ∈ R
m is defined as follows

e , xd − x (17)

where xd (t) ∈ R
m is the task-space desired trajectory. In

the subsequent development, it will be assumed that xd (t),
ẋd (t), and ẍd (t) are bounded signals.

Based on (4), the following expression can be obtained

for the joint velocities

θ̇ = J+ẋ +
(

In − J+J
)

θ̇. (18)

To facilitate the task-space controller development, the time

derivative of (18) is given as follows

θ̈ = J+ẍ + J̇+ẋ −
d

dt

{

J+J
}

θ̇ +
(

In − J+J
)

θ̈. (19)

After utilizing (4), the following simplified expression can

be obtained for θ̈ (t)

θ̈ = J+

(

ẍ − J̇ θ̇
)

+ θ̈N (20)

where θ̈N (t) ∈ R
n is defined as follows

θ̈N ,
(

In − J+J
)

θ̈. (21)

The estimation form of (3) is defined as

M̂ (t) θ̈ + N̂ (t) = Y
(

θ, θ̇, θ̈
)

φ̂ (22)
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where φ̂ (t) ∈ R
p, M̂(t), and N̂(t) are the estimates of φ,

M(θ), and N(θ, θ̇), respectively. After subtracting (22) from

the manipulator’s dynamics in (1), the following is obtained

Y φ̃ = τ −
(

M̂ θ̈ + N̂
)

(23)

where φ̃ (t) ∈ R
p is the parameter estimation error defined

as

φ̃ , φ − φ̂. (24)

After premultiplying (23) by M̂−1(t), the following expres-

sion can be obtained

M̂−1Y φ̃ = M̂−1τ − M̂−1N̂ − θ̈ (25)

for the open-loop error system. To facilitate the subsequent

analysis the control input τ (t) is designed as follows

τ , M̂
[

J+u1 + φN

]

+ N̂ + u2 (26)

where u1 (t) ∈ R
m, u2 (t) ∈ R

n are auxiliary control inputs,

and φN (t) ∈ R
n is a vector in the null-space of J (t). The

auxiliary control input u1 (t) is designed as

u1 , ẍd + kv ė + kpe − J̇ θ̇ + uaux (27)

where kv and kp are positive constants, and uaux (t) ∈ R
m

is another auxiliary control input that will be designed sub-

sequently. After substituting (26) and (27) into the open-loop

error system in (25), the following expression is obtained

M̂−1Y φ̃ = J+ (ë + kv ė + kpe + uaux)

+M̂−1u2 + φN − θ̈N . (28)

After premultiplying (28) by J (t) and rearranging, the

following expression can be obtained

ë + kv ė + kpe + uaux = JM̂−1

(

Y φ̃ − u2

)

(29)

where (6) and the following facts were utilized

JφN = 0m×1 , Jθ̈N = 0m×1 . (30)

It should be noted that since θ̈ (t) is an unmeasurable

signal the regression matrix Y
(

θ, θ̇, θ̈
)

introduced in (3)

is unmeasurable. To tackle this issue, a filtered regression

matrix Yf (t) ∈ R
n×p is introduced [16]

Ẏf , −αYf + αY , Yf (t0) , 0n×p (31)

where α ∈ R is a positive constant. Notice that (31) cannot

be implemented since Y
(

θ, θ̇, θ̈
)

is unmeasurable. For an

implementable form of the filtered regression matrix see

Appendix II. A filtered control input is defined similarly [16]

τ̇ f , −ατf + ατ , τf (t0) , 0n×1. (32)

To facilitate the subsequent analysis a prediction error, de-

noted by z (t) ∈ R
n, is defined as follows

z , M̂−1

(

τ f − Yf φ̂
)

. (33)

After utilizing the development in Appendix I, the prediction

error in (33) can be written as follows

z = M̂−1Yf φ̃ (34)

where (24) was also utilized. The auxiliary control input

u2 (t) is designed as

u2 ,
1

α
Yf

˙̂
φ +

1

α

˙̂
Mz. (35)

After substituting u2 (t) into (29), the following expression

can be obtained

ë + kv ė + kpe = J

(

1

α
ż + z

)

− uaux (36)

where (34) and its time derivative were utilized. A filtered

tracking error, denoted by r (t) ∈ R
m, is defined to be of

the following form

r , ė + σ1e (37)

where σ1 ∈ R is a positive constant. After setting the

constant control gains kv and kp, which were introduced

in (27), as

kv , σ1 + σ2 , kp , σ1σ2 (38)

then the left-hand-side of (36) can be written as

ë + kv ė + kpe = ṙ + σ2r (39)

where σ2 ∈ R is a positive constant. After utilizing (39), the

expression in (36) can be rewritten as

ṙ + σ2r = J

(

1

α
ż + z

)

− uaux. (40)

To facilitate the subsequent stability analysis, an auxiliary

error signal, denoted by y (t) ∈ R
m is defined as

y , r −
1

α
Jz. (41)

The time derivative of y (t) is given as

ẏ = −σ2y +
(

1 −
σ2

α

)

Jz −
1

α
J̇z − uaux (42)

where (40) and (41) were utilized. The auxiliary control input

uaux (t) is designed as

uaux ,

(

1 −
σ2

α

)

Jz −
1

α
J̇z. (43)

After substituting (43) into (42), the following simplified

expression is obtained for the dynamics of y (t)

ẏ = −σ2y. (44)

From (44), standard analysis techniques can be utilized to

show that

y (t) = y (t0) exp (−σ2t) (45)

from which we can conclude that ‖y (t)‖ → 0 exponentially

fast. Motivated by the subsequent stability analysis, the

parameter estimate vector φ̂ (t) is generated by the following

update law
˙̂
φ , ΓY T

f M̂−T z (46)

where Γ (t) ∈ R
p×p is a least-squares estimation gain matrix

designed as follows

d

dt

(

Γ−1
)

, Y T
f M̂−T M̂−1Yf . (47)
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Remark 3: It should be noted that when Γ−1 (t0) is

selected to be positive definite and symmetric, then it is

clear that Γ (t0) is also positive definite and symmetric.

Therefore, it follows that both Γ−1 (t) and Γ (t) will remain

positive definite and symmetric ∀t. From (47), the following

expression can be obtained

Γ̇ = −ΓY T
f M̂−T M̂−1YfΓ. (48)

From (48), it is easy to see that Γ̇ (t) is negative semidefinite;

therefore, the estimation gain matrix Γ (t) is always constant

or decreasing, and hence, Γ (t) is bounded (for more details,

the reader is referred to [16] and [17]).

Remark 4: The matrix inverse of the estimate of M (θ)
(i.e., M̂ (θ)) can be guaranteed to exist through the use of a

projection algorithm as described in [18].

Theorem 1: The control law described in (26), (27), (35),

and (43) and the adaptation law defined in (46) guarantee

that z (t), r (t), and e (t) are driven to zero as t → ∞.

Proof: See Appendix III.

Remark 5: The proof of Theorem 1 requires the bound-

edness of θ̇ (t) and φN (t). In the subsequent sections, an

auxiliary null-space control signal, denoted by g(θ), will be

designed to meet these conditions.

V. SUB-TASK ERROR SYSTEM

In addition to the end-effector tracking objective, there

may be sub-task objectives that are required for a particular

redundant robot application. To integrate the sub-task objec-

tive into the controller, an auxiliary control signal, denoted

by g(θ), will be introduced. The integration of this sub-task

objective into the controller is completed by designing a

framework that places preferences on desirable configura-

tions based on the sub-task objective. The auxiliary null-

space controller g(θ) is designed through the joint motion in

the null-space of the Jacobian matrix (i.e., self-motion).

The null-space velocity tracking error is defined as [7]

ėN ,
(

In − J+J
)

(

g − θ̇
)

(49)

where g (t) ∈ R
n is the subsequently designed null-space

controller. The following expression can be obtained for the

dynamics of ėN (t)

ëN =
(

In − J+J
)

ġ +
(

In − J+J
)

(

1

α
ż + z − φN

)

−Jφ

(

g − θ̇
)

− J+J̇ ėN (50)

where (12), (13), (49) were utilized along with the following

expression for θ̈ (t)

θ̈ = −

(

1

α
ż + z

)

+ J+u1 + φN (51)

where (20), (25), (26), (34), the time derivative of (34), and

(35) were utilized. In order to facilitate the null-space control

development, an auxiliary error signal, denoted by p (t) ∈
R

n, is defined as follows

p , ėN −
1

α

(

In − J+J
)

z. (52)

The dynamics of p (t) can be written as

ṗ =
(

In − J+J
)

ġ +
(

In − J+J
)

(z − φN )

−Jφ

(

g − θ̇ −
1

α
z

)

− J+J̇p (53)

where (13), (50), and (52) were utilized. The auxiliary null-

space vector φN (t), introduced in (26), is now designed as

follows

φN ,
(

In − J+J
)

(ġ + knp + z)

+Jφ

(

g − θ̇ −
1

α
z

)

(54)

where kn ∈ R is a positive constant. After substituting φN (t)
into (53) the following simplified expression is obtained for

the dynamics of p (t)

ṗ = −kn

(

In − J+J
)

p − J+J̇p (55)

where (9) and (16) were utilized.

Theorem 2: The auxiliary null-space vector described by

(54) guarantees that ėN (t) is driven to zero as t → ∞.

Proof: See Appendix IV.

VI. SUB-TASK CONTROLLER

In this section, a general sub-task controller is developed.

As proven in the subsequent stability analysis, the sub-task

objective will be met if the Jacobian-related null-space ma-

trix maintains full rank. Specifically, when the subsequently

defined Jacobian-related null-space matrix loses rank, the

sub-task objective will not be met.

An auxiliary positive function ya(t) ∈ R is defined as

ya , exp (−kyβ(θ)) (56)

where ky ∈ R is a positive constant, β(θ) ∈ R is a

non-negative function that is specific to each sub-task, and

exp (·) is the natural logarithmic exponential function. After

taking the time derivative of (56), the following simplified

expression is obtained for the dynamics of ya (t)

ẏa = Jsθ̇ (57)

where Js(t) ∈ R
1×n is a Jacobian-type vector defined as

follows

Js =
∂ya

∂θ
. (58)

After adding and subtracting the terms JsJ
+Jθ̇ and

Js (In − J+J)
(

g − θ̇
)

to the right-hand-side of (57), we

obtain the following for the time derivative of ya(t)

ẏa = JsJ
+ẋ + Js

(

In − J+J
)

g − JsėN (59)

where (4) and (49) were utilized. Based on the subsequent

stability analysis, the sub-task controller is designed as

g , −ksJ
T
s ya (60)

where ks ∈ R is a positive constant. After substituting (60)

into (59), we obtain the following expression

ẏa = −ksJs

(

In − J+J
) (

In − J+J
)

JT
s ya

+JsJ
+ẋ − JsėN (61)
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where (9) was utilized.

Remark 6: The auxiliary signal ya (t) in (56) was pre-

ferred because of the useful properties of the logarithmic

exponential function given that many different positive func-

tions could also be utilized for the design of ya (t). From

(56), it is clear that as β (θ) increases, ya (t) decreases and

ya (t) satisfies these inequalities 0 < ya (t) ≤ 1.

The following theorem is stated to show the performance

of the sub-task controller.

Theorem 3: The control law described by (60) guarantees

that ya(t) is practically regulated (i.e., ultimately bounded)

in the following sense

|ya(t)| ≤

√

|y2
a(t0)| exp (−2γt) +

ε

γ
(62)

provided the following sufficient conditions hold

∥

∥Js

(

In − J+J
)∥

∥

2
> δ̄ (63)

∥

∥Js

(

J+ẋ − ėN

)∥

∥ ≤ δ1 (64)

ks >
1

δ̄δ2

(65)

where ε, γ, δ̄, δ1, δ2 ∈ R are positive constants.

Proof: See [19] (the reader is also referred to proof of

Theorem 2 in [14] for a similar proof).

Remark 7: For specific sub-task objectives including sin-

gularity avoidance, joint-limit avoidance, bounding the im-

pact forces, and bounding the potential energy, the reader is

referred to [14].

Remark 8: The sub-task objective is met only if the suf-

ficient conditions described by the inequalities in (63)-(65)

are satisfied. From the result of Theorem 1, the task-space

tracking objective is guaranteed and the sub-task objective is

always secondary to it. When the sub-task controller forces

the end-effector of the robot manipulator to take a path not

allowed by the task-space tracking controller, the condition

in (63) will not be satisfied; hence, the result of Theorem 3

will not hold. To meet the task-space tracking and sub-task

objectives simultaneously, careful consideration is required

in the design of the desired task-space trajectory and the

sub-task objective.

VII. CONCLUSIONS

Lyapunov-based stability analysis techniques were utilized

to design a feedback linearizing adaptive controller for

kinematically redundant robot manipulators. The controller

compensates for the parametric uncertainties in the dynamic

model using a least-squares estimation algorithm. To our

best knowledge, this is novel when compared to the previous

adaptive redundant robot control literature. Task-space track-

ing was achieved and the kinematic redundancy was utilized

to integrate a general sub-task controller.
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APPENDIX I

FILTER DEVELOPMENT

From (1), (3), (31), and (32) the following can be obtained

τ̇f + ατf = Ẏfφ + αYfφ. (66)

The expression in (66) can be rewritten as

(s + α) τ f = (s + α) Yfφ (67)

where s is the Laplace variable. From (67) the following can

be obtained [16]

τ f = Yfφ (68)

where the initial condition information defined in (31) and

(32) were utilized.
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APPENDIX II

IMPLEMENTABLE FORM OF THE REGRESSION MATRIX

In order to obtain an implementable form of (31) the

entries of Y
(

θ, θ̇, θ̈
)

will be written in the following form

Yij

(

θ, θ̇, θ̈
)

, BT
ij (θ) θ̈ + Aij

(

θ, θ̇
)

(69)

where BT
ij (θ) ∈ R

1×n and Aij

(

θ, θ̇
)

∈ R for ∀i = 1, .., n

and ∀j = 1, .., p. An auxiliary filter signal, denoted by

Pij (t) ∈ R, is designed as follows

Ṗij (t) , −αYfij
− ḂT

ij (θ) θ̇ + Aij

(

θ, θ̇
)

(70)

Pij (t0) , −BT
ij (θ (t0)) θ̇ (t0) (71)

where Yfij
(t) ∀i, j are defined as follows

Yfij
, Pij + BT

ij (θ) θ̇ (72)

From (70)-(72), it is clear that (31) is satisfied and Yfij
(t)

defined in (72) can be implemented without measuring θ̈ (t).

APPENDIX III

PROOF OF THEOREM 1

The following non-negative function is introduced to an-

alyze the stability of the task-space controller

V1 ,
1

2
φ̃

T
Γ−1φ̃. (73)

The time derivative of the Lyapunov function in (73) is given

as follows

V̇1 =
1

2
φ̃

T
Γ̇−1φ̃ − φ̃

T
Γ−1 ˙̂

φ

=
1

2
φ̃

T
Y T

f M̂−T M̂−1Yf φ̃ − φ̃
T
Y T

f M̂−T z

= −
1

2
zT z (74)

where (34), (46) and (47) were utilized. After integrating

(74) the following expression can be obtained

V1 (t0) − V1 (∞) =
1

2

∞
∫

t0

zT (τ) z (τ ) dτ . (75)

From (73), it is clear that V1 (t0) > 0, and from (75), it is

easy to see that V1 (t) ≤ V1 (t0), then we can conclude that

V (t) is bounded, hence z (t) ∈ L2 ∩ L∞ and φ̃ (t) ∈ L∞.

From (24), φ̂ (t) ∈ L∞ hence M̂ (t) and N̂ (t) are also

bounded. Based on Remark 4, the matrix inverse of the

estimate of M (θ) (i.e., M̂−1 (t)) exists and is bounded.

Remark 1 can be utilized to show that J (θ) and J+ (θ)
are bounded. These boundedness statements can be utilized

along with (41) to prove that r (t) is bounded; hence, from

(37), we can conclude that e (t), ė (t) ∈ L∞. Since the

desired trajectory and its time derivative are assumed to be

bounded then from (17) and its time derivative we can prove

that x (t), ẋ (t) ∈ L∞. Based on Remark 1, θ (t) is bounded.

The rest of the development requires the joint velocities to be

bounded. From the proof of Theorem 2 (see Appendix IV),

we know that ėN (t) ∈ L∞ and from the proof of Theorem

3 (see [19]), we know that g (t) ∈ L∞. Based on these facts,

we can show that (In − J+J) θ̇ ∈ L∞. After utilizing this

along with (4) and the fact that ẋ (t) ∈ L∞, we can prove that

θ̇ (t) ∈ L∞. After utilizing the facts that θ (t), θ̇ (t) ∈ L∞,

we can conclude that M (θ) and N
(

θ, θ̇
)

are bounded.

By utilizing the above boundedness statements it is easy to

show that J̇ (θ) ∈ L∞. From the development in Appendix

II, we can show that Yf (t), Ẏf (t) ∈ L∞. Then from

(46), it is clear that
˙̂
φ (t) is also bounded. Thus

˙̂
M (t) and

d
dt

(

M̂−1 (t)
)

can be shown to be bounded. We can utilize

the the time derivative of (34) to prove that ż (t) ∈ L∞.

The above boundedness statements can be utilized along

with (43) and (35) to show that uaux (t), u2 (t) ∈ L∞,

thus, from (27), u1 (t) is also bounded. From the proof of

Theorem 3 (see [19]), we know that g (t), ġ (t) ∈ L∞. After

utilizing these facts and the previous boundedness statements

along with (54), then we can prove that φN (t) ∈ L∞. Then

from (26) and (51), it is clear that τ (t), θ̈ (t) ∈ L∞. Since

z (t) ∈ L2 ∩ L∞ and ż (t) ∈ L∞ then we can conclude

that ‖z (t)‖ → 0 as t → ∞. Then from (41), it is clear that

‖r (t)‖ → 0 as t → ∞; thus from (37), ‖e (t)‖, ‖ė (t)‖ → 0
as t → ∞.

APPENDIX IV

PROOF OF THEOREM 2

Let V2 (t) ∈ R denote the following non-negative function

V2 ,
1

2
pT p. (76)

The time derivative of (76) is given as follows

V̇2 = −knpT p + pT J+

(

knJ − J̇
)

p (77)

where the dynamics of ṗ (t) in (55) was utilized. To facil-

itate the subsequent development the following property is

introduced

pT J+ =

(

g − θ̇ −
1

α
z

)T
(

In − J+J
)T

J+

=

(

g − θ̇ −
1

α
z

)T
(

In − J+J
)

J+

= 01×m (78)

where (49) and (52) were utilized. In view of (78), (77) can

be written in the following simple form

V̇2 = −knpT p. (79)

From (76) and (79), standard linear analysis techniques can

be utilized to show that

p (t) = p (t0) exp (−knt) (80)

from which we can conclude that ‖p (t)‖ → 0 exponentially

fast. Then from (52) and the proof of Theorem 1, it is easy

to see that ‖ėN (t)‖ → 0 as t → ∞.
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