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Abstract—The paper presents a novel oscillation controller for 
controlling the driving mode (or drive axis) of a vibrational 
gyroscope to oscillate at a desired trajectory. The controller 
consists of a PD controller and an online Extended State 
Observer (ESO). The ESO is used to estimate the system states 
and the discrepancy between the real system and the 
mathematical model of the gyroscope. The PD controller drives 
the estimated discrepancy and the tracking error of the output 
of the driving mode to zero. Since the controller design does not 
require exact information of system parameters, it is very 
robust against structural uncertainties of the gyroscope. The 
convergence of the estimation error of the ESO and the 
stability of the control system are theoretically proven. The 
controller is validated by software and analog hardware 
implementations on a vibrational piezoelectric beam gyroscope.  

Keywords: Vibrational gyroscopes, oscillation controller, 
extended state observer, analog implementation. 

 

I. INTRODUCTION 

EMS gyroscopes, also termed as vibrational 
gyroscopes, use vibrating elements to sense rotation 

rates. Since the gyroscopes don’t have bearings, they can be 
easily miniaturized and batch fabricated on silicon or poly-
silicon. The absence of bearing friction in MEMS gyroscopes 
also eliminates the principle cause of power consumption [1]. 
With the advantages of small size, low cost and low power 
consumption, the MEMS gyroscopes have found broad 
applications in consumer and automotive markets. Some of 
the well known automotive applications include vehicle 
stability control, navigation assist, and rollover detection. 
Examples of consumer applications are 3D input devices, 
robots, and camcorder stabilization. However, due to the high 
production cost and low performance and reliability [1], most 
of the applications of the MEMS gyroscopes have not 
reached any significant volume. The effects of imprecise 
micro-fabrication and environmental variations degrade the 
performance of the MEMS gyroscope and consequently 
cause measurement errors of rotation rates [2]. Traditional 
mechanical balancing could reduce the effects of a limited 
amount of the imperfection. But it is time consuming, 
expensive and difficult to perform on a small-size MEMS 
gyroscope [3].  
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Since the early 1990s, more and more researchers have 
been trying to improve the performance of the vibrational 
gyroscopes through control electronics. In [4, 5], a typical 
Phase Locked Loop (PLL) is used to adjust the input 
frequency till the output of drive axis is -900 out of phase 
with the input indicating the resonance, and an Automatic 
Gain Control (AGC) loop is used to regulate the output 
amplitude. In this system, the input frequency is dependent 
on the mechanics of device and changing with environmental 
variations. As an alternative to the PLL control, an adaptive 
controller is developed in [6] to tune the closed-loop 
frequency of drive axis to a fixed frequency chosen by the 
designer. But in [6], the amplitude regulation of the drive axis 
is disregarded. In [7], an adaptive oscillation controller is 
introduced without requiring an external driving input. 
However, the controller assumed an ideal model of the drive 
axis and did not consider the mechanical coupling terms 
between both axes. In [8], an adaptive controller is designed 
to drive the vibrations of two axes of the gyroscope operating 
in an adaptive mode where the movements of the mass along 
two axes are equal. However, most reported MEMS 
gyroscopes are operating in a conventional mode [3] where 
the movement of the mass along the drive axis is relatively 
large and the movement along the sense axis is very small. In 
[9], an adaptive control system is designed for both axes of 
the conventional MEMS gyroscopes where the mechanical 
thermal noise and parameter variations are neglected.  

In this paper, we aim to design an oscillation controller 
for the drive axis of the conventional MEMS gyroscope 
where the coupling terms, the noise, and the parameter 
variations are considered. We will apply a recently reported 
Active Disturbance Rejection Controller (ADRC) [10] to the 
drive axis. The ADRC is a combination of a linear observer 
and a PD controller. The disturbance represents any 
discrepancies between the mathematical model and a real 
system, hence is also taken as uncertainties of the system. 
The controller is built on the observed disturbance and 
compensates for it in real time. As reported in [11, 12], 
ADRC has been successfully applied to macro-systems such 
as motion control, aircraft flight control, and jet engine 
control etc because of its robustness against parameter 
variations and its few numbers of tuning parameters during 
implementation. It is the first time we modify the controller 
and extend its use to the MEMS gyroscopes.  

This paper is organized as follows. The dynamics of 
MEMS gyroscope is explained in Section II. The oscillation 
controller is presented in Section III.  Simulation results are 
shown in Section IV. It is followed by the analog 
implementation and experimental results in Section V. 
Finally some concluding remarks are given in Section VI.  
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II. THE DYNAMICS OF MEMS GYROSCOPES 

A MEMS gyroscope can be understood as a silicon proof 
mass attached to a rigid frame through springs and dampers. 
The mechanical structure of a MEMS gyroscope is shown in 
Fig.1. The proof mass is driven into resonance along the 
drive axis (X axis) in order to obtain the largest response and 
phase synchronization. As the rigid frame rotates around 
rotation axis (perpendicular to the page) with the rate of Ω, a 
Coriolis acceleration is produced along sense axis (Y axis), 
which is perpendicular to both drive and rotation axes. The 
Coriolis acceleration provides the information of rotation 
rate. So we can determine the rotation rate through sensing 
the vibration of sense axis.  

  
Fig. 1:  Mass-spring-damper structure of vibrational 

MEMS gyroscopes 

Assuming the natural frequencies of both axes are same 
and the sense axis is operating in open loop, the vibrational 
MEMS gyroscope is modeled as  
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where x and y are the displacement outputs of drive and sense 
axes respectively, 2 xΩ& and 2 yΩ & are Coriolis accelerations, 
Ω is the rotation rate, nω  is the natural frequency of drive 
and sense axes, xy yω and xy xω are Quadrature errors caused 
by spring coupling terms between two axes, ς is damping 
coefficient typically ranging from 10-3 through 10-1, m is the 
mass of the MEMS gyroscope, K is the controller gain 
including forward gain and actuator and sensor scale factors,  
and ud is the control input for drive axis. The Quadrature 
errors are constant unknown signals, which need to be 
canceled out in control effort ud. The rotation rate Ω is 
assumed to be a constant unknown signal. In (1), mechanical 
thermal noise on the sense axis is represented by the random 
force N(t). The drive axis displacement x(t) is usually so 
large that the effects of thermal noise on the drive axis are 
negligible and are disregarded [14]. For the conventional 
mode of operation, the displacement of the sense axis is very 
small. It tends to be contaminated by the noise. Hence the 
noise on the sense axis can not be ignored.  

Our control objective is to force the drive axis to 
oscillate at specified amplitude and resonant frequency in the 

presences of parameter variations, mechanical couplings, and 
mechanical-thermal noise. 

III. OSCILLATION CONTROLLER 

Both drive and sense axes of MEMS gyroscopes can be 
taken as lightly damped second-order systems. They are 
governed by the Newtonian law of motion. Then we could 
rewrite the drive axis model as  

                                    ( , , ) dx f x x d bu= +&& &                           (2) 

where b is the coefficient of the controller (b=K/m), d is an 
external disturbance [12], and ),,( dxxf & (or simply denoted 
as f) accounts for all the other forces excluding the control 
effort ud [10], which is  

               22 2 .n n xyf x x y yςω ω ω= − − − + Ω& &                  (3)  

We assume b is known. If an observer is designed to estimate 
the f, we can take ud as 

                                0
1 ˆ( ( , , ) ),du f x x d u
b

= − +&                     (4) 

where f̂ is the estimated f, u0 is a controller to be 
determined. Then (3) becomes  

                       0 0
ˆ( , , ) ( , , ) .x f x x d f x x d u u= − + ≈&& & &              (5) 

We suppose a desired signal r has the resonant frequency ω 
and the maximum amplitude A that the drive axis could 
output. And r is represented by 

                                     sin( ).r A tω=                                   (6) 

Then our control goal is to drive the output signal x to the 
signal r. We have tracking error e=r-x. We can employ a 
common Proportional Derivative (PD) controller for u0 to 
drive tracking error e to zero. The controller is 

                                0 .p du k e k e= + &                                      (7) 

If we take the partially unknown f as a generalized 
disturbance or the discrepancy between the real system and 
its nominal model, the controller will estimate it and 
compensate for it actively, hence the name ADRC.  

A. Extended State Observer  

The effectiveness of ADRC is dependent on the accurate 
estimation of the f. Consequently an Extended State Observer 
(ESO) is developed to estimate the disturbance f in real time. 
This can be achieved by using the linear state space 
representation of drive axis model and augmenting the state 
variables to include f [10]. We suppose f& is unknown and 
bounded. Let x1=x, x2= x& , x3=f, and X=[x1, x2, x3] 

T, we have  
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Based on (8), a state observer is given by              

                              
XCz
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where the estimated state vector is 1 2 3
ˆ ˆ ˆ ˆ[ , , ] ,TX x x x= and the 

vector of observer gain is L= [l1, l2, l3]T. We need to notice 
that the key part of (9) is the third state of observer 3x̂ , which 
is used to approximate f. The characteristic polynomial of 
observer is represented by 

                             3 2
1 2 3( ) .p s s s sα α α= + + +                    (10) 

If the observer gains are selected as l1 = 3ωo, l2 = 3 ωo
2, l3= 

ωo
3, and ωo>0, the characteristic polynomial becomes  

                           3( ) ( )op s s ω= + .                                     (11) 

Therefore we can change the observer gains through tuning 
the unique parameter ω0, which is the bandwidth of the 
observer.  

B. Control Algorithm 

After the observer is designed, the oscillation control of drive 
axis given by (4) becomes  

                           3 0
1 ˆ( ).du x u
b

= − +                             (12)                               

In order to minimize the number of tuning parameters of the 
controler u0, the controller parameters are chosen as Kp=ωc

2
 

and Kd=2ωc, where ωc>0.  

Then (7) becomes 

                           2
0 2 .c cu e eω ω= + &                                      (13) 

Since the velocity of the movement along drive axis is not 
measurable, the controller u0 built on the observed velocity is 
shown as  

                 )ˆ(2)ˆ( 21
2
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Assuming accurate estimation of the states, the ideal closed-
loop transfer function of controller is 
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From (15), we can see that this is a typically second-order 
critical-damping control system, where ωc is the only one 
tuning parameter for the control input ud. The details about 
how to tune the parameters of ADRC are introduced in [11].  

C. Stability Analysis 

1) Convergence of the ESO 

Let ),(ˆ)()~ txtxtx iii −= i=1, 2, 3. From (8) and (9), the 
observer estimation error dynamics can be shown as 

.~~

~~~

~~~

133

1232

1121

xlhx

xlxx

xlxx

−=

−=

−=

&

&

&

                                               (16) 

Now let us scale the observer estimation error )(~ txi by 
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Theorem 1: Assuming h(X,d) is bounded, there exists a 
constant 0σ > and a finite time 1 0T >  such that 

0,3,2,1,)(~
1 >≥∀=≤ Ttitxi σ  and 0.oω >  Furthermore, 

1
k
o

σ
ω
⎛ ⎞

= Ο⎜ ⎟
⎝ ⎠

, for some positive integer k . 

Proof:  Solving (17), we can obtain 
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Since ( )( ),h X dτ is bounded, that is, ( )( ), ,h X dτ δ≤  
where δ  is a positive constant, we have 
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Since matrix Aε  is Hurwitz, there exists a finite time 1 0T >  
such that  
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for all 1,  1, 2,3.t T i≥ =   Q.E.D. 
2) Convergence of the ADRC 
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Theorem 2: Assuming that h  is bounded, there exist a 
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       IV. SIMULATION RESULTS  

We simulate the oscillation controller on the model of a 
piezoelectrically driven vibrational beam gyroscope [6]. The 
vibrational beam gyroscope consists of a 20mm-long steal 
beam and four piezoelectric strips which are attached to each 
side of the cross-section of the beam. Two of the strips are 
functioning as actuators, and the other two are acting as 
sensors. The beam is driven to resonance through one of the 
piezoelectric actuators. The deformation (or displacement) of 
the beam is transformed to voltage output through the other 
piezoelectric actuator. The voltage output of the actuator is 
proportional to its displacement. As the output is 100mv, the 
corresponding displacement of the beam gyroscope is 
approximately 1 micrometer. The natural frequency and 
damping coefficient of the gyroscope are ωn=63881.1rad/s 
and ς=0.0005 msN /⋅ . The desired frequency of drive axis is 
ω=65973.4 rad/s (f=10.17KHz), which is approximately 
equal to its natural frequency. Normally the displacement 
output amplitude of drive axis is A=10-6 m. So we choose 
100mv as the desired amplitude of the reference signal. We 
use A=0.1 in simulation units to represent this. Then the 
reference signal r = 0.1sin (65973.4t). The PSD of 
mechanical-thermal noise is 4.22×10-26 N2sec according to 
[8]. We assume the magnitude of Quadrature error term is 
0.1% of natural frequency according to [9]. We suppose the 
rotation rate is constant and 0.1 / .rad sΩ =  The coefficient 
b=K/m=271780942.56. For the ADRC and ESO, we choose 

a controller gain ωc as 5×104 and an observer gain ωo as 
25×104.  Fig. 2 (a) shows the real output x of drive axis and 
the reference signal r in the first 1ms. Fig. 2 (b) shows the 
output x and r in one period which is around 0.1ms as we 
desired. We can see that after initial deviation, the output x 
can track the reference signal r very well. Fig. 3 shows the 
tracking error between the reference signal r and the real 
output of drive axis x in different time ranges. The stabilized 
peak error is around 0.7% of the desired amplitude of the 
output x. Our simulation results demonstrate the robustness 
of the oscillation controller against parameter variations 
(within 40%) and mechanical-thermal noise.  
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V. ANALOG IMPLEMENTATION AND 
EXPERIMENTAL RESULTS 

We conduct the analog implementation of the ADRC onto 
the drive axis of the vibrational gyroscope because of fast 
response and low cost of the analog circuit. The setup 
diagram of the Analog Implementation of the ADRC Using 
Discrete Components (AIUDC) is shown in Fig.4. In Fig.4, a 
saturator is used to limit the amplitude of the control signal 
that prevents the fragile vibrational gyroscope from being 
broken by possibly large magnitude of the input. We choose 
100mv as the desired amplitude of the reference signal. The 
other parameters of the beam gyroscope are subject to the 
variations of 10%±  in the original values in practice.  
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    Fig. 4: Setup diagram of analog implementation of ADRC  

The reference signal and the real output of the drive axis 
are given in Fig. 5. The tracking error between the real output 
and the reference signal is shown in Fig.6. The peak error is 
about 10% of the original amplitude, which is bigger than the 
one in simulation. We believe this is mainly caused by the 
electronic noise coming from the circuit. However, the 
analog implementation of the ADRC produces a very fast 
response as shown in Fig. 7 where the output of the drive axis 
reaches the desired output within 0.14ms only. In [6], the 
same beam gyroscope is used for testing an adaptive 
controller which is also implemented by an analog circuit. It 
takes a much longer time (almost 3 seconds) for the adaptive 
control system in [6] to reach the steady-state response. In 
addition, with the application of the ADRC, the vibrational 
beam gyroscope achieved resonance for a bigger range of the 
input frequency (150Hz) than the range given in [6] (100Hz).  
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 VI. CONCLUDING REMARKS 

We explored a new application of the ADRC for 
controlling the driving mode of vibrational gyroscopes. The 
stability analysis shows that both the estimation error and the 
tracking error of the drive axis output are bounded and the 
upper bounds of the errors monotonously decrease with the 
increase of observer and controller bandwidths. The 
simulation and analog results validated the oscillation 
controller with the chosen controller and observer gains. In 
our future research, we plan to implement the ADRC on the 
sense axis of the vibrational gyroscope. We will also explore 
the possibility of using the ADRC to other MEMS sensors.  
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