
  

 
 

Abstract—This work presents a new application of Iterative 
Learning Control (ILC) in two respects.  Firstly, the output 
signal is generated by a machine vision system.  Secondly, ILC 
is applied to the extrusion process in Micro Robotic Deposition 
(μRD), directly addressing the end product quality instead of 
contributors to end product quality such as position tracking.  
A P-type and model inversion learning function are both 
applied to the extrusion process, a system that has nonlinear 
dynamics and no readily available volumetric flowrate sensor.  
Theoretical and experimental results show that the nominal 
system is first order with a pure time delay.  Both P-type and 
model inversion ILC improve the dynamics, with both systems 
providing better reference tracking.  The ILC compensates for 
the unmodeled nonlinearities, realizing a reduction of RMS 
error to less than 20% of the initial value for the model 
inversion approach.  Experiments are performed, displaying the 
ability to extrude precise and seamless closed shapes with the 
model inversion ILC.  This is a necessary requirement for 
transitioning materials and embedding sensors in multi-
material μRD. 

I. INTRODUCTION 
TERATIVE Learning Control (ILC) has been successfully 
applied to reference tracking problems on a variety of 

different machines used in repetitive manufacturing 
processes[1].  However, using ILC to control an actual 
process, not the positioning of manufacturing toolbits, has 
received less attention[2].  A potential application of ILC 
implemented into process control is the modulation of build 
material flowrate in Micro Robotic Deposition (μRD).  μRD 
is a Solid Free-Form fabrication process in which a colloidal 
ink is extruded through a nozzle in a defined trajectory to 
build three-dimensional structures[3].  The ceramic colloidal 
ink of interest here has carefully tailored viscoelastic 
properties to facilitate ink flow through a nozzle while 
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maintaining a stiffness appropriate for spanning structural 
gaps up to 2 mm[4].  These properties allow the fabrication 
of porous structures without the use of lost molds, making 
μRD a good fabrication method for applications such as 
artificial bone scaffolds[5,6], piezoelectric actuators[7], 
micro-fluidic networks[8], and photonic bandgap 
structures[9].  A schematic of the process and the micro-
extrusion system are shown in Figure 1.     
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Although μRD has been proven useful in these 

applications, the structural complexity for each application is 
limited by two factors: 1) μRD can only operate in steady-
state, requiring lead-in lines and continuous material 
extrusion and 2) an appropriate material flowrate sensor has 
yet to be developed.  With the advent of precise material 
flowrate modulation, the fabrication of complex structures, 
such as those with embedded sensors, multiple material 
properties, material discontinuities, and near-net shape 
fabrication, will be enabled.  An example of an embedded 
sensor is shown schematically in Figure 2.  Here a resistive 
element could span the interstices of this lattice structure to 
measure strain when the structure is loaded.  The deposition 
of this sensor would require the precise starting and stopping 
of ink flow, hence the motivation for the pulse-type input 
tested in this research.   
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I Fig. 1.  Micro-extrusion system.  (a) Schematic of system.  Ink is 
extruded in the form of rods.  (b) Extrusion mechanism. 
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There are a few challenges inherent to the μRD process 

that makes ILC an appropriate control technology.  As 
previously stated, there is currently no real-time material 
flowrate sensor available.  Instead, the material flowrate can 
only be inferred after the process is complete, eliminating the 
use of simple PID and lead-lag type controllers for feedback 
control of material flowrate.  For implementation in an ILC 
framework, the material flowrate can be calculated offline, 
processed by the ILC algorithm, and a new control signal can 
be applied to the next iteration.  Another challenge is that the 
material flowrate has a highly nonlinear response.  
Feedforward techniques such as feedforward model 
inversion have been shown to improve material flowrate 
modulation[10,11], however the system nonlinearities and 
modeling errors ultimately limit the effectiveness of this 
technique.  Instead, feedforward ILC has the capability to 
learn these nonlinearities and the correct system model, 
thereby providing a precise method to modulate material 
flowrate.  

This paper proceeds as follows.  The vision system 
implemented into the ILC framework and a validation of 
measurement accuracy are presented in Section II.  Section 
III presents the development of a model of the nominal 
extrusion system response along with experimental 
validation.  Section IV presents experimental results from a 
P-type and a model inversion ILC system and compares the 
results of the two control algorithms.  Section V displays the 
use of ILC to precisely modulate the ink flowrate when 
depositing two closed shapes.  Simple shapes such as these 
are applicable to embedded sensor deposition.  Section VI 
provides conclusions and future work. 

II. VISION SYSTEM 
Vision systems can be used to examine the end product or 

part characteristics at fabrication check points to provide 
sufficient information to significantly improve quality.  ILC 
by nature is conducive to the use of vision measurement 
systems.  Image data can be stored during fabrication, 
processed offline between iterations, and then used for the 
new control signal for the next iteration.  There are a vast 
number of potential applications of image based ILC for 
manufacturing beyond μRD, including stamping, forming, 
and injection molding.  Images of stamped, formed, or 
molded finished parts could be compared to an ideal shape 

contour and used as the output signal in ILC.   
Here a vision system is implemented into an ILC 

framework for the μRD process.  A typical μRD robot[12] is 
modified to include a video camera and lighting system 
focused on the nozzle tip, Figure 3.  During a deposition 
cycle, video of the extrusion of the white colloidal ink onto a 
contrasting black substrate is recorded.  At each point in 
time, the rod width at the outlet is measured from 
thresholded images of the individual video frames.  
Volumetric flowrate is calculated from the rod width using a 
piecewise continuous function (1) based on an assumed 
geometry of the rod cross-section, Figure 4, and the 
deposition velocity, equation (3).  The cross-section is 
assumed to be a circle flattened at the top and bottom by the 
nozzle and substrate respectively.  Cross-section images, not 
shown[10], along with μRD literature[3] support this 
geometric assumption.  Volumetric flowrate has been 
similarly measured in [13], but instead using a less 
automated technique. 
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and the flowrate is simply calculated by: 
 ;    5 mm/sout CSQ A v v= =  (3) 

There are several steps that need to be taken to develop a 
precise and accurate vision measurement system.  Foremost, 
the camera and lighting must be carefully adjusted to capture 

Fig. 4.  Assumed rod cross-section.  O is equidistant from the nozzle 
and substrate. 

Fig. 2.  Embedded resistive element to measure strain in the lattice on 
the left.   

Fig. 3.  Machine vision system.  (a) Schematic of vision system.  
Camera and light move along with the deposition system to maintain 
a constant image window.  (b) Image of vision system. 
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and properly illuminate the entire extruded rod so that 
reflections are not interpreted as the ink after thresholding 
images.  In video based systems, the video must be 
segmented, the individual frames cropped to the appropriate 
size, and the images spliced back together to capture the 
entire deposition process.  Here we demonstrate the accuracy 
of this measurement system in Figure 5.  First, a finite length 
of wire is measured as if it was extruded ink, Figure 5a.  The 
vision system measurement accurately calculates the rod 
width, as nominally measured by calipers, within 0.05 mm at 
the middle of the wire.  Next, the segmentation, image 
cropping, and splicing of images is tested by measuring the 
width of a V-shaped printout as the video system pans over 
the top.  If the image is properly reconstructed from video, 
the resultant measurement will increase linearly without 
discontinuities.  Figure 5b displays a linear signal with slight 
discontinuities that are mainly attributed to pixilation of the 
actual printout.  Furthermore, the images in Figure 14 are 
each 9 spliced together segments of video, showing nearly 
imperceptible transitions between segments.  Tasks such as 
these will need to be addressed to accurately measure system 
outputs in other vision based ILC systems.  Additional tasks, 
such as image alignment, feature recognition, correcting 
video unsteadiness and focal length inconsistencies, and 
computation time optimization can be anticipated in other 
applications. 
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III. MODEL DEVELOPMENT 
The micro extrusion system controlled here uses a plunger 

to apply pressure to a reservoir of ink, which in turn extrudes 
ink through a nozzle in the form of cylindrical rods, Figure 
1a.  The plunger is driven by a motor and lead screw 
mechanism, Figure 1b, and the entire mechanism is mounted 
to a XYZ motion system.  For the purpose of developing a 
simple model, the motion system and plunger dynamics are 
assumed to be sufficiently faster than the slow ink dynamics 
and are therefore ignored.    

The ink dynamics are modeled in two parts, first 
considering the compressible ink in the syringe reservoir as a 
control volume, Figure 6a, and second as a non-Newtonian 
fluid flowing through a nozzle, Figure 6b.  The model 
provides a transfer function relating the input (plunger 
displacement speed), and the output (volumetric flowrate at 

the nozzle exit).  Beginning with the control volume model 
in the syringe reservoir, with reasonable assumptions the 
compressible ink has the flow-pressure relationship in 
equation (4). 
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where the reservoir volume and control volume inflow in (4) 
are a function of plunger displacement: 
 0  and r r CS in CSV V A Q Aδ δ= − =  (5) 

Next the model for ink flow through the nozzle is 
developed.  The non-Newtonian colloidal ink is 
characteristic of a yield-pseudoplastic fluid.  Yield-
pseudoplastic fluids are extremely non-linear.  They behave 
as a solid when unstressed and do not deform until a shear 
stress above their yield stress is achieved[14].  Above the 
yield stress the fluid is pseudoplastic, or shear-thinning, 
meaning that the ink becomes less viscous as the shear rate 
increases.  Laminar flow of a yield-pseudoplastic fluid 
through a nozzle can be modeled by (6)[14]:  
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with the following parameters.   
 
 

Vr = Volume of ink in reservoir βi = Ink bulk modulus 
Pr = Reservoir pressure Acs = Cross-sectional area 

δ = Plunger displacement Qin = Control volume inflow 

Qout = Control volume outflow  

Fig. 5.  Two tests of the machine vision system.  (a) Accuracy test.  
Red lines represent mean wire width and one standard deviation from 
mean width.  5 caliper measurements.  (b) Image consolidation test.  
A perfectly measured signal would be perfectly linear. 

Fig. 6.  Schematics for model development.  (a) Control volume of ink 
within syringe reservoir.  (b) Velocity distribution, Vz, of yield-
pseudoplastic ink flowing through a nozzle.  Center of nozzle is an 
unyielding core of ink with radius Rp, surrounded by a shear-thinning 
outer layer at the nozzle wall.   

(a) (b) 

(a) (b) 

4543



  

R = Nozzle radius L = Nozzle length 

n = Flow behavior index m = Fluid consistency coefficient 

τw = Nozzle wall shear stress τy = Ink yield stress 

m and n are empirically derived parameters which describe 
the ink characteristics and can vary significantly between 
different ink materials and even between batches of ink.   

The nonlinear equation in (6) is not conducive to the 
development of a simple model to be used in the proof of 
concept study here.  If we assume the yield stress is small, 
therefore assuming the fluid to be pseudoplastic instead of 
yield-pseudoplastic, equation (8) replaces (6)[14].  
Furthermore, some of the parameters in (8) are constant 
during a given experiment and can be consolidated into the 
simpler equation (9), where the coefficient, C, and the 
denominator, D, are the consolidated constants.   
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Combining equations (4) and (9) gives: 
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Local linearization about some nominal reservoir volume, 
Vr0, and pressure, Pr0, results in a first order approximation 
of the ink outflow response to plunger velocity where the 
delay, λ, captures the time taken to exceed the material yield 
stress.   
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The steady-state gain and time constant are: 
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An experiment using the nominal reference signal (pulse-
type input) as the control signal validates model (11).  Figure 
7 shows the mean nominal response of 10 trials.  Table I 
presents the first order system parameters determined by 
fitting model (11) to the experimental data.  The 
experimental data agrees well with the continuous time 
model and the discrete time version used for model inversion 
ILC in Section IV.  The experimental data does deviate from 
the model at the end of the response where there are 
oscillations in the flowrate data.  These oscillations capture 
the intermittent flow behavior of the ink well after the falling 
step of the pulse-type input, Domain D, seen in Figure 8.  
The intermittent flow behavior results from the compressed 
ink seeping out of the nozzle, attaching to the substrate, and 
dragging a section of the highly cohesive ink out of the 
nozzle until the section breaks and the process restarts.  At 
these low flowrates, model (11) fails to account for this 
oscillatory behavior. 
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TABLE I 

NOMINAL PLANT FIRST ORDER DYNAMICS 

Parameter Rising Step (A) Falling Step (C) 

K 0.85 0.70 
τ (s) 2.6 1.4 

λ (s) 0.6 0 

 

IV. ILC IMPLEMENTATION 
The typical ILC flow diagram is modified when the output 

signal is measured post-process.  Instead of the output signal 
directly feeding into memory, an arbitrarily long processing 
time delay, Proc.q− , is added to the system, Figure 9.  The 
processing delay does not change the dynamics because all 
operations are suspended between iterations.  

 

 
Two different learning functions were tested.  The first 

was a P-type learning function with the form:  
 1 ( ) ( ) ( 1)j j p ju k u k k e k+ = + +  (13) 

 

 

Domain A 

Domain C 

Domain D 

Fig. 7. Nominal response to the pulse-type input.  Data is the mean of 
10 trials.  Response is divided into 4 domains, (A) rising step 
response, (B) steady-state response, (C) falling step response, (D) and 
intermittent flow behavior domain. 

Fig. 9.  Vision based ILC for μRD flow diagram. 

Fig. 8.  Deposition images from the nominal pulse-type input response.  
Bounding boxes show rod shape for perfect reference tracking.  All 
scale bars are 2 mm. 
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The second learning controller was a model inversion 
learning function with the form: 
 1

1
ˆ( ) ( ) ( ) ( )j j p ju k u k k P q e k−

+ = +  (14) 

The inverse plant, 1ˆ ( )P q− , was a modified discrete time 
version of the inverse of (11).  A fast zero was added to the 
plant model in order to make the inversion proper.  First 
order system parameters were empirically determined based 
on the falling step response, Domain C, of the nominal plant 
in Figure 7 of Section III.  1ˆ ( )P q−  had the frequency 
response seen in Figure 10, where there is a deviation 
between the continuous time and discrete time system at 
frequencies above 100 rad/s because of the fast zero added to 
make the inversion proper.  
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For both (13) and (14) the next iteration control signal was 

filtered using a second order Butterworth filter, with the 
filtering operation applied both forwards and backwards for 
zero phase shift.  Learning controller gain, kp, and Q-filter 
bandwidth were chosen to be the constants presented in 
Table II. 

 

V. RESULTS 

A. P-type ILC 
Results from the P-type learning function, (13), are shown 

in Figure 11.  After a sufficient number of iterations, P-type 
learning control significantly improves the reference tracking 
of the micro-extrusion system.  The time delay and slow rise 
time seen in the nominal response in Domain A is improved 
as is the steady-state tracking, Domain B.  Additionally, the 
long decay time in Domain C and intermittent flow behavior 

in Domain D seen without ILC is minimal by comparison.  
Although the response is improved over the nominal 
response, the system exhibits a large overshoot that grows 
with each subsequent iteration.    
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B. Model Inversion ILC 
The model inversion ILC, (14), provides better reference 

tracking results, as seen in Figure 12.  There is a minimal 
overshoot at the rising step, Domain A.  Also the measured 
flowrate tracks the reference flowrate at steady-state, 
Domain B, and the intermittent flow behavior in Domain D 
decreases with each iteration. 
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C. Comparison of P-type and model inversion ILC 
The superiority of model inversion ILC over P-type ILC is 

evident when comparing RMS errors, Figure 13.  The model 
inversion controller converges to a lower RMS primarily 
because the system does not overshoot the reference 
trajectory like the P-type controller.  Also, the system has a 

Fig. 12. Model inversion ILC response to the pulse-type input.  
Response is divided into 4 domains, (A) rising step response, (B) 
steady-state response, (C) falling step response, (D) and intermittent 
flow behavior domain. 

TABLE II 
LEARNING FUNCTION PARAMETERS 

Controller Type kp 
Bandwidth 

(Hz) 
P-type 0.40 15 
Model Inversion 0.25 6 

Fig. 11. P-type ILC response to the pulse-type input.  Response is 
divided into 4 domains, (A) rising step response, (B) steady-state 
response, (C) falling step response, (D) and intermittent flow behavior 
domain. 

Fig. 10.  Frequency response of 1ˆ ( )P s− and 1ˆ ( )P q− .  The 
continuous and discrete time systems deviate at frequencies above 
100 rad/s. 
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faster rise and decay time in Domains A and C, respectively, 
and tracks better in steady-state, Domain B.  After 20 
iterations, the model inversion controller decreases RMS 
error to less than 20% of the original value at iteration 1, as 
compared to less than 45% for the P-type controller. 
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Furthermore, the benefits of the model inversion are 

evident in the images of the 20th iteration, Figure 14.  The 
large overshoot in the volumetric flowrate is clearly shown in 
the right side of the P-type controller image of Domain A; 
whereas the rods of ink deposited with the model inversion 
controller closely approximate the ideal rod shape.   

 
The model inversion controller more accurately tracks the 

reference signal because model (11) developed in Section III 
is accurate.  When (11) is inverted for the model inversion 
ILC, the resultant learning function is a high pass filter, 
Figure 10.  Inherent to this high pass filter is a derivative 
term that enables the control signal to react more quickly 
than the P-type controller to the rising and falling steps and 
the overshoot seen in Figure 11.  As seen in Figure 15, the 
model inversion control signal rises and decays more rapidly 
than the P-type control signal, promoting better tracking of 
the pulse-type input.  The consequences of a higher 
frequency content control signal are not all beneficial.  In 
Domain D, the high frequency output signal from the 
intermittent flow behavior is amplified by the high pass 
filter, causing the control signal to oscillate around zero 

where the ideal signal would asymptotically approach zero, 
Figure 15.  Qualitatively, the P-type controller retracts the 
extrusion system plunger at the falling step, pulling a vacuum 
on the ink reservoir to quickly terminate ink flow.  However, 
the model inversion controller quickly retracts the plunger 
then pushes forward again as a result of the high amplitude 
response to abrupt changes in measured flowrate.  
Consequently, the model inversion controller does not 
eliminate the intermittent flow behavior in Domain D as well 
as the P-type controller. 
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VI. EXAMPLE EXPERIMENT 
Visual results of two closed tests shapes, a triangle and a 

circle, are shown in Figure 16.  Ink extrusion using the 
nominal reference signal as the control signal performs 
poorly, leaving the perimeter of both shapes open and 
extruding a length of ink beyond the perimeter of the shapes.  
The model inversion ILC significantly improves the 
extrusion performance, both seamlessly closing the perimeter 
of the shapes and minimizing the amount of excess ink 
outside the perimeter.   

 

      

         

 

Fig. 16.  Deposition of two tests shapes.  The cartoons on the left 
display the intended trajectory.  Ink extrusion is turned ‘Off’ during the 
dotted line segment and ‘On’ during the dashed line segment.  In both 
cases, the shapes deposited without ILC deposit incorrectly and the 
shapes with model inversion ILC are much improved.  Scale bars are 5 
mm. 

Fig. 13.  RMS error at each iteration for the P-type and model 
inversion ILC.   

Fig. 14.  Deposition images of iteration 20 using P-type and model 
inversion ILC.  Bounding boxes show rod shape for perfect reference 
tracking.  All scale bars are 2 mm. 

    

   

Domain A 

Domain C 

                     P-type             Model Inversion 

Domain A 

Domain C 

Fig. 15.  Control signal calculated by the P-type and model inversion 
ILC for iteration 21.   

           No ILC                 Model inversion ILC 
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VII. CONCLUSIONS 
Currently, μRD uses a steady-state ink flowrate, inhibiting 

the fabrication of structures with complex architectures.  The 
results here show the ability to use machine vision 
incorporated into an ILC framework to precisely modulate 
ink flowrate, enabling the deposition of complex 
architectures.  The vision system accurately measures the 
volumetric flowrate for this specific application, but similar 
vision systems have potential uses in other ILC applications.  
To implement a model inversion ILC, a model of the 
nominal plant was developed.  The nominal system model 
has a first order response with a long time delay, slow time 
constant, and a steady-state offset.  These poor dynamic 
properties are improved by both P-type and model inversion 
ILC algorithms.  The P-type learning controller significantly 
decreases rise and decay times to a pulse-type input and 
decreases the steady-state offset, however the system 
overshoots the reference trajectory.  The model inversion 
learning controller improves on the P-type controller, 
accurately tracking the reference with minimal overshoot and 
therefore converging to a lower RMS error.  The 
improvement is a result of the inherent derivative from the 
model inversion, however there is a consequence to the 
derivative term.  The derivate causes the system to react to 
sharp changes in the measured flowrate during a period of 
intermittent ink flow, causing the control signal to oscillate.  
When comparing the two controllers using the Domains 
given in Figure 7, the model inversion ILC performs better in 
Domains A, B, and C whereas the P-type ILC performs 
better in Domain D.  This suggests that future work may 
include time varying algorithms.  Finally, an example 
relevant to the deposition of interstitial structures, such as 
embedded micro-sized sensors, displays that the model 
inversion ILC properly extrudes the ink, producing structures 
with a seamless perimeter and minimal excess material 
outside the perimeter.   

ACKNOWLEDGMENT 
The authors would like to acknowledge Dr. Doug Bristow 

for his help with the ILC implementation and tuning. 

REFERENCES 
1 Bristow, D.A., Tharayil, M., and Alleyne, A.G., "A 

Survey of Iterative Learning Control," IEEE Control 
Systems Magazine, pp. 96-114, 2006. 

2 Lee, K.S. and Lee, J.H., "Iterative Learning Control-
Based Batch Process Control Technique for Integrated 
Control of End Product Properties and Transient 
Profiles of Process Variables," Journal of Process 
Control, vol. 13, pp. 607-621, 2003. 

3 Cesarano, J., Segalman, R., and Calvert, P., 
"Robocasting Provides Moldless Fabrication From 
Slurry Deposition," Ceramic Industry, vol. 148, no. 4, 
pp. 94-102, 1998. 

4 Smay, J.E., Cesarano III, J., and Lewis, J.A., "Colloidal 

Inks for Directed Assembly of  3-D Periodic 
Structures," Langmuir, vol. 18, no. 14, pp. 5429-5437, 
2002. 

5 Michna, S., Wu, W., and Lewis, J.A., "Concentrated 
Hydroxyapatite Inks for Direct-Write Assembly of 3-D 
Periodic Scaffolds," Biomaterials, vol. 26, pp. 5632-
5639, 2005. 

6 Miranda, P., Saiz, E., Gryn, K., and Tomsia, A.P., 
"Sintering and Robocasting of β-Tricalcium Phosphate 
Scaffolds for Orthopaedic Applications," Acta 
Biomaterialia, vol. 2, pp. 457-466, 2006. 

7 Smay, J.E., Cesarano III, J., Tuttle, B.A., and Lewis, 
J.A., "Piezoelectric Properties of 3-X Periodic 
Pb(ZrxTi1-x)O3-Polymer Composites," Journal of 
Applied Physics, vol. 92, no. 10, pp. 6119-6127, 2002. 

8 Therriault, D., White, S.R., and Lewis, J.A., "Chaotic 
Mixing in Three-Dimensional Microvascular Networks 
Fabricated by Direct-Write Assembly," Nature 
Materials, vol. 2, pp. 265-271, 2003. 

9 Gratson, G.M., Xu, M., and Lewis, J.A., "Direct Writing 
of Three-Dimensional Webs," Nature, vol. 428, pp. 386, 
2004. 

10 Hoelzle, D.J., “Reliability Guidelines and Flowrate 
Modulation for a Micro Robotic Deposition System,” 
M.S. Thesis, Department of Mechanical Science and 
Engineering, University of Illinois at Urbana-
Champaign, Urbana, IL, 2007. 

11 Han, W. and Jafari, M.A., "Coordination Control of 
Positioning and Deposition in Layered Manufacturing," 
IEEE Transactions on Industrial Electronics, vol. 54, 
no. 1, pp. 651-659, 2007. 

12 Bristow, D. and Alleyne, A., "A Manufacturing System 
for Microscale Robotic Deposition," Proceedings of the 
American Controls Conference, pp. 2620-2625, 2003. 

13 Bellini, A., Güçeri, S., and Bertoldi, M., "Liquefier 
Dynamics in Fused Deposition," Journal of 
Manufacturing Science and Engineering, vol. 126, pp. 
237-246, 2004 . 

14 Chhabra, R.P., Richardson, J.F., Non-Newtonian Flow 
in the Process Industries.  Oxford, UK: Butterworth-
Heinemann, 1999. 

 
 

4547


