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Abstract— In this paper, we present a real-time dynamic
minmax optimization technique over finite-time horizon applied
to the building “demand response” problem. The technique
is suitable for peak minimization and other types of minmax
problems that arise in robust control problems. As in MPC,
the optimization algorithm is based on the minimization of
a cost function whose minimization provides stability to the
closed-loop system. This approach is applied to the peak power
demand control problem where electricity consumption and
peak power usage in a building has to be controlled in response
to real-time pricing. We demonstrate application of this method
to a supervisory control problem for building HVAC control
that involves minimization of fixed horizon electric utility cost.

Index Terms— real-time optimization, minmax optimization,
model predictive control, demand response

I. INTRODUCTION: DEMAND RESPONSE

The minmax real-time optimization problem over fixed-
horizon is motivated by the peak power demand response
problem where electricity consumption has to be controlled
in response to real-time generation capacity and real-time
pricing [1]. In electricity grids, demand response (DR) refers
to mechanisms to manage the power demand from customers
in response to supply conditions, for example, having elec-
tricity customers reduce their consumption at critical times or
in response to peak market prices. In addition to controlling
the energy consumption, there is significant need to reduce
peak demand response.[2], [3]. In addition to monthly energy
usage cost, the utility providers also charge for peak power
usage. The cost to end-use consumer is, therefore, a sum
of L2 and L∞ norm of power consumption over a fixed
month horizon. The power usage is a strong function of
the building usage pattern, weather, thermal dynamics and
comfort requirements. Therefore, the problem involves real-
time control of resources (lighting, HVAC, etc.) in response
to model based predictions of energy and utility costs.
In demand response, customers, often through the use of
dedicated control systems, shed loads in response to a request
by a utility or market price conditions.

In this paper, we represent this problem as a real-time
dynamic minmax optimization technique over finite-time
horizon. Minmax optimization problems also form the basis
of most robust model predictive control techniques and
differential games. Relatively few algorithms have been
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devised for the solution of minmax dynamic optimization
problems. In [4]-[5], a technique for the solution of minmax
dynamic optimization problems is proposed. It is shown
how one can cast the minmax problem into a standard
dynamic optimization problem that is amenable to standard
solution techniques. This reformulation can be exploited for
the development of real-time minmax algorithms.

In this paper, we use a real-time dynamic minmax opti-
mization technique presented in [6]. The technique, based on
the reformulation given in [4], is suitable for peak minimiza-
tion and other types of minmax problems that arise in robust
control problems. As in MPC, the optimization algorithm
is based on the minimization of a cost function whose
minimization provides stability to the closed-loop system.
An interior point method with penalty function is used to
incorporate constraints into a modified cost functional, and
a Lyapunov based extremum seeking approach is used to
compute the trajectory parameters. A precise statement of
the numerical implementation of the optimization routine is
provided. It is shown how one can take into account the effect
of sampling and discretization of the parameter update law.

The layout of the paper is as follows. Section II pro-
vides a description of the real-time dynamic optimization
technique and its numerical implementation. Some particular
implementation issues are discussed in Section III. A brief
simulation study is provided in Section IV followed by some
brief conclusions.

II. REAL-TIME DYNAMIC OPTIMIZATION KKK

A. Minmax dynamic optimization problem
We consider a general class of nonlinear dynamical sys-

tems of the form:
ẋ = f(x, u) (1)

where x ∈ Rn are the state variables and u ∈ Rp is the
vector of input variables, f(x) : Rn → Rn is a smooth
continuous functions of x. There is a vector u(t) = [u1...up]
of p input variables.

The optimization centers around finding a system trajec-
tory that solves the following minmax dynamic optimization
problem:

min
u(t)

J(u) =
∫ T

0
q(x(t), u(t))dt

+ max
t∈[0,T ]

F (t, x(t), u(t))

subject to
ẋ = f(x, u)
x(0) = x0, x(T ) = xf , w(x, u) ≥ 0 (2)
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where F (t, x(t), u(t)) : R × Rn × Rp → R+ is a smooth
function of t, x and u whose peak value is to be minimized.
The constraint function w(x, u) : Rn×Rp → Rρ is assumed
to be a smooth vector valued function of x and u. The cost
functional q(x, u) : Rn×Rp → R+ is assumed to be smooth
and locally convex function of x and u. It is assumed that a
continuous control, u(t) exists that can steer the states from
x0 to xf over the batch interval t ∈ [0, T ]. Although T
can be treated as a time-varying parameter, in the following
discussion T is considered to be fixed.

The input trajectories are parameterized

u(t) =
[

u1 . . . up(t)
]

(3)

where

ui(t) =
N∑

i=1

θijΞij(t) (4)

where Ξ are the basis functions and θi for i = 1, . . . , N and
j = 1, . . . , p are the parameters to be determined. The state
space equations can be rewritten in terms of θ and the initial
conditions. If the input is defined as a polynomial then

ui = θT φ(t) (5)

where the parameters and basis functions are expressed as
follows

θ =
[

θ1 . . . θN

]
(6)

φ(t) =
[

1 t . . . tN−1
]
. (7)

The vector xp(τ, t, θ;xm(t)) represents the predicted quan-
tity of the states at time τ starting from state xm(t) at
time t for τ ≥ t for the parameter θ. In the remainder,
the superscript m denotes a measured quantity, and the
superscript p denotes a predicted quantity. The system of
differential equations (1) must be solved to determine xp.

Having defined the structure of admissible input trajecto-
ries, the dynamic optimization problem can be expressed in
terms of the parameters as follows

min
θ

J(θ) =
∫ T

0
q(xp(t, 0, θ;xm(0)), θT φ(t))dt

+ max
t∈[0,T ]

F (t, xp(t, 0, θ; xm(0)), θT φ(t))

subject to
ẋp = f(xp(t), θT φ(t))
xp(0) = xm

0

xp(T, 0, θ; xm(0)) = xp
f

w(xp(t, 0, θ; xm(0)), θT φ(t)) ≥ 0

(8)

The minmax problem must be restated to facilitate the
development of a real-time optimization technique. Let F ∗

be the unknown maximum value of the function F (t, ·, ·):

F ∗ = max
t∈[0,T ]

F (t, xp(t, 0, θ; xm(0)), θT φ(t))

Treating this unknown maximum F ∗ as a parameter we can
rewrite the optimization problem (8) as follows:

min
θ,F∗

J =
∫ T

0
q(xp(t, 0, θ;xm(0)), θT φ(t))dt + F ∗

subject to
ẋp = f(xp(t), θT φ(t))
xp(0) = xm

0

xp(T, 0, θ;xm(0)) = xp
f

w(xp(t, 0, θ;xm(0)), θT φ(t)) ≥ 0
F ∗ − F (t, xp(t, 0, θ; xm(0)), θT φ(t)) ≥ 0

(9)

The main challenge with this problem remains the minmax
problem. The following assumptions are necessary for the
design of the real-optimizing predictive controller which
solves the optimization problem.

Assumption 1: The parameters are assumed to evolve on
a compact convex set

ΩW =
{
θ ∈ RN | ‖θ‖ ≤ wm

}
(10)

where wm > 0 is a positive constant.
Assumption 2: The constraint set

Ωc = {x ∈ Rn, u ∈ Rp|w(x, u) ≥ 0, F (t, x, u) ≤ F ∗}
(11)

describes of convex subset of the parameter set Ωw, ∀t ∈
[0, T ] and ∀F ∗ ∈ R.

Assumption 3: It is assumed that the input variables
evolve on a compact subset Ω of Rp. The cost functional
J : ΩW → R is assumed to be locally convex and Lipschitz
continuously differentiable on ΩW . The cost function q(x, u)
is assumed to be sufficiently smooth.

Assumptions 1-3 are needed to handle the parameterized
constraints using an interior point method with penalty
function. An interior point method incorporating a log barrier
function enforces the state and input constraints. The bound-
ary conditions are incorporated through a terminal penalty
function. In the remaining equations obvious notation has
been omitted.

Let the path cost with the log barrier function be expressed
as follows

L(xp(t), θT φ(t)) = q(xp(t), θT φ(t))

−
ρ∑

i=1

µilog(wi(xp(t), θT φ(t)) + εi) (12)

−µ0 log
(
F ∗ − F (t, xp(t), θT φ(t)) + ε0

)

where xp(t) = xp(t, 0, θ; xm(0)) and where µi and εi

(i = 0, 1, . . . , ρ) are strictly positive constants. The new
cost functional with interior point inclusion and a penalty
function is defined as follows

Jip =
∫ T

0
L(xp(τ), θT φ(τ))dτ + M(xp(T )− xp

f )2 (13)

where M > 0 is a strictly positive constants. The tuning
parameters of the cost functional are such that µ and ε
are taken as small as possible, and M is taken as large
as possible. While the focus of this paper is on convex
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problems, so-called infeasible interior-point method can be
used to solve nonconvex problems.

B. Real-time Optimization algorithm
The objective of this study is to develop a real-time

algorithm for the solution of minmax dynamic optimization
problems, as stated above. To do so, we first decompose the
overall cost into two parts. The first part takes into account
the cost incurred up to time t. The second part provides
an estimate of the cost-to-go at time t. A model predictive
approach is used to estimate the cost-to-go. The real-time
cost estimate at time t is given by:

Jip =
∫ t

0
Lm(xm(τ), u(τ))dτ

+
∫ T

t
Lp(xp(τ, t, θ;xm(t)), θT φ(τ))dτ (14)

+M(xp(T, t, θ; xm(t))− xp
f )2

The first term represents the actual cost being calculated from
the measured states and inputs. The second and third terms
give the estimated cost-to-go using the current parameters
and the corresponding model predictions, xp(τ, t, θ;xm(t)).

A Lyapunov-based approach is used to solve the optimiza-
tion problem [7]. Assuming that the cost functional is convex
with respect to θ over Υ, then the first order conditions can
be applied such that at the optimal parameter set θ∗

∇Jip(θ∗) = 0. (15)

The Lyapunov function is defined as the cost functional

V = Jip (16)

and the time derivative is given by

V̇ = ∇θJipθ̇ + Lm|t − Lp|t (17)

By definition xp(t) = xm(t) and ensuring that up(t) =
um(t) then

V̇ = ∇θJipθ̇ (18)

Using a straightforward steepest descent approach for the
parameter update law

θ̇ = −k∇θJip. (19)

Then the final form of the Lyapunov function is

V̇ = −k∇θJ
T
ip∇θJip. (20)

The Lyapunov function is strictly decreasing except when
the gradient is zero (which occurs at the minima, and at the
end of the batch).

To ensure that the parameters remain in the convex set
ΩW , a projection algorithm is introduced. The properties of
the projection algorithm are discussed in [8]. This algorithm
is given as follows

θ̇ = Proj(θ,Υ) =






Υ, if‖θ‖ < ωn

or(‖θ‖ = ωnand
∇P (θ) ≤ 0)

Ψ, otherwise

where Ψ = Υ − Υ ς∇P (θ)∇P (θ)T

‖∇P (θ)‖2ς
,Υ = −k∇θJip, P (θ) =

θT θ − ωm ≤ 0, θ is the vector of parameter estimates and
ωm is chosen such that ‖ θ ‖≤ ωm.

C. Numerical Implementation

In most applications, it is not possible to solve the opti-
mization problem continuously. One must limit the number
of times the gradient information must be updated. Moreover,
some form of discretisation of the control action is usually
required to account for sampling effects. One simple way to
account for this effect is to implement the gradient algorithm
via finite difference formula such as a Euler method. This
section provides a possible simplification of the optimization
routine that operates in a discrete-time framework.

Assume that process measurements are available at in-
tervals of ∆t. The most simple finite difference parameter
update formula is given by the Euler formula:

θn+1 = θn + ∆tProj(θn,Υn) (21)

where θn is the value of the parameter updates at time step
n and Υn = −k∇θnJip(tn+1, xp(tn+1, θn;xm(tn)), θn)
where xp(tn+1, tn, θn; xm(tn)) is the prediction of the state
variable at time tn+1 computed with initial condition xm(tn),
the state measurement at time tn, using the parameter esti-
mate θn. We will use the notation Jn to represent the cost
Jip evaluated at time tn using parameter estimate θn with
state measurement xm(tn).

The main advantage of using a simple finite difference
approach is to limit the need for the computation of the
gradient. Naturally, one must ensure that the choice of ∆t
provides a reasonable approximation.

The first fundamental question relates to the existence of
such a ∆t such that Jip is minimized at each step. This is
stated in the following result.

Theorem 1: Let the optimization problem stated be such
that assumptions 1-3 are satisfied. Then there exists a ε∗ > 0
such that ∀∆t < ε∗, the value of Jn+1 < Jn ∀n ∈ Z.
Proof: See [6].

As a consequence of Theorem 1, we get the following
feasibility result.

Corollary 2: The real-time optimization scheme is feasi-
ble if the time required to compute the gradient is less than
or equal to ε∗.

In the next section, we will consider the demand response
problem for building HVAC control application and demon-
strate the feasibility of the proposed optimization scheme.

III. BUILDING DEMAND CONTROLS PROBLEM

A. Plant Description

The plant consists of a building that is equipped with a
hydronic plant that supplies chilled water to fan-coil units
situated in the building rooms. The building (see Figure
1) consists of five rooms, with four exterior rooms facing
different orientations and a interior room, that are subject to
various thermal disturbances. The exterior walls exposed to
direct and diffused solar irradiation and outside temperature.
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Fig. 1. Layout of the rooms.

Additionally, windows on outer rooms allow a certain frac-
tion of incident solar irradiation into the room. The room is
cooled (or heated) by fan-coil units (FCU) that consist of a
cross-flow heat exchanger and an electric heater. A fan and
a valve controls (see Figure 2) the amount of air and water
flowing through the heat exchanger. The room air thermal
dynamics is governed by

Cair
dTr

dt
= Qfcu + Qload (22)

Qload = kwi(Twi − Tr) + Qsol,win + Qint (23)

where Tr is the room temperature, Twi is interior wall
temperature, Qfcu is heat-exchanged with the fan-coil unit
and Cair is the thermal mass of air. The heat-transfer rate
Qfcu is modeled using an ε-NTU model [9] that depends
on the flow-rates and inlet temperature difference of the
two fluids. A state-machine and local level PI controller
selects the FCU operating mode (heat/cool/off), electric
heater toggle, fan speed and valve positions in order to
maintain a specified room temperature, Tr,sp. The aggre-
gated heat-load Qload entering the room air consists of
convective heat from the interior walls kwi(Twi − Tr),
transmitted solar irradiation Qsol,win, and internal heat loads
(lights/occupants/equipment) Qint. The wall thermal dynam-
ics are given by

Cxi
dTxi

dt
= kai(Tr − Txi) + hx1(Txm − Txi) (24)

Cxm
dTxm

dt
= hx1(Txi − Txm) + hx2(Txo − Txm)(25)

Cxo
dTxo

dt
= hx2(Txm − Txo) + kao(Tout − Txm)

+Qsol,wall + QLW (26)

where Txi, Txm, Txo and Cxi, Cxm, Cxo are temperatures
and thermal capacities of the interior wall (plaster/gypsum),
middle wall (insulation) and exterior wall/ceiling
(brick/concrete), respectively. Here, Tout is the outside
air temperature, k(·) defines the convective heat transfer
from wall to air, and h(·) defines the conductive heat
transfer between the wall layers. The longwave radiative
heat exchange, QLW is of the form εLWσSB(T 4

env − T 4
xo),

where εLW is the emmisivity of the outer wall or ceiling,
σSB is the Stefan-Boltzmann constant, and Tenv is the

effective “environment” temperature for computing long-
wave radiation. The chilled water plant (see Figure 2)

Air-Cooled
Chiller

Secondary
Pump

Primary
Pump

Bypass

Storage
Tank

charge

discharge

Chilled 
water to 
building

Chilled 
water from
building

Supply temp

Supply
pressure

Bypass
Proportion

(tank)

Supply flow

Valve Valve

Delay
(supply pipe)

Room j

Air to 
room

Fan

Room k

Air to 
room

Fan

T
Set point

T
Set point

Fan-coil
units

Fig. 2. Schematic of the building HVAC system with supervisory control
points highlighted.

consists of a chiller, a primary water pump, a secondary
water pump and a chilled water storage tank. The primary
pump controls the “primary flow” ṁp through the chiller.
The secondary pump (secondary flow, ṁs) supplies chilled
water to the FCUs using a piping network which introduces
variable transport delay that depends on the location of
the FCU in the network and the flow-rate. The secondary
pump is controlled to provide a fixed pressure drop dPs

over the building. In case the primary flow is larger than the
secondary flow, excess water flow is returned to the chiller
through a bypass after mixing with the returned building
water. In case the secondary flow is larger than the primary
flow, the excess water is returned back to the building after
mixing with the primary chilled water supply. A portion
of the bypassed flow, ṁb = ṁp − ṁs can be used to used
to ”charge” the chilled water tank in the former case, and
”discharge” the tank in the later case. The tank is modeled
as a two equal finite volumes, top-tank and bottom-tank,
with temperatures Ttt and Ttb which are defined by

CT
dTtb

dt
= uT ṁbcpw(δTsw + (1− δ)Ttt − Ttb)

+kaT (Tout − Ttb) + hw(Ttt − Ttb) (27)

CT
dTtt

dt
= uT ṁbcpw(δTtb + (1− δ)Trw,b − Ttt)

+kaT (Tout − Ttt) + hw(Ttb − Ttt) (28)
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where CT is the thermal capacity of half-tank, Trw,b is
the temperature of the building return water, Tsw is the
temperature of the supplied water (chiller), uT is the fraction
of bypass flow ṁb which flows through the tank, kaT defines
convective loss to ambient, and hw defines the conductive
heat transfer between upper and lower water volumes. Here,
δ = 1 in case ṁb > 0 and δ = 0 otherwise.

The chiller is a refrigeration system which regulates the
supplied chilled water temperature, Tsw,sp. The power con-
sumption of the chiller is modeled as an empirical function
of the form,

Qchiller = a0 + a1Trw + a2ṁp + a3Tsw + a4Tout

+a5TswTout + a6T
2
out + a7T

2
sw (29)

Pchiller = b0 + a1Trw + b2ṁp + b3Tsw + b4Tout

+b5TswTout + b6T
2
out + b7T

2
sw (30)

where Trw is the temperature of the water entering the
chiller, Tsw is the temperature of the supplied chilled water,
Qchiller = ṁpcpw(Tsw − Trw) is the cooling provided, and
Pchiller is chiller power consumption. Note that, Trw is the
temperature of the water after bypass and building return
mix, in case ṁb > 0.

B. Fixed horizon MPC Problem
We consider a problem of fixed-horizon predictive control

of setpoints of various HVAC equipments (see Figure 2) in
a building. The total cost is the fixed-horizon (e.g. monthly)
electric bill ($) that consist of a weighted integral of the
power consumption, weighted maximum of peak-time power
usage, and a weighted maximum of off-peak-time power
usage. Let P be the total power consumed by the chiller,
primary pump, secondary pump, electric heater and fans in
the fan-coil units, we(t) be the energy-rate in $/kWhr, wp(t)
and wop(t) are peak and off-peak demand charge in $ per
peak kW. Using notation in (2), the cost is given by

J(u) =
∫ T

0
we(t)P (x(t), u(t))dt

+ max
t∈[0,T ]

wp(t)P (x(t), u(t))

+ max
t∈[0,T ]

wop(t)P (x(t), u(t)) (31)

where the control input u = [u1, u2, u3, u4, u5]T, where
u1 = ṁp is the primary flow set-point , u2 = Tsw,sp is
chiller supply water temperature setpoint, u3 = Tr,sp is room
temperature setpoint, u4 = dPs is secondary pump pressure
drop setpoint, and u5 = uT is chilled storage tank flow
fraction. The objective is to minimize J(u) over the fixed
horizon T subject to interval control constraints of the form
ui ∈ (ui,low, ui,high), where ui,low and ui,high could be time
varying. For numerical simplification, we used normalize
control variables ũi with respect to upped and lower bounds,
so that ũi = (ui,high−ui)/(ui,high−ui,low) and ũi ∈ (0, 1).

C. Parametrization
In this paper, we first consider the simplest possible

parametrization where each input assumed to remain con-

stant. Given the real-time nature of the optimization algo-
rithm, the resulting controls will be time varying but the
optimization part is performed subject to a constant input
parametrization. More elaborate parametrizations can be in-
corporated in this framework. Two minimax parameters must
be added to the optimization to account for the contributions
of peak cost and off-peak cost to the overall energy cost for
the building.

D. Results
In our numerical example, the chilled water plant consists

of a 18kW chiller with a primary nominal flow rate of 0.55
kg/s, FCUs with nominal capacity of 3.2 kW and a 1 m3

chiller water tank. The solar loads and ambient conditions
are extracted from the TMY database for Hartford, CT in the
months of July. Typical outside air temperature and solar irra-
diation densities are shown in figures 3 and 4, respectively.
The rooms are of size 10m×8m×4m with interior walls,
insulation and exterior brick wall. The internal load schedule
including lights, equipment and room-occupancy are chosen
to correspond to a typical office application (8am-6pm). For
u3 = Tr,sp we consider that the upped and lower bounds are
dynamic based on the occupancy schedule for the building,
and are shown in Figure 5.
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Fig. 3. Typical outside air temperature Tout.
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Fig. 4. Incident solar irradiation density (typical day) Qsolar .

For demonstration purposes, we consider a fixed horizon
of T = 15 days. In our case, we choose an energy rate we(t)
as shown in Figure 6, peak demand charge of wp(t) = $14.5
per peak kW during the peak hours of 2pm-6pm and zero
elsewhere, and off-peak demand charge of wop(t) = $4.5
per peak kW during the off-peak hours and zero elsewhere.

The real-time optimization approach was implemented in
a one-day simulation. The nominal cost of the problem is
computed using the following input values: u1 = 1,u2 =
280.15,u3 = 297.15,u4 = 1,u5 = 0.4. The worst case
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Fig. 5. Dynamic constraints on temperature u3 = Tr,sp .

peak cost was fixed at 70 and the off-peak cost at 22.
These values were used as initial estimates for the real-
time optimization technique. The nominal cost was computed
using standard log-barrier functions for the worst case costs.
Input constraints could simply be enforced using a projection
algorithm in this case.

Figure 7 shows the decrease of the cost functional with
time. A sampling time of one hour was used in this case. It is
important to note that the total cost optimized is composed of
the past cost and the future cost at any given point in time.
The final cost is the actual cost incurred by the process.
The results show a steady decrease of the cost. Figure 8
shows the resulting control action. A final value of 1.81 was
obtained. The off-peak cost and peak cost obtained are given
by 19.3 and 14.0, In comparison, the nominal energy cost
obtained was given by 4.1 and the off-peak and peak costs
were 61.1 and 17.5. Results demonstrate that the real-time
optimization procedure can provide significant reductions in
energy costs despite a rather coarse sampling regime and a
simplistic parametrization. For the purpose of this paper, we
have limited ourselves to a simpler example. A more detailed
simulation study will be provided involving a more elaborate
parametrization evaluated over a 15 day period.
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Fig. 6. Energy rate we(t) in (31).

IV. CONCLUSION AND FUTURE WORK

In this paper, we applied a real-time dynamic optimization
technique developed for a class of minmax optimization
problems to a building demand response problem. Smooth
trajectories were generated on-line with feasible computing
time to construct optimal trajectories without the need for
off-line analysis. In future work, we plan to study the impact
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Fig. 7. Total cost from the real-time optimization routine.
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Fig. 8. Control inputs from the real-time optimization routine. The top
graph shows inputs u1 (full line), u4 (dotted line) and u5 (dashed line).
The middle graph shows input u2 and the bottom, u3.

of imperfect state measurements and parametric uncertain-
ties.
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