
 

  
Abstract—In traditional Adaptive Dynamic Programming 

(ADP), only one step estimate is considered for training process，  
Thus, learning efficiency is lower. If more steps estimates are 
included, learning process will be speed up. Eligibility traces 
record the past and current gradients of estimation. It can be used 
to work with ADP for speeding up learning.  In this paper, 
Heuristic Dynamic Programming (HDP) which is a typical 
structure of ADP is considered. An algorithm, HDP(λ), 
integrating HDP with eligibility traces is presented. The 
algorithm is illustrated from both forward view and back view for 
clear comprehension. Equivalency of two views is analyzed.  
Furthermore, differences between HDP and HDP(λ) are 
considered from both aspects of theoretic analysis and simulation 
results. The problem of balancing a pendulum robot (pendubot) is 
adopted as a benchmark. The results indicate that compared to 
HDP, HDP(λ) shows higher convergence rate and training 
efficiency.  
 

Index Terms—Heuristic dynamic programming, Adaptive 
dynamic programming, Eligibility trace, Pendulum robot 
 

I. INTRODUCTION 
daptive Dynamic Programming (ADP) [1] is an 
optimization technique combining concepts of 

reinforcement learning and approximate dynamic 
programming. An optimal control policy for the entire range of 
initial conditions can be obtained by ADP with small 
computational cost. Thus, ADP has received more and more 
research and application attentions. 

In optimal control area, dynamic programming as a useful 
tool has been applied to many different fields such as 
engineering, economics, and so on [2-3]. But it connects with 
very high computational cost which is called “curse of 
dimensionality” [4]. This disadvantage limits application of the 
dynamic programming to low dimensional problems. 

A key step of ADP is to estimate the cost function in the 
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dynamic programming. Artificial neutral network has universal 
approximation capacity for nonlinear functions. Thus, it is 
adopted to estimate the cost-to-go function in the dynamic 
programming for solving the above defects. ADP can achieve 
optimal control result from random initialization. During 
training, ADP only needs to know the desired cost. Many 
contributions have been achieved in this area from different 
aspects [5-9]. 

The existing ADP algorithms are often classified into three 
categories: 1) Heuristic dynamic programming (HDP); 2) Dual 
heuristic dynamic programming (DHP); 3) Globalized dual 
heuristic dynamic programming (GDHP). Learning strategies 
are different for three categories. For the first category, the 
approximate cost function J  is calculated as training signal; 
the second selects the derivative of J ; and the third selects 
both J  and its derivative. The action dependent (AD) versions 
of the above architectures are also presented. AD refers to the 
design that the action output is also taken as one input of the 
critic network. The structure of ADP is usually composed of 
three modules: model network, action network, and critic 
network. However, considering different learning strategy, the 
model is needed for DHP and GDHP algorithms. However, this 
need makes their learning process more complicated. 

The traditional ADP is a case with only one step estimate, 
changing an earlier estimate based on how it differs from a later 
estimate. If more information is considered, updating of the 
control police will be more effectively. Eligibility traces can 
record the past and current gradients, and its adoption could 
speed up the learning process. It offers significantly fast 
learning, particularly when rewards are delayed many steps. 
Thus it often makes sense to use eligibility traces when data are 
scarce and cannot be repeatedly processed, as is often the case 
in online applications. Eligibility traces have been used in 
reinforcement learning such as Q-learning and Sarsa [10-13]. 
But for ADP, initial exploration about combination between 
eligibility traces and training of ADP was only introduced in 
[14]. This paper focuses on designing an ADP algorithm with 
eligibility traces, and investigating the performance of 
considering more than one step estimate. Heuristic dynamic 
programming with eligibility traces, HDP(λ) will be proposed 
and described in detail with the following sections. 

This paper is organized as follows: Section II describes the 
structure of the traditional HDP algorithm adopted in this paper. 
Section III presents the combination of eligibility traces and 
HDP. Section IV provides a case study of pendulum robot 
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benchmark plant. Some conclusions are given in the last 
section. 

 

II. HEURISTIC DYNAMIC PROGRAMMING 
A schematic diagram of the action dependent heuristic 

dynamic programming (ADHDP) is shown in Fig. 1. 
 

γ

 
 
Fig. 1. Schematic diagram of the action dependent heuristic dynamic 
programming. The solid lines represent signal flow, while the dashed lines are 
the paths for parameter tuning 
 

The inputs of the action network are the system states ( )x t . 
The output of the action network is the control variable ( )u t . 
The system states ( )x t  and the control variable ( )u t  are 
chosen as the inputs of the critic network. The output ( )J t  of 
the critic network is defined as estimating the discounted total 
cost-to-go. 

In traditional HDP, the error ( )ce t  and the objective function 
( )cE t  for training the critic network are defined as follows: 

 
( ) ( ) ( ) ( 1) ( )ce t r t J t J t tγ δ= + − − =   

21
2( ) ( )c cE t e t= , (1) 

 
where γ (0 1)γ< <  is a discount factor for infinite-horizon 
problems, and 0.85γ =  is used in the case studies. ( )tδ  is 
one-step error. 

The purpose of training the critic network is to adjust the 
error ( )ce t  close to zero. Thus, the following equation could be 
derived 
 

1

1
( ) ( 1) ( 2) ( ) ( )k t

k t
J t r t r t r k R tγ γ

∞
− −

= +
= + + + + = =∑ . (2) 

 
Equation (2) accords with the form defined in the Bellman 

equation. ( )R t  is the sum of the sequenced rewards. 
For the training of the action network, the error ( )ae t  and the 

objective function ( )aE t  are defined as follows: 
 

( ) ( ) ( )a ce t J t U t= −  

21
2( ) ( )a aE t e t=  (3) 

 
where ( )cU t  is the desired ultimate objective. 

For training the action network and the critic network 
gradient descent method is often adopted. The whole training 
process is described as follows. Beginning with a set of random 
inputs for the network weights ( )aw t  and ( )cw t  of the action 
and critic networks respectively, the system state ( )x t  is 
sampled. Subsequently, the output of the action network ( )u t  
is calculated. Furthermore, the cost-to-go ( )J t  and the 
reinforcement signal ( )r t  could be received. The following 
update algorithms are adopted to adjust the weights of these 
two networks. 
 

( 1) ( ) ( )c c cW t W t W t+ = + Δ   
( ) ( ) ( )( ) ( )[ ] ( )
( ) ( ) ( )

( )          ( ) ( )
( )

c c
c c c

c

c c

E t E t J tW t l t l t
W t J t u t

J tl t e t
u t

∂ ∂ ∂
Δ = − = −

∂ ∂ ∂

∂
= −

∂

 (4) 

  
( 1) ( ) ( )a a aW t W t W t+ = + Δ   

( ) ( ) ( )( ) ( )[ ] ( )
( ) ( ) ( )

( )          ( ) ( )
( )

a a
a a a

a

a a

E t E t J tW t l t l t
W t J t u t

J tl t e t
u t

∂ ∂ ∂
Δ = − = −

∂ ∂ ∂
∂

= −
∂

 (5) 

 
where ( ) 0cl t >  and ( ) 0al t >  are the learning rates of the critic 
and the action networks at time t , respectively. 

HDP adjusts an earlier estimate based on how it differs from 
a later estimate. Only one step estimate is considered in the 
traditional HDP algorithm. When a state is visited, its activity 
becomes higher and then gradually decays until the same state 
is revisited. If more information of future states is included, 
then it will have much more opportunities to be inspired for 
"truth" in future time. 

 If more information is considered, updating of the control 
police will be more effective. But calculation will need much 
time and memories if all infinite states are considered. One kind 
of compromise would base on consideration of some further 
states from current state. More than one state, but less than all 
states until termination will be considered. The following 
section presents an algorithm combining eligibility traces with 
the traditional HDP scheme.  

 

III. HDP WITH ELIGIBILITY TRACES 
In this section, a new adaptive dynamic programming 

algorithm, HDP(λ), is put forward and analyzed. This 
algorithm combines HDP and eligibility traces. 
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A. Eligibility Traces 
The concept of eligibility traces is first introduced into the 

Temporal Difference (TD) learning process to form an efficient 
reinforcement learning algorithm named as TD(λ) [10]. 
Following the work of [10], some notions of eligibility traces 
for the application in HDP from forward view, backward view 
and equivalence analysis are discussed. Due to the direction of 
the trace, the aliases are forward view and backward view 
respectively. The forward view is most useful for 
understanding what is computed by methods using eligibility 
traces, whereas the backward view is more appropriate for 
developing practical process about the algorithms themselves. 

1) The forward view 
The cost-to-go function ( )R t  in (2) can be rewritten as  

 
1( ) ( 1) ( 2) ( ) ( ) n n

nR t r t r t r t n J t nγ γ γ−= + + + + + + + +  (6) 
 
which consists of the reward truncated after n steps and an 
approximately corrected term for the truncation )( ntJn +γ , 

estimating 1( 1) ( 2)n nr t n r t nγ γ ++ + + + + + , the next nth state 
value. When n=1, 1( ) ( 1) ( 1) R t r t J tγ= + + + . ( )nR t  is called 
the corrected n-step truncated reward, which will be used to 
form a new cost function with more than one steps rewards, 
representing the eligibility traces of J(t). A weight 1nλ −  is 
introduced to each n-step truncated reward, then a λ -return 
cost function ( )R tλ  is defined by 
 

1

1

1
1 1

1

( ) (1 ) ( )

(1 ) ( ) ( )

n
n

n

T t
n T t

n
n

R t R t

J R t R t

λ λ λ

λ λ

∞
−

=

− −
− − −

=

= − ∑

= − +∑
 (7) 

 
where the factor 1−λ is applied to normalize the weights sum to 
1. The second row is derived with that the n-step return after a 
terminal state is R(t). So, if λ=1, ( ) ( )R t R tλ = , else if λ=0, 

1( ) ( )R t R tλ = , the 1-step return. λ determines the influence of 
n-step return on the total cost function in a exponential rate, 
which plays same roles here as in TD(λ). 

The adopted algorithm which performs backups based on the 
λ -return is defined as the algorithm. The algorithm computes 
an increment to the value of the state on each step as following: 
 

( ) [ ( ) ( )]FJ t J t R tλαΔ = − − , (8) 
 
where α  is a positive step-size parameter. ( )FJ tΔ  denote the 
update at time t  of ( )J t . If  ( ) ( 1)x t x t≠ − , eligibility trace 
will be changed. Thus, it can be deduced that the increments for 
all  ( ) ( 1)x t x t≠ −  are ( ) 0FJ tΔ = . 

Overview of the forward algorithm is summarized as follows. 
When a state is visited, all further rewards are reviewed in time, 
and the algorithm decides to combine them or give up. After a 

state is updated, this state needs not to be considered. At the 
same time, we view and process further states on each arrived 
state. 

2) The backward view 
A causal and incremental mechanism is defined as the 

backward view which is adopted to approximate the forward 
view. It is useful because it is simple conceptually and 
computationally. In the backward view, each state associated 
with its eligibility trace can be taken as an additional memory 
variable. The eligibility trace for state x  at time t  is denoted 
as ( )e t +∈ℜ . 
 

( 1)            if ( ) ( 1)
( )

( 1) 1       if ( ) ( 1)
e t x t x t

e t
e t x t x t

γλ
γλ

− ≠ −⎧
= ⎨ − + = −⎩

 (9) 

 
where (0) 0e = . λ, as introduced above, is referred to as the 
trace-decay parameter. The weights of future are determined by 
λ  exponentially states based on their temporal 
distance-smoothly interpolating between λ=0 and λ=1. 

From the backward view, the increment occurring on that 
step is computed: 
 

( ) ( ) ( )BJ t t e tαδΔ = − . (10) 
 
here ( )tδ  in defined in (1). ( )BJ tΔ  denote the update at time 
t .  

The algorithm adopts the eligibility trace to record which 
states have recently been visited. When a state is visited, the 
eligibility trace will be accumulated. Otherwise, it will be faded 
away gradually until the state is revisited. The "recently" is 
defined by γλ . The degree to which each state is eligible for 
undergoing learning changes is indicated by the trace. 

3) Equivalence of forward and backward views 
The aim of this section is to show that the sum of all the 

updates is the same for the two views: 
 

0 0
( ) ( )

T T
B F

s
t t

J t J t I
= =

Δ = Δ∑ ∑ , (11) 

where 
 

1 ( ) ( 1)
0 ( ) ( 1)s

x t x t
I

x t x t
= −⎧

= ⎨ ≠ −⎩
. (12) 

 
An eligibility trace can be written as: 

 
2

0

( ) ( 1) ( ) ( 2)

      ( )

s s s

t
t k

s
k

e t e t I e t I I

I

γλ γλ γλ

γλ −

=

= − + = − + +

= = ∑
 (13) 

 
Thus, the left side of (11) can be written 
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0 0 0

0

0

( ) ( ) ( )

              ( ) ( )

              ( ) ( )

T T t
B t k

s
t t k

T
t k

s
t k t

T
t k

s
t k t

J t t I

I k

I k

αδ γλ

α γλ δ

α γλ δ

−

= = =

∞
−

= =

∞
−

= =

Δ = −∑ ∑ ∑

= −∑ ∑

= −∑ ∑

 (14) 

 
For the right side of (11), consider an individual update: 

 
1

0

1 2

( ) ( )
               ( ) (1 ) [ ( 1) ( 1)]
                            (1 ) [ ( 1) ( 2) ( 1)]
                                                                          

F
tJ t J J t
J t r t J t

r t r t J t

λ
α

λ λ γ
λ λ γ γ

− Δ = −

= − + − + + +

+ − + + + + +
    

(15) 

 
From above equation, it can be shown that all the weighting 

factors of the ( )r t i+  are geometric series, 1,2,i ∈ . For 
example, all the ( )r t i+ ’s with their weighting factors of 1 λ−  
times powers of  λ . It turns out that all the weighting factors 
sum to 1. Combining ( )r t i+  and summing up coefficient, 
respectively, we can get: 
 

1

0

1

0

( ) ( )
                  ( ) [ ( 1) ( 1) ( 1)]
                  ( ) [ ( 2) ( 2) ( 2)]
                       
                =( ) [ ( 1) ( 1) ( )]
                   

FJ t J t
r t J t J t
r t J t J t

r t J t J t

α

γλ γ γλ
γλ γ γλ

γλ γ

− Δ = −

+ + + + − +

+ + + + − +

+ + + −

+ 1( ) [ ( 2) ( 2) ( 1)]
                    

                ( ) ( )k t

k t

r t J t J t

k

γλ γ

γλ δ
∞

−

=

+ + + − +

≈ ∑

 

 
Thus, the right side of (11) can be written: 

 

0 0
( ) ( ) ( )

T T
F k t

s s
t t k t

J t I I kα γλ δ
∞

−

= = =
Δ = −∑ ∑ ∑ , (16) 

 
Above function  is the same as (14). Equation (11) is proved. 

B. HDP ( )λ  and ADHDP ( )λ  

In this section, the eligibility trace is adopted for training the 
critic network. 

The reinforcing events concerned with are the moment-by- 
moment one-step critic network errors. In the traditional HDP 
algorithm, the critic network error is defined as ( )ce t  in (3). 

In the forward view of HDP(λ), the error between 
returnλ −  and the output of the critic network is adopted as 

training target: 
 

( ) ( )ce t J t Rλ λ= − . (17) 
 

The objective function ( )cE t  is defined as that in (1). 
Weight update law cWΔ  of the critic network in (4) is 

calculated as: 
 

( )( ) ( )[ ( ) ]
( )c c

c

J tW t l t J t R
W t

λ λ ∂
Δ = − −

∂
. (18) 

 
According to the analysis in above section, the forward view 

mentioned above is equivalent to the following backward view, 
which is more appropriate for developing practical process 
about the algorithms themselves. The backward view is 
provided by 
 

( ) ( ) ( ) ( )c cW t l t t e tλ δΔ = −  (19) 
 
where ( )tδ  is the usual critic network error defined in (10), 
and ( )e t  is the eligibility trace, and its update law is adopted by 
 

( )( ) ( 1)
( )c

J te t e t
W t

γλ ∂
= − +

∂
. (20) 

with (0) 0e = . 
HDP(λ) and ADHDP(λ) have the same update algorithm for 

the weights of the critic network. In HDP(λ), the item 
( )
( )

aE t
u t

∂
∂

 

in the update algorithm (5) is achieved through a model 

network. However in ADHDP ( )λ , the item 
( )
( )

aE t
u t

∂
∂

 in the 

update algorithm (5) is achieved by back-propagating error 
from the critic network. 

In the traditional HDP and ADHDP algorithms, only one 
state preceding the current one is changed by the critic network 
error. The backward view of HDP(λ) and ADHDP(λ) is 
oriented backward in time. At each moment we look at the 
current critic network error and assign it backward to each prior 
state according to the state's eligibility trace at that time. When 

0λ = , HDP(λ) and ADHDP(λ) are same as the traditional 
HDP and ADHDP algorithms, respectively. If 1λ = , HDP(λ) 
learns something until the end of training. This is same as a 
Monte Carlo method. Using 0λ >  allows one to incorporate 
prediction differences from multiple steps, to hopefully speed 
up learning. For larger values of λ , but still 1λ < , the 
preceding states are changed more greatly. At the same time, 
recently visited states are changed less because its eligibility 
trace is smaller. Pseudo code of the ADHDP(λ) control 
algorithm is described as follows: 

 
 
Step 1: Initialize ( )aW t , ( )cW t , x(t) arbitrarily and ( ) 0e t = . 
Step 2: Calculate action ( )u t  in state x(t). 
Step 3: Take action ( )u t , observe ( )r t and next state x(t+1). 
Step 4: Calculate ( )J t , ( )e t , and train the critic network. 
Step 5: Train the action network. 
Repeat step 2 to step 5 until final state or error criteria is 
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attained. 
 
 

IV. CASE STUDY – PENDUBOT BENCHMARK 
Under-actuated mechanical systems are often adopted as the 

benchmark for test performance of different control strategies. 
Inverted pendulum [5] and pendubot (pendulum robot) [16] are 
such systems. The pendubot is a typical structure of two link 
under-actuated robotic system, which is featured as simple 
structure but complex system dynamics, and is widely adopted 
to test performance of different control algorithms [17-19]. For 
its complexity, this paper takes this problem as an example. In 
this section, ADHDP(λ) is adopted to deal with this case study. 

A. The Pendubot Balancing Problem 
The schematic diagram of the pendubot system is shown in 

Fig. 2. The pendubot system is with only one external torque 
actuated on the first joint, while another joint is passive. 

 
 

 

x 

y 

1τ  

1q  

2q  

1l  

2l  

1m  

2m  

 
 

Fig. 2. Scheme of pendubot 
 

 Suppose that there is no friction, the system dynamics 
equations are depicted by 
 

( ) ( , ) ( )D q q C q q q G qτ = + + . (21) 
 
where 1[  0]Tτ τ=  is the external torque, 1 2[ , ]q q q=  represents 
the angles of the two links. D , C  and G  represent the inertial, 
coriolis, and gravity terms of the system respectively. Above 
five variables can be described by five parameters 
{ }1 2 3 4 5, , , ,θ θ θ θ θ  as 
 

1 2 3 2 2 3 2

2 3 3 2

2 cos cos
( ) ,

cos
q q

D q
q

θ θ θ θ θ
θ θ θ
+ + +⎡ ⎤

= ⎢ ⎥+⎣ ⎦
  

 
3 2 2 3 2 1 2

3 1 2

sin ( )sin
( , ) ,

sin 0
q q q q q

C q q
q q

θ θ
θ
− − +⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  

 

4 1 5 1 2

5 1 2

sin sin( )
( ) ,

sin( )
g q g q q

G q
g q q

θ θ
θ

− − +⎡ ⎤
= ⎢ ⎥− +⎣ ⎦

  

 
where { }1 2 3 4 5, , , ,θ θ θ θ θ  are denoted by 
 

1 1

2 2
1 1 2 1 ,cm l m l Iθ = + +   

2

2
2 2 2 ,cm l Iθ = +   

23 2 1 ,cm l lθ =   

1 14 1 2 ,cm l m lθ = +   

25 2 .cm lθ =   
 
The system parameters are set same as that in [19]: 
 

1 2 30.0308,         0.0306,         0.0095,θ θ θ= = =  

4 50.2087,         0.0630.θ θ= =  
 
The top position [0,0]q =  is an unstable equilibrium. The 

control object is to balance the pendubot system around its top 
equilibrium position from a random position around top 
equilibrium position in this case. 

B. Simulation Results 
For comparison, the performance of ADHDP [5] is also 

tested, and the simulation environments are set the same for 
both algorithms. 

The reinforcement signal will be generated as follow: 
 

1 20 if 40 40  and 12 12
1 otherwise

q q
r

− < < − < <⎧
= ⎨

−⎩
. (22) 

 
The bang-bang control strategy is applied to the system, with 

a constant torque of 0.5 Nm in clockwise or counter-clockwise 
direction on the first joint. The states are defined as the angles 
and the angular velocities of the two links 1 1 2 2{ , , , }x q q q q= . 

In this simulation, a run consists of a maximum of 300 
consecutive trials. The task is considered successful if a trial 
has lasted 6000 time steps, where the step time is 0.01 seconds. 

The structure of the critic and action networks uses 
feed-forward network with one hidden layer. The number of 
the hidden neurons is 6. The states of the system are taken as 
inputs of the action network. The output ( )u t  of the action 
network is continuous, served as the inputs of the critic network 
together with the states. The control variable to pendubot plant 
will be 0.5 Nm if ( ) 0u t > , -0.5 Nm otherwise. 

For ADHDP(λ) algorithm, 0.85λ =  is used. The 
convergence criteria for the action and critic network are 
chosen as | | 0.005ae < and | | 0.05ce < , respectively. The max 
training step is 100 and 50, respectively. 

100 runs are performed to calculate the success rate and the 
average trials which are the average number of step times 
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before the algorithm converges in the 100 runs. The results are 
listed in Table I.  

 
 

TABLE I 
COMPARISON OF TWO LEARNING ALGORITHMS  

FOR THE BALANCING PROBLEM OF THE PENDUBOT 

 Success Rate Number of Trials 

ADHDP 24% 168.7 
ADHDP(λ) 89% 100.3 

 
Each run is initialized with random normalized weights of 

the critic and action networks. For ADHDP, the success rate to 
balance the pendubot system is 24%. Comparatively, the 
success rate with ADHDP(λ) is 89%. Number of trails reflects 
the necessary time before the algorithm converges. Litter 
number of trials means quicker convergence rate. It can be 
derived that ADHDP(λ) speeds up the convergence rate and 
has higher successful percentage. It is affected less by the 
randomness of the initial parameters. It is important to reduce 
decision time in real-time control problems. A typical result 
during a successful learning trial by ADHDP(λ) is shown in Fig. 
3. 

 

 
 
Fig. 3. A typical control result during a successful learning trial for the 
pendubot system: angle1 and angle2. 

 

V. CONCLUSIONS 
In this paper, an new ADP algorithm, ADHDP(λ), 

combining HDP with eligibility traces is presented. The 
eligibility trace is adopted for the training of the heuristic 
dynamic programming. ADHDP(λ)  achieves higher 
convergence rate and training efficiency. This is especially an 
important feature for on-line control of real-time. 

Instead of adjusting a value approximation based solely on 
one further state, ADHDP(λ) updates control policy based on 
an exponential weighting of values of future states. More 
information is considered in ADHDP(λ) training. Using 
0 1λ< <  allows one to incorporate prediction differences from 
multiple steps. Thus the estimate for updating control policy is 
more creditable. 

Different with ( )Q λ  and Sarsa(λ) derived in [10], the 
eligibility trace is not applied to update the choice of actor, but 
adopted for training the critic network. Thus, a more 
appropriate reinforcement signal will be achieved early which 
is used to direct the action network to a more optimized one. 
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