
Multiresolution On-Line Path Planning for Small
Unmanned Aerial Vehicles

Dongwon Jung and Panagiotis Tsiotras

Abstract— In this article we propose a new online multires-
olution path planning algorithm for a small unmanned air
vehicle (UAV) with limited on-board computational resources.
The proposed approach assumes that the UAV has detailed
information of the environment only in the vicinity of its current
position. Information about far away obstacles is also available,
albeit with less accuracy. The proposed algorithm uses an
integer arithmetic implementation of the fast lifting wavelet
transform (FLWT) to get a multiresolution cell decomposition of
the environment, whose dimension is commensurate to the on-
board computational resources. A topological graph represen-
tation of the multiresolution cell decomposition is constructed
efficiently, directly from the approximation and detail wavelet
coefficients. Hardware-in-the-loop simulation (HILS) results
validate the applicability of the algorithm on a small UAV
autopilot. Comparisons with the standard D∗-lite algorithm are
also presented.

I. INTRODUCTION

Autonomous operation of UAVs requires both trajectory
design (planning) and trajectory tracking (control) tasks to
be completely automated. Given the short response time
scales of modern aerial vehicles, on-board, real-time path
planning is particulary challenging for small UAVs, which
may not have the on-board computational capabilities (e.g.
CPU and memory) to implement some of the sophisticated
path planning algorithms developed in the literature.

In a typical mission of a UAV, various sensors (e.g.,
cameras, radars, laser scanners, satellite imagery) having
different range and resolution characteristics are employed
to collect information about the environment the vehicle
operates in. A computationally efficient path planning al-
gorithm, specifically adopted for on-line implementation,
should therefore choose the expedient information from
all these sensors, and utilize the on-board computational
resources on the part of the path (spatial and temporal)
that needs it most. In a nutshell, a computationally efficient
algorithm suitable for on-line implementation should be
characterized by a combination of short term tactics (reaction
to unforeseen threats) with long-term strategy (planning
towards the ultimate goal).

Multiresolution analysis is widely used in practice to
mitigate the computational overhead in numerically costly
applications, for example, computer graphics, using progres-
sive, view-dependent, meshes [4]. The application of mul-
tiresolution methods to path planning problems is relatively
recent. In [1], [13] multiresolution, hierarchical algorithms
were used to alleviate the computational burden associated

D. Jung is a Post-doctoral Fellow at the School of Aerospace, Geor-
gia Institute of Technology, Atlanta, GA, 30332 USA, E-mail: dong-
won.jung@gatech.edu

P. Tsiotras is a Professor at the School of Aerospace, Georgia Institute
of Technology, Atlanta, GA, 30332 USA E-mail: tsiotras@gatech.edu

with path planning over a complex, unstructured, or partially
known environment. The typical approach in this context
involves the use of quadtrees [12], [16]. One drawback of
quadtree-based decompositions is that a fine resolution is
used close to the boundaries of all obstacles, regardless of
their distance from the agent. This tends to waste computa-
tional resources.

Recently, [15] proposed an efficient hierarchical path
planning algorithm for autonomous agents navigating in a
partially known environment W using an adaptive, discrete,
cell-based approximation of W . A high resolution represen-
tation of W is used close to the current position of the agent
(leading to a local solution with great accuracy), while a low
resolution representation is used far away from the vehicle
(thus incorporating the ultimate goal objective). It should
be noted that this path planning algorithm is distinguished
from the earlier wavelet-based motion planning algorithm in
Ref. [13], in that it always incorporates high resolution repre-
sentation nearby the agent, whereas the algorithm in Ref. [13]
incorporates several stages of refinement to compute a path
at a certain level of accuracy.

In this article, we present a multiresolution hierarchical
path planning algorithm, which is an extension of the al-
gorithm developed in Ref. [15]. We use the fast lifting
wavelet transform (FLWT), to construct the associated cell
connectivity relationship directly from the wavelet coeffi-
cients. This eliminates the need for quadtree decompositions,
as in Ref. [15]. The FLWT allows us to use integer arithmetic
that results in faster speeds during hardware implementation
with a small-size microcontroller.

II. A MULTIRESOLUTION DECOMPOSITION OF W
A. The 2D wavelet transform

Let a function f over the domain W = [0, 1] × [0, 1] be
discretized using a (fine) dyadic grid of dimension 2N ×2N .
Its discrete 2D wavelet transform at scale J ≤ N is given
by

f(x, y) =
2J−1∑
k,�=0

aJ,k,�ΦJ,k,�(x, y)

+
3∑

i=1

N−1∑
j=J

2j−1∑
k,�=0

di
j,k,�Ψ

i
j,k,�(x, y),

(1)

where aJ,k,� are the approximation coefficients and di
j,k,�

are the detail coefficients, and ΦJ,k,� and Ψi
j,k,�(x, y) are the

scaling function and wavelets constructed by tensor products
of the corresponding 1D functions (see [2]). In this paper we
use the Haar wavelet system for reasons that will become

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThB09.5

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 2744

apparent shortly. The Haar family has compact support on the
interval [0, 1]. It can be shown that in the 2D case the scaling
function Φj,k,� and the wavelet function Ψi

j,k,� (i = 1, 2, 3)

have compact support on the rectangle cj
k,�

�
= [k/2j , (k +

1)/2j]× [�/2j , (� + 1)/2j]. Subsequently, we may associate
the two-dimensional scaling function Φj,k,� and the wavelet
functions Ψi

j,k,� with the rectangular cell cj
k,�.

We use the fast lifting wavelet transform (FLWT) as the
main mathematical tool. The FLWT offers a fast computation
of the wavelet transform, in conjunction with the use of
integer arithmetic to further reduce the computational cost. In
addition, the FLWT computations are done in-place, allowing
the immediate inverse transform, thus saving computational
memory. This makes the FLWT especially suitable for pro-
cessing using small micro-controllers.

B. Wavelet decomposition of the risk measure

Assume now that we are given a function rm : W �→
M that represents the “risk measure” [15] at the location
x = (x, y), where M is a collection of m integer distinct
risk measure levels. We may think of rm(x) as an indication
of the proximity of the agent to the obstacle space, or the
probability that the agent belongs to the obstacle space.

We construct approximations of W at distinct levels of
resolution Jmin ≤ j ≤ Jmax, at ranges rj from the current
location of the agent x0 = (x0, y0), in the sense that
resolution j is used for all points inside the neighborhood

N (x0, rj) � {x ∈ W : ‖x − x0‖∞ ≤ rj}, (2)

where rJmax ≤ rj ≤ rJmin . That is, the finer resolution Jmax

is used for points close to the current location, and coarser
resolutions are used elsewhere, according to the distance
from the current location. Figure 1 illustrates this situation.
The choice of Jmax is determined by the requirement that at
this level all cells can be resolved into either free or obstacle
cells. The choice of Jmin as well as the window span rj are
dictated by the on-board computational resources.

Let now I(j) � {0, 1, 3, · · · , 2j − 1} and let

K(j) � {k ∈ I(j) | Ij,k ∩ [x0 − rj , x0 + rj] �= ∅}, (3a)

L(j) � {� ∈ I(j) | Ij,� ∩ [y0 − rj , y0 + rj] �= ∅}. (3b)

where Ij,k � [k/2j , (k + 1)/2j] is the dyadic interval of
length 1/2j . Then the wavelet decomposition of rm, given
by

rm(x, y) =
∑

k,�∈I(Jmin)

aJmin,k,�ΦJmin,k,�(x, y)

+
3∑

i=1

Jmax−1∑
j=Jmin

∑
k∈K(j)

�∈L(j)

di
j,k,�Ψ

i
j,k,�(x, y),

(4)

induces, with a slight abuse of notation, the following
multiresolution cell decomposition on W

Cd = ΔCJmin
d ⊕ · · · ⊕ ΔCJmax

d , (5)

where, ΔCj
d is a union of cells cj

k,� of dimension 1/2j×1/2j .

Fig. 1. Multiresolution representation of the environment according to the
distance from the current location of the agent.

cj0+1
k′,l′ cj0+1

k′+1,l′

cj0+1
k′,l′+1

cj0+2
k′′,l′′ cj0+2

k′′+1,l′′

cj0+2
k′′,l′′+1

cj0+2
k′′+1,l′′+1

cj0
k,l

I II

III IV

Fig. 2. Multiresolution cell subdivision across different levels.

III. MULTIRESOLUTION GRAPH CONNECTIVITY

A. Computation of Adjacency List from the FLWT

We assign a topological graph G = (V,E) to the cell
decomposition Cd in (5) as follows. The nodes of G represent
the cells cj

k,� in Cd and the edges represent the connectivity
relationship between those nodes. In this section we show
that the connectivity of the graph G can be constructed
directly from the wavelet coefficients. Equivalently, we com-
pute the adjacency list of G directly from wavelet coefficients
obtained from the FLWT.

Since the scaling function Φj,k,� and the wavelet functions
Ψi

j,k,� of the 2D Haar wavelet are associated with square cells
cj
k,�, the corresponding approximation and nonzero detail co-

efficients encode the necessary information regarding the cell
geometry (size and location). Recall that the approximation
coefficients are the average values of the risk measure value
over the cells, and the detail coefficients determine the size of
each cell. To this end, consider a cell cj0

k,� at level j0, whose
dimension is 1/2j0 × 1/2j0 and is located at (k, �). A cell
will be called independent if it is associated with a non-zero
approximation coefficient aj0,k,�, while the corresponding
detail coefficients di

j,k,� (i = 1, 2, 3) at level j0 ≤ j ≤ Jmax

are all zero. Otherwise, the cell is marked as a parent cell,
and is subdivided into four leaf cells at level j0 + 1. If a
leaf cell cannot be subdivided further, it is classified as an
independent cell. In Fig. 2, the top-most parent cell cj0

k,� is
subdivided into three independent cells at level j0 + 1 with
each non-zero approximation coefficient in the quadrant I,
II, and III (all zero detail coefficients). For quadrant IV, the
cell is further subdivided into four independent leaf cells at
level j0 + 2.

2745

(x, y)
2r

Fig. 3. Recursive raster scan method for identifying independent cells.

Assume now that we are given the Haar wavelet transform
of the risk measure function rm up to the level Jmin. The
coarsest level of the cell dimension is set to Jmin. In Fig. 3
the initial coarse grid is drawn on the left. The agent is
located at x = (x, y) and the high resolution horizon is
given by r. Recalling expressions (3), we distinguish cells
at distinct resolution levels, by starting from a coarse cell
cj0
k,�, and by determining if the cell either partially intersects

or totally belongs to the set N (x, r). The cell cj0
k,� is easily

ascertained to satisfy this property by choosing the indices
such that (k, �) ∈ (K(j0),L(j0)). If the cell needs to be
subdivided into higher resolution cells, the inverse fast lifting
wavelet transform is first performed on the current cell (local
reconstruction) in order to recover the four approximation
coefficients at level j0 + 1 and the corresponding detail
coefficients. We then adopt the raster scan method(zigzag
search: I→II→III→IV) to examine each cell inside the
parent cell overlapping with N (x, r). This procedure is recur-
sively repeated until the maximum resolution level Jmax is
reached. Figure 3 illustrates the recursive raster scan search.
Once a cell is recognized as independent, we assign a node
in the graph G with the node cost being the approximation
coefficient representing the average risk measure over the
cell. In addition, the detail coefficients associated with the
current cell are all set to zero; this will provide the necessary
connectivity information between the cells later on.

After a cell has been identified as an independent cell, we
search the adjacent cells in order to establish the adjacency
relationship with the current cell. Recall that two cells ci

and cj are adjacent if their boundaries have common points.
For our case of square cells, this implies that two cells are
adjacent only along the following eight directions: Left, top,
right, bottom, and the four diagonal directions. Following the
recursive raster search for cell identification, the adjacency
search requires establishing links between two cells that have
been identified as independent cells. Recalling that the raster
search progresses from left to right and from top to down
(zigzag progress) as illustrated in Fig. 3, we confine the
adjacency search to the following directions: Left, top-left,
top, and top-right from the current cell. By doing this, we
render half of the links (for eight cell connectivity) to be
connected from the current cell, and the remaining links with
the current cell will be connected as the recursive raster scan
progresses to the next cells. In addition, because we deal with
cells of different dimensions, it is required to devise a generic
method to find the adjacency relationship between the cells.

Figure 4 illustrates the basic search direction of each leaf
cell inside a parent cell. The dashed arrow points towards

I II

III IV

Fig. 4. Basic connectivity properties with respect to the location of the
leaf cell.

an external search region, that is, an adjacent cell could be
found beyond the parent cell, whereas the solid arrow points
towards an internal search region that belongs to the parent
cell. In each search, we implicitly assume that the level of
adjacent cells may vary from that of the parent cell to Jmax

(external connection), or from that of the current cell to Jmax

(internal connection).
A leaf cell inherits the search region from its parent cells,

whose search direction turns out to be one of the solid arrows
in Fig. 4. Figure 5(a) shows this inheritance property. In
Fig. 5(a) the current cell is chosen to be cj0+2

I . This cell is
a leaf cell of the parent cell cj0+1

IV , which further becomes
a leaf cell of the top-most parent cell cj0

k,l. The cell cj0+1
IV

is located on the fourth quadrant inside the top-most parent
cell cj0

k,l so that the search region for cj0+1
IV ends up with the

internal searches at the level j0 +1, whose adjacency search
property is inherited to the cell cj0+2

I for left, top-left, and
top direction searches. Having ascertained the basic search
directions, we refine the adjacent search looking for opposite
cells which must be independent and adjacent to the current
cell. Because the opposite cells of the current cell could have
different dimensions, as depicted in Fig. 5(a), we establish
links by examining the associated detail coefficients of the
opposite cells. Along the left search direction of cj0+2

I , as
illustrated in Fig. 5(a), one finds that only one independent
cell at level j0 + 1 is linked to cj0+2

I .
The adjacency search algorithm refines its search to the

higher levels if the opposite cell is not an independent cell,
that is, if it is comprised of finer cells. This refinement subse-
quently forces a search of cells of the finer dimension (level)
which are neighboring to the current cell. Subsequently, the
detail coefficients of the opposite cells are examined in order
to find the next finer cell that is adjacent to the current
cell. For the top-left search direction of cj0+2

I , as illustrated
in Fig. 5(b), the search process initially examines the cell
cj0+1
I located at the top-left corner of the current cell through

the corresponding detail coefficient. Provided that the detail
coefficient associated with the cell cj0+1

I takes a non-zero
value, the cell is not an independent cell. Subsequently, the
cell cj0+1

I is subdivided and the search process repeats at
level j0+2 when the opposite cell to the current cell becomes
an independent adjacent cell. In Fig. 5(b), since there exists
no other independent cells along the top-left direction except
the shaded one, a bidirectional link is established between
the current and the opposite cells.

Similarly, for the top search direction, two cells at level
j0 + 3 and one at level j0 + 2 are found to be independent
and adjacent to the current cell. The bidirectional links are
accordingly connected from the current cell cj0+2

I to those

2746

cj0
k,l

cj0+2
I

cj0+1
IV

(a) Search left

cj0
k,l

cj0+2
I

cj0+1
IV

(b) Search top-left

cj0
k,l

cj0+2
I

cj0+1
IV

(c) Search top

Fig. 5. Adjacency search algorithm with the recursive refinement.

adjacent cells. Figure 5(c) depicts this situation.

B. Cost assignment

We associate each node v ∈ G to a cell cj
k,� ∈ Cd.

Moreover, since G is a topological graph, we may associate
each node v with some point x ∈ cj

k,�. Without loss of
generality, we choose the center of the cell denoted by
cellG(v). If x ∈ cj

k,� we will write v = nodeG(x). To each
directed edge (u, v) of G we assign an edge cost, given as

J (u, v) = rm(cellG(v)) + α‖cellG(u) − cellG(v)‖2, (6)

where α ≥ 0 is a weight constant. The first term in (6) is
proportional to the probability that the target node is close to
an obstacle, while the second term penalizes the (Euclidean)
distance between cellG(u) and cellG(v). The estimate

h(v) = ‖cellG(v) − cellG(vf)‖∞, (7)

where vf = nodeG(xf) is also used for the distance of the
current node to the goal node. Given the graph G along with
the associated edge and node costs, we then invoke the A∗
algorithm [11] to find a path that minimizes the cumulative
cost from the start to goal nodes (or determine that such a
path does not exist).

IV. MULTIRESOLUTION PATH PLANNING

A. Multiresolution path planning algorithm

Starting from x(t0) = x0 at time t = t0, the proposed
multiresolution path planning algorithm constructs at each
time ti (i = 0, 1, . . .) a multiresolution decomposition Cd(ti)
of W around the current location of the vehicle, x(ti), along
with the corresponding graph G(ti). Repeated execution
of A∗ at each iteration step yields a sequence of nodes{
nodeG(t0)

(
x(t0)

)
, nodeG(t1)

(
x(t1)

)
, · · · , nodeG(tf)

(
x(tf)

)}
.

The process terminates at some time tf when ‖x(tf) −
xf‖∞ < 1/2Jmax . At the last step the agent moves from x(tf)
to xf . The details of the algorithm, along with a pseudo-code
implementation can be found in [5].

B. D∗-lite path planning algorithm

D∗ is a popular algorithm for solving path planning prob-
lems in unknown or partially known environments, originally
proposed by Stentz [14]. The D∗-lite algorithm [10], which
implements the same planning strategy as D∗, adopts an
efficient incremental search to reduce the time required to
replan.

Below we employ the D∗-lite algorithm, and compare the
results with those obtained using the proposed multiresolu-
tion algorithm. We discuss the benefits and shortfalls between
the two approaches. In order to be able to do a sensible
comparison, we assume that the agent is equipped only

with a proximity sensor that senses the environment close
to its current location with high accuracy. In other words,
we deliberately incorporate a unknown environment with
incremental updates in order to constructively invoke the D∗-
lite algorithm. The reason for this is attributed by the fact that
with an assumption of prior information of the unchanging
environment, the D∗-lite is nothing but A∗, which may be
inappropriate to compare with the proposed algorithm.

Let S(i) be the known region up to t = ti using a sensor
with the range rJ , defined by

S(i) = S(i − 1) ∪N (xi, rJ) (8)

where xi is the current location of the agent at t = ti
and N (xi, rJ) represents the effective sensory region at that
moment. In Eq. (8) it is assumed that the agent navigates an
initially unknown environment while updating the map from
the collected information. In order to take this process into
consideration for replanning, we assign a conditional cost to
each edge (u, v), which depends on the relative location of
the edges to S as follows,

J (u, v) =

{
rm(cellG(v)) + ‖cellG(u) − cellG(v)‖2, u, v ∈ S,

‖cellG(u) − cellG(v)‖2, u, v ∈ W \ S.
(9)

For the edges outside S we simply impose the traversal
cost between nodes owing to the uniform size of cells. If
this is the case, the A∗ search algorithm simply computes
a shortest path from an initial node to the goal node which
might pass through obstacles outside S. Nevertheless, when-
ever the map is updated using contingent information from
the sensor, we accordingly update the corresponding edge
costs by appending the obstacle cost to each edge as given
in (9).

V. HARDWARE IN-THE-LOOP SIMULATION RESULTS

A. Hardware overview

A UAV autopilot platform has been developed to im-
plement the multiresolution, wavelet-based path planning
algorithm described above. The on-board autopilot is based
on the Rabbit RCM-3400 micro-controller (30 MHz with
512 KB RAM) and provides data acquisition, processing,
and communication with the ground station, in addition to
all UAV control functions. Further details about the UAV
platform, autopilot and HILS set-up can be found in [6] and
[7].

B. Simulation results using the proposed algorithm

In this section we present simulation results of the pro-
posed algorithm for a non-trivial scenario. The environment
W is an actual topographic (elevation) map of a US state,
shown in Fig. 6. The environment is assumed to be square of
dimension 128×128 units. Taking into account the available
memory of the micro-controller, we choose the fine level as
Jmax = 6 and the coarse level as Jmin = 3. This makes
the total number of nodes in the graph not to exceed the
maximum count of 256 that corresponds to the maximum
allowable variable size of the micro-controller. The ranges
from the current location at distinct levels of resolution are
selected as (r6, r5, r4) = (8, 15, 30).

2747

The results from the multiresolution path planning algo-
rithm are shown in Fig. 6. Specifically, Fig. 6 shows the
evolution of the path at different time steps as the agent
moves to the final destination. In each figure, solid lines
represent the actual path followed by the agent, while dashed-
dot line represent the best proposed path to the destination at
each instant. As seen in Fig. 6(c), the actual path followed by
the agent differs from the one predicted in either Figs. 6(a) or
6(b). This is due to the fact that at time t5 and t21 the agent
does not have complete information for the future positions
up to the high-resolution, confident level. However, as the
agent gets closer to the obstacle as shown in Fig. 6(b),
it recognizes the presence of obstacles and redirects itself
to avoid any obstacles. Note that the path is represented
by a finite sequence of square cells, hence in order to
actually control the UAV to track the path, the proposed
algorithm needs to be implemented in conjunction with the
path generation [9], path following [8] algorithms.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a) t = t5

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(b) t = t21

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(c) t = tf

Fig. 6. Path evolution and replanning. Figures on the left show the
multiresolution approximation of the environment with respect to the current
location of the agent.

C. Simulation results for the D∗-lite algorithm

In this section we present simulation results of the D∗-lite
path planning algorithm for the same environment used in
the previous section. We adopt a uniform cell decomposition
of cell size Jmax = 6, which is the same as the finest level
of the previous section. The range of the proximity sensor
is chosen to be r6 = 7, thus resulting in the high resolution
window by 7 by 7 square grids.

The result from the D∗-lite algorithm is shown in Fig. 7.
The solid line represents the actual path followed by the
agent, which shows that the D∗-lite algorithm effectively
replans the entire path circumventing the obstacles, reaching
the final destination. It should be noted that we deliberately
implement the D∗-lite algorithm using an unknown envi-
ronment. By the incremental updates of the path whenever
the agent detects the obstacles, the D∗-lite algorithm shows
reactive behavior to circumvent the obstacles. This may
be improved by incorporating coarse information (a priori
known) outside S, similarly to the proposed algorithm.
However, since the D∗-lite algorithm solves the path over a
uniform grid, it turns out that extra computational overhead is
necessary to compute such coarse information. In this paper,
and for proper comparison, we avoid this extra computation
between the proposed algorithm and the D∗-lite algorithm.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Fig. 7. Path evolution and replanning using the D∗-lite algorithm.

VI. COMPARISON

The proposed multiresolution path planning algorithm was
written in C code and implemented on the on-board autopilot
described earlier. Because the micro-controller used in the
autopilot has limited computational resources, the code was
written by giving special attention not only to the accuracy
of the results, but also to the expected computational speed
during implementation.

We compared the computational costs between the pro-
posed multiresolution path planning algorithm and the D∗-
lite algorithm for several cases. Because it was not possi-
ble to implement D∗-lite on the autopilot due to memory
limitations, all simulations were carried out using an IBM-
PC (Pentium M 2.0 GHz, 1 GB RAM), based on codes
written in C for implementing both path planning algorithms.
The proposed wavelet-based multiresolution path planning
algorithm accomplishes the objective of reaching the goal
using a fewer number of iterations than the D∗-lite algorithm,
as shown in Table I. This is due to the fact that the
proposed algorithm effectively manages the information at
coarse resolutions so as to compute a preferred path early on.
The D∗-lite algorithm, on the other hand, typically requires
more iterations to reach the goal than the proposed algorithm,
since the agent is required to explore the environment and
to replan the path along the movement of the agent.

The D∗-lite algorithm is typically faster, although the
performance of the proposed algorithm can be improved
by using, say, four-connectivity instead of eight-connectivity
during the adjacency search algorithm. This will possibly
halve the computation time with little performance degra-
dation. Additional improvements can be expected by judi-
ciously reusing prior information at each iteration. We are

2748

TABLE I

THE COMPUTATIONAL COST COMPARISON BETWEEN THE MULTIRESOLUTION PATH PLANNING V/S THE D∗-LITE.

Items Scenario I Scenario II Scenario III Scenario IV Scenario V
D∗lite Wavelet D∗lite Wavelet D∗lite Wavelet D∗lite Wavelet D∗lite Wavelet

iteration 35 31 93 50 61 40 123 52 44 43
nodes in G 4096 201 4096 194 4096 192 4096 185 4096 194
Data processing [msec] 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03
Adjacency search [msec] - 0.977 - 0.987 - 0.969 - 0.94 - 0.958
A∗ search [msec] - 0.1 - 0.125 - 0.094 - 0.138 - 0.066
Init. D∗-lite search [msec] 1.87 - 2.03 - 2.03 - 1.87 - 2.03 -
D∗-lite update [msec] 4.1 - 23.8 - 11.3 - 43.9 - 12.7 -
Total Comp. time [msec] 5.97 33.387 25.83 55.6 13.33 42.53 45.77 56.056 14.73 44.032
Computational cost (%) 17.8 100 46.46 100 31.35 100 81.65 100 33.45 100
Memory cost (%) 2037.8 100 2111.3 100 2133.3 100 2214.1 100 2111.3 100

currently working on the latter idea; for some preliminary
results, see [3]. On the other hand, the proposed algorithm
requires much less memory as shown in Table I, when
compared to D∗-lite. In fact, for our problem, it was not
possible to implement D∗-lite on the microprocessor due to
memory limitations. For on-line, on-board path planning, the
proposed algorithm has therefore an advantage in terms of
scalability according to the available on-board computational
resources.

VII. CONCLUSIONS

Autonomous path planning for small UAVs imposes severe
restrictions on control algorithm development, stemming
from the limitations imposed by the on-board hardware,
and the requirement for on-line implementation. In this
work we have proposed a method to overcome this problem
by using a new hierarchical, multiresolution path planning
scheme. The algorithm computes at each step a multireso-
lution representation of the environment using the wavelet
transform. The idea is to employ high resolution close to
the agent (where is needed most), and a coarse resolution at
large distances from the current location of the agent. The
connectivity relationship of the resulting cell decomposition
can be computed directly from the nonzero detail coefficients
of the wavelet transform. The algorithm is scalable and can
be tailored to the available computational resources of the
agent.

ACKNOWLEDGMENT

Partial support for this work was provided by NSF award
CMS-0510259.

REFERENCES

[1] S. Behnke, “Local Multiresolution Path Planning,” in RoboCup 2003:
Robot Soccer World Cup VII, vol. 3020 of Lecture Notes in Computer
Science, pp. 332–343, Berlin: Springer, 2004.

[2] C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets
and Wavelet Transforms, Upper Saddle River, New Jersey: Prentice
Hall, 1998.

[3] R. Cowlagi and P. Tsiotras, “Multiresolution Path Planning with
Wavelets: A Local Replanning Approach,” in American Control Con-
ference, (Seattle, WA), 2008.

[4] P. S. Heckbert and M. Garland, “Multiresolution Modeling for Fast
Rendering,” in Proceedings of Graphics Interface, (Banff, Canada),
pp. 43–50, May 1994.

[5] D. Jung, Hierarchical Path Planning and Control of a Small Fixed-
Wing UAV: Theory and Experimental Validation, Ph.D. Thesis, Georgia
Institute of Technology, Atlanta, GA, Dec. 2007.

[6] D. Jung, E. J. Levy, D. Zhou, R. Fink, J. Moshe, A. Earl, and
P. Tsiotras, “Design and Development of a Low-Cost Test-Bed for
Undergraduate Education in UAVs,” in Proceedings of the 44th IEEE
Conference on Decision and Control, (Seville, Spain), pp. 2739–2744,
Dec. 2005.

[7] D. Jung and P. Tsiotras, “Modelling and Hardware-in-the-loop Sim-
ulation for a Small Unmanned Aerial Vehicle,” in AIAA Infotech at
Aerospace, (Rohnert Park, CA), May 2007. AIAA Paper 07-2763.

[8] D. Jung and P. Tsiotras, “Bank-To-Turn Control for a Small UAV using
Backstepping and Parameter Adaptation,” in International Federation
of Automatic Control (IFAC) World Congress, (Seoul, Korea), July
2008. to appear.

[9] D. Jung and P. Tsiotras, “On-line Path Generation for Small Unmanned
Aerial Vehicles Using B-Spline Path Templates,” in AIAA Guidance,
Navigation and Control Conference, 2008. submiited.

[10] S. Koenig and M. Likhachev, “D∗ Lite,” in Proceedings of the
National Conference of Artificial Intelligence, pp. 476–483, 2002.

[11] S. M. LaValle, Planning Algorithms, Cambridge University Press,
2006.

[12] H. Noborio, T. Naniwa, and S. Arimoto, “A Quadtree-Based Path-
Planning Algorithm for a Mobile Robot,” Journal of Robotic Systems,
Vol. 7, No. 4, pp. 555–574, 1990.

[13] D. K. Pai and L.-M. Reissell, “Multiresolution Rough Terrain Motion
Planning,” IEEE Transactions on Robotics and Automation, Vol. 14,
No. 1, pp. 19–33, 1998.

[14] A. Stentz, “Optimal and Efficient Path Planning for Partially-Known
Environments,” in Proceedings of the IEEE International Conference
on Robotics and Automation, vol. 4, pp. 3310–3317, May 1994.

[15] P. Tsiotras and E. Bakolas, “A Hierarchical On-Line Path Planning
Scheme using Wavelets,” in Proceedings of the European Control
Conference, (Kos, Greece), July 2007.

[16] J. Vörös, “Low-cost Implementation of Distance Maps for Path Plan-
ning using Matrix Quadtrees and Octrees,” Robotics and Computer
Integrated Manufacturing, Vol. 17, pp. 447–459, 2001.

2749

