
  

  

Abstract—This paper presents a coordinated design 
framework for precision motion control (PMC) systems.  In 
particular, the focus is on the design of feedback and 
feedforward controllers operating on systems that repeatedly 
perform the same tasks.  The repetitive nature of the tasks 
suggests the use of Iterative Learning Control (ILC).  However, 
in addition to the repeatability of the desired trajectory, the 
class of systems under study examines the effect of non-
repeating disturbances and possible reset errors. The rejection 
of uncertain, but bounded, disturbances suggests the use of H∞ 
design.  The non-repeating disturbances and reset errors 
necessitate coordination of the feedback and feedforward 
designs. The assumption that the disturbances have a 
particular frequency distribution affords a frequency domain 
separation between the two controller degrees of freedom.  
Experimental results are given on a piezo-driven nano-
positioning device demonstrating the benefits to the presented 
approach.   

I. INTRODUCTION 
recision motion control (PMC) [1],[2] is an important 
research area with high relevance to advanced 

technology including high precision imaging and 
manufacturing. High precision systems can utilize feedback 
or feedforward control designs or a combination of both 
feedforward and feedback in a two-degree-of-freedom 
approach.  Effective feedback design tools include H∞ 
feedback control [3],[4]. Additionally, for systems that 
repeat the same trajectory, as in the case of manufacturing, 
Iterative Learning Control (ILC) [5]-[8] is a good choice for 
feedforward control design.  The goal of this article is to 
present a frequency-based design methodology to improve 
the overall system performance by delegating the roles of 
feedback and ILC controllers based on known classes of 
exogenous signals. 

This investigation is motivated by physical phenomena.  
The class of physical systems under consideration consists 
of a structure, possibly multi-degree-of-freedom, which is 
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driven by some type of actuation device. These could be 
small flexure-based structures with piezo actuators, as with 
Atomic Force Microscope stages [9], or large inertias driven 
electromagnetically, such as silicon wafer scanning stages 
[10].  By design, these systems tend to have well defined 
dynamics in the low frequency range, where “low” is 
relative to the 1st structural resonance.  For the flexure-based 
systems, the dynamics are essentially a gain; for the inertia 
systems, the dynamics are essentially a double integrator.  
Above the first structural resonance, there are usually higher 
order structural modes that are lightly damped and position 
dependent thereby making them difficult to compensate with 
control.  A clear identification of the known dynamics in the 
frequency domain suggests the use of modern robust control 
design tools such as H∞ feedback controllers [11].  These 
tools are good for point to point regulation and lower 
frequency tracking. 

For higher frequency tracking, it is advantageous to 
include a feedforward controller in the PMC system.  The 
feedforward controller is usually an approximate inverse of 
the plant.  For trajectories that repeat themselves, a very 
successful approach is to instead learn the feedforward 
signals for subsequent trials by iteratively updating them 
based on the error accumulated in previous trials.  This 
approach has been formalized as ILC [5]-[8].  ILC has the 
benefit of not requiring a plant model yet still giving high 
performance tracking inputs.  While an explicit plant model 
is not required, it can often be useful in the design of the 
ILC to minimize the number of iterations taken to converge 
to an appropriate feedforward input signal.   

The primary assumptions for ILC systems include the fact 
that all exogenous signals, i.e. references and disturbances, 
are identical from trial to trial.  Additionally, current ILC 
practice assumes that the initial conditions for the system are 
also identical at the start of each trial.  As will be seen, those 
assumptions are violated in the current work necessitating a 
modification to current ILC practice.  In particular, this 
work examines the effect of non-repeating disturbances and 
imperfect resetting on ILC systems. Additional 
investigations focus on how a good design procedure, 
combining feedback and ILC, can mitigate these effects.  

The rest of the paper is organized as follows.  Section 2 
gives a brief background for the design of both H∞ and ILC 
control schemes.  This gives a common platform to describe 
coordination. Section 3 presents the overall design strategy 
employed to coordinate the two controller degrees of 
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freedom.  Key to the coordination is the knowledge of 
relative signal power between repeatable and non-repeatable 
signals in the frequency spectrum. Section 4 presents a 
simulation example demonstrating the coordination.  A key 
part of the simulation example is the demonstration of non-
repeating initial conditions that can occur when utilizing 
piezo actuation systems that have hysteresis as part of their 
dynamics.  The simulation example is based off the 
experimental system used to present the results in Section 5.  
The experimental results support the simulation findings as 
well as the design procedure of Section 4.  A conclusion 
then summarizes the main points of the paper. 

II. CONTROLLER BACKGROUND 
The PMC system architecture is depicted in Figure 1.  

Components of the system include the feedback controller, 
K(z), iterative learning controller, ILC, and the plant model, 
G(z).  Signals identified in the diagram are the reference, 
r(z), error, ej(z), feedback control, vj(z), learning control, 
uj(z), repeatable output disturbance, d(z), nonrepeatable 
output disturbance, dj(z), noise nj(z), and the output signal, 
yj(z).  The variable ‘z’ indicates that the analysis is 
performed in discrete time; whereas, the subscript ‘j’ 
denotes each signal’s iteration.  

In the design and analysis throughout this paper, the 
following assumptions were made to simplify calculations. 
• All signals are assumed to be over an infinite time 

horizon for frequency domain design.   
• The noise nj(z) and non-repeating disturbance dj(z) is 

assumed to have an expected value, or mean, of zero.   
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Figure 1 - Block Diagram of Feedback and ILC System 

2A. Stand-alone H∞ Feedback Control Design 
In a stand-alone feedback controller design, the main 

objective is to achieve performance (i.e. bandwidth) and 
high resolution (i.e. disturbance and noise attenuation) with 
uncertainties in the operating environment.  Both 
components are vital in achieving precision motion control. 
The classical control design processes such as PID require 
an exhaustive search over the space of controller parameters 
to meet bandwidth and resolution requirements. The 
advantage of H∞ robust control is that the objectives of 
performance, resolution, and robustness to model 
uncertainty can be directly considered in the frequency 
domain via appropriate weighting functions.  Then a 
mathematical optimization framework can be utilized to 
numerically search for a design.  

In H∞ design, the closed-loop transfer functions S(z), T(z), 
and KS(z) have the definitions 
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In the stand-alone feedback design, we assume uj(z)=0, and 
thus, the error signal is given by, 
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Eqn. 4 indicates that in order to decrease the tracking error, 
both S(z) and T(z) should be small.  The sensitivity function, 
S(z), needs to be small in order to mitigate the effects of 
{r(z),d(z),dj(z)} on the error.  The complementary sensitivity 
function, T(z), needs to be small to mitigate the effects of 
noise, nj(z) on the error.  Satisfying both S(z) and T(z) small 
is not possible due to the algebraic limitation 

 ( ) ( ) 1S z T z+ = . (5) 
The H∞ control signal is given by,  
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Note, when saturation of the control output becomes a 
concern [13], we will require a bound on KS(z).   

While designing the controller, the performance objective 
of a small tracking error, high bandwidth, and robustness to 
uncertainty cannot be satisfied simultaneously. This 
inevitable tradeoff can be explained by the Bode Integral 
law [12]-[14].  The Bode Integral is given in (7).   

 log ( ) 0S z dz
π

π−
=∫  (7) 

Thus if ( )S z  needs to be small at low frequency for 

small tracking error, this will create large magnitude in S(z) 
at a different frequency region.  The result of increasing S(z) 
is a decrease in the system’s closed loop bandwidth, where 
the bandwidth is defined at the crossover frequency or 

( ) 3S z dB= −  [4].  This phenomenon is known as the 

“waterbed” effect [4], and it serves to illustrate that there is 
always a fundamental tradeoff and limitation among 
bandwidth, robustness, and tracking error. 

The controller transfer function, K(z), is obtained through 
an iterative design of weighting functions to minimize  
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where ( ) ( )[ , ]max iX z X e ω
ω π π∈ −∞

= . The weighting 

functions {WS(z),WT(z),WV(z)} achieve the design objective 
by shaping the controller. Solutions to this problem are well 
known [15], and iterative numerical techniques are widely 
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available, for example in MATLAB software [16].  In the 
following, we summarize standard guidelines for the 
solution of WS(z), WT(z), and WV(z).  The interested reader is 
referred to [3],[4] for a more detailed discussion.  

The transfer function, WS(z), is typically chosen to have 
high gains at low frequencies and low gains at high 
frequencies.  This scaling ensures that the optimal feedback 
law is such that the sensitivity function is small at low 
frequencies, thereby guaranteeing good tracking at the 
frequencies of interest.  The weighting function, WT(z), is 
often chosen such that it has high gains at high frequencies 
and low gains at low frequencies.  This is done in attempt to 
shape T(z) such that it rolls off at high frequencies for noise 
attenuation.  The weighting function for the control, WV(z), 
is chosen to ensure that the control signals remain within 
saturation limits to prevent instability.  

2B. Iterative Learning Control Design 
Iterative learning control (ILC) [5]-[8] is used to improve 

the performance of systems that repeat the same operation 
many times.  ILC uses the tracking errors from previous 
iterations of the repeated motion to generate a feedforward 
control signal for subsequent iterations.  Convergence of the 
learning process results in a feedforward control signal that 
is customized for the repeated motion, yielding very low 
tracking error.  For the purposes of the ILC design, we 
assume that the feedback controller is given, and therefore 
S(z) is fixed.  We find that the jth iteration of the system in 
Figure 1 can be written as, 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ).
j j

j j
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As we will see, a fundamental limitation of ILC is the 
inability to compensate for the non-repeating disturbances, 
dj(z). 

In this work we consider first-order ILC algorithms of the 
form, 

 ( ) ( ) ( ) ( ) ( )( )1j j ju z Q z u z L z e z+ = + . (10) 

The learning function, L(z), maps the error signal to the 
control signal, and the filter Q(z) is used to limit the 
frequency range of the learning for stability and noise 
attenuation. The well-known ILC stability condition [6] is 

 ( ) ( ) ( )( )1 1Q z L z P z
∞

− < . (11) 

For fast convergence [8], we select L(z)=S-1(z)G-1(z).  
Note that when S(z)G(z) is strictly proper, L(z) is improper.  
An improper learning function can be implemented by 
appropriately shifting the error signal during the learning 
process [8].  When S(z)G(z) is non-minimum phase, then 
L(z) is unstable, which can lead to large control signals.  In 
this case the learning function can be separated into causal 
components and anticausal components and then stably 
filtered in the forward time with the causal component and 
then in negative time with the anticausal component [17]. 

Typically, there will be frequencies for which the system 

model is inaccurate.  Eqn. (11) illustrates that for large 
uncertainties in some frequency range (e.g. gain uncertainty 
larger than 100%) we must have ( ) 1Q z  in that 

frequency range for robust stability of the ILC. 
The performance of the ILC at convergence is measured 

by the power spectrum of ( ) ( )lim j je z e z∞ →∞ .  In the 
following the ‘z’ transfer function argument is dropped for 
compactness.  We multiply (10) by GS, 

 1j j jGSu QGSu QGSLe+ = + . (12) 

Next, substituting (9) for jGSu  resulting in 

 1 1 11j j j j

j j j
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, (13) 
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Since L=S-1G-1, the ej+1 term conditionally depends on Q as, 
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For those interested, further analysis is performed in [18]. 
The typical Q-filter design is a low pass filter [19].  This 

is because the system is usually well known at low 
frequencies, and non-repeating disturbances are minimized 
by the feedback controller at low frequencies.  A tradeoff 
exists between minimizing repeatable error and amplifying 
noise when designing the Q-filter.  When Q=1, the 
repeatable error is eliminated, but the noise is amplified.  
Alternatively, Q=0 has no effect on the noise or repeatable 
signal.  Therefore, we want to vary the value of Q with 
respect to frequency.  We should set Q=1 in frequency 
regions where the repeatable component, S(r-d), is 
dominant, and set Q=0 where the nonrepeatable component, 
S(dj+nj) is dominant. 

III. FREQUENCY-DELEGATED H∞ AND ILC DESIGN 
The previous two subsections, 2.A and 2.B, described 

independent design strategies for the feedback and ILC 
controllers.  That is, the feedback controller was designed 
with complete disregard to the ILC, and the ILC was 
designed for a given stabilizing feedback controller.  This 
section develops a frequency-delegation design strategy to 
coordinate the design of both controllers by delegating 
specific frequency bands for feedback and ILC operation.  
The following outlines the design heuristic. 

The first task is to develop an accurate model of the 
system.  This can be done by first principles or by system 
identification techniques.  Next, the exogenous signals 
affecting the system must be identified by frequency range 
and as repeatable or nonrepeatable.  For simplicity, we 
assume that noise only affects the system at high 
frequencies, and therefore our focus here is on the 
repeatable signals, r(z) and d(z), and the nonrepeatable dj(z).  
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Here we define the Repeatable-to-Nonrepeatable Ratio 
(RNR) of signal power as 

 ( )
( ) ( )

( )
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FFT r z d z

FFT d z
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where N is the total number of iterations of the signal 
identification.  The RNR is a useful metric for determining a 
frequency domain delegation of the control effort. 

 The RNR cannot be obtained directly because we cannot 
directly measure d(z) and dj(z).  In our approach we 
indirectly obtain the RNR from N iterations of the error 
signal history, 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )j j je z S z r z d z S z d z T z n z= − − + ,(17) 

1, ,j N= … .  Although this approach requires a feedback 
controller, we will show that our approach is insensitive to 
S(z), and thus any stabilizing feedback will suffice.  Using 
the error histories, we find the repeatable error as, 
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for large N.  Then, for frequencies where noise jn  is small, 
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Since both repeatable and nonrepeatable signals are scaled 
by S(z), the ratio is insensitive to S(z), and thus the feedback 
controller does not affect our estimate of the RNR. 

Repeatable and nonrepeatable signals will have different 
amplitudes at different frequencies, as schematically 
depicted in Figure 2a, for the class of systems considered 
here.  In 2a, the low frequency region is dominated by the 
nonrepeatable signal, which has significantly more energy 
than the repeatable signal.  At higher frequencies the role is 
reversed.  At the highest frequencies, both repeatable and 
nonrepeatable signals are sufficiently low in energy to be 
ignored. 

The H∞ feedback and ILC frequency delegation is 
illustrated by Figure 2a and 2b.  In frequency regions where 
nonrepeating signals dominate, the H∞ feedback controller 
should have maximum authority.  Weighting functions, 
WS(z) and WT(z), for the H∞ controller should be shaped as 
shown in Figure 2c and described in Table 1.  As in the 
stand-alone feedback design in Section 2A, WV(z) should 
have high gain in the frequency regions where saturation of 
the control signal needs to be prevented. 

Delegation of control authority is given to ILC in 
frequency ranges where the RNR is high.  The Q-filter 
magnitude should be 1 in these regions and it should be 0 in 
the regions delegated to the feedback controller, where the 

RNR is low.  Just as in Section 2B, the only caveat to the Q-
filter design is that it should also be 0 in frequency regions 
where model uncertainty is large to achieve convergence, as 
in (11).  The Q-filter design is illustrated in Figure 2d and 
Table 2. 

Upon completion of the controller designs, experimental 
testing is required to evaluate performance results.  A 
graphical layout of the procedure is shown in Figure 3. An 
iterative approach to the design process is suggested. 
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Figure 2 - Frequency Delegated Controller Design 
 

Table 1 - H∞ Design Summary as Function of Frequency 
RNR 

SW  TW  
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Large High  Low 

 
Table 2 - ILC Design Summary 
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Figure 3 - Design Methodology Flowchart  
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IV. SIMULATION EXAMPLE: NANOPOSITIONER 
The particular system example used here is a piezo-

actuated flexure-based positioner. The positioning system 
used for the experimental results in Section 5 is a Physik 
Instrumente P-611.3S NanoCube XYZ Piezo Nano-
positioning System and E-664 NanoCube Piezo Controller. 
The total range of motion for this device was 100 microns in 
the x, y and z directions, though here we consider motion 
only in the x-axis for the purpose of illustration. The 
frequency response of the system is shown in Figure 4.  In 
order to include the high frequency resonances, the model’s 
order becomes large, which possibly leads to greater 
sensitivity to model uncertainty.  Model variations become 
apparent in the frequency response curves, as seen in Figure 
4, and this creates more uncertainty about the estimated 
model of the system.  For example, the phase plot shows that 
the 50 mV and 100 mV curves are completely out of phase 
around 170 Hz from system ID tests. This model uncertainty 
could lead to ILC instability and can be mitigated by 
“rolling off” the Q-filter. 
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Figure 4 - System ID Frequency Response Plot 

 
System ID tests estimate a 12th order discrete LTI model, 

(20), which consisted of several high frequency resonances 
as shown in Figure 4.  Above 100 Hz, the model has several 
complex pole-zero pairs, which create difficulties for 
tracking reference signals above this frequency.  Controller 
designs and reference signals did not attempt to operate in 
the frequency band greater than 100 Hz.  
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Piezo actuators, such as those that drive this device, suffer 
from a hysteretic behavior.  Hysteresis is a nonlinear 
phenomenon [20], that can be difficult to precisely control.  
Figure 5 shows data from the experimental system that was 
used to augment the linear model in (20).  Hysteresis models 

[20] often include an internal state variable to capture the 
direction dependent characteristics. When the positioner is 
reset to an initial condition to start a trajectory, the internal 
hysteresis state is nonzero.  This means that a nonzero initial 
input signal is required to initiate movement of the piezo.  
The net effect of this is a path dependent reset.  Even though 
the positioner is at the same initial position at the start of a 
repetitive trajectory, the internal hysteretic state can vary 
depending on the exact path taken to reset the positioner.  
This nonlinear hysteresis results in an example of a low 
frequency non-repeating exogenous signal to the positioning 
loop.  Figure 6(top) shows the periodogram of the x-position 
output from the nanopositioning system shown in Section 5.  
The hysteresis is the low frequency nonrepeatable content.  
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Figure 5. Hysteresis Plot w/ Open Loop Inputs 
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Simulation and experimental results use a modified 20Hz 

sinusoidal signal with 3 micron magnitude for r(z).  The 
modification is band pass filtering r(z), such that repetitive 
signal content is large in the region around 20Hz and small 
at other frequencies.  From the experimental system in 
Section 5, the low frequency effects of hysteresis are 
combined with the 20Hz reference signal into the RNR as 
shown in Figure 6(bottom), the total exogenous signal set 
resembles the case shown in Figure 2c.  We see a clear 
frequency separation of the exogenous repetitive and 
nonrepetitive signals.  The frequency region between 10-
30Hz (mid-range frequency) contains the repetitive content, 
whereas the large stochastic signals occur below 10Hz and 
above 100 Hz. 

Overall, four basic control schemes are considered to 
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explore the scenario given in Figure 2.  Two feedback 
controllers were designed with different closed loop 
bandwidths.  One controller was designed to mitigate the 
effects of all low frequency error, and this system’s closed 
loop bandwidth was approximately 15 Hz.  Indeed, this 
system does reduce low frequency error, but when tracking 
the 20 Hz reference signal, the error signal is large.  The 
second feedback controller’s design intention was to be a 
stand-alone controller.  With a bandwidth of 44 Hz, this 
second controller had low tracking error for the 20 Hz sine 
wave reference.  Since these two controllers have distinctly 
different bandwidths, they will be referred to as the low 
bandwidth (KLBW) and high bandwidth (KHBW) controller, 
(21) and (22), respectively.  The bode plots can be viewed in 
Figure 7.  Note that, due to (7), there is a tradeoff between 
the controller’s bandwidth and its low frequency gain.  The 
H∞ design allows the low bandwidth controller to have a 
larger DC gain by constraining the bandwidth.   
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Figure 7. Bode Plot of H∞ Controller Designs 
 

Two digital, 3rd order, Butterworth Q-filters were 
designed for ILC. These were a low pass (0-100Hz) and 
band pass (10-100Hz) Q-filter, (23) and (24), respectively.  
Table 3 summarizes the four different control scenarios. 

 
Table 3 - Feedback and ILC Controller Combinations 

ILC Q-filter Design Four Control Scenarios 
Low Pass Band Pass 

Low 
Bandwidth 

Reduce Low 
Frequency 
disturbance 

Approach 
presented 
here 

H∞ 
Feedback 
Controller 
Designs High 

Bandwidth 
Typical 
Design 

Approach 
presented 
here 

 
As with the experimental results of Section 5, the total 

simulation time was 1.5 seconds.  For the simulation tests, 
nj(z)=d(z)=0, as depicted in Figure 1, and the non-repeating 
output disturbance was a DC offset defined as dj(z)=Γ*wj 
µm, where wj was a random real-valued constant varying 
between -1 µm and 1µm.  Each set of simulation tests ran for 
60 iterations, and the disturbance gain, Γ, varied for each 
simulation test set.  The primary performance measurement 
was the root mean squared (RMS) value of the error signal.  
Calculating the RMS was done by (25).   
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Figure 8. Mean RMS Error vs. Disturbance Gain 
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The simulated mean RMS error results of the band pass 

and low pass Q-filter ILC schemes, using the low bandwidth 
H∞ controller (21), are plotted against the disturbance gain, 
Γ, in Figure 8.  As Γ is increased, the low frequency content 
of the nonrepeatable signal increases. 

If the low frequency non-repeating signal is relatively 
small, then the low pass and band pass Q-filter have similar 
performance, because the exogenous signals have frequency 
content in only the mid-range frequency (10-30 Hz) region. 
As the low frequency non-repeating content of the 
exogenous signals increases (as Γ increases), it enters into 
the learning update of the low pass Q-filter ILC, which 
prevents convergence of the ILC control signal. For the 
band pass Q-filter ILC, the nonrepetitive content does not 
contribute to the learning control signal, since it is outside 
the frequency range of learned signals.  Therefore, as the 
content of the low frequency non-repeating signal increases 
(as Γ increases), Figure 8 indicates that the best design 
option, for this particular case, is to remove the low 
frequency content of the exogenous signals from the 
feedforward learning update by filtering it, i.e. band pass Q-
filtering.  The feedback control would then be assigned 
responsibility for mitigating the low frequency disturbance.   
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Figure 9. Experimental Setup 

V. EXPERIMENTAL EXAMPLE: NANOPOSITIONER 
The controllers of Section 4 were implemented by a 

DS1104 dSPACE DSP controller board.  A layout of the 
experimental setup can be viewed in Figure 9.  For baseline 
comparison, the feedback controllers in Figure 7 were tested 
by tracking the sinusoidal reference signal, see Figure 10.  
As expected, these plots show that the high bandwidth H∞ 
controller performs better, i.e. lower tracking error, than the 
low bandwidth one when operating without ILC. 

As previously mentioned, hysteresis is not uncommon in 
precision motion control systems driven by piezos.  As 
illustrated in Figure 10, the high bandwidth feedback 
controller would typically be considered a better controller 
than the low bandwidth one.  However, this is not the case 
when the feedback controllers are combined with ILC.  The 
non-repetitive hysteresis affects the two degree-of-freedom 
design in a somewhat counterintuitive manner. Figure 11  
shows the results of tracking the sinusoidal command, 
presented in Section 4, when using two of the four control 

scenarios listed in Table 3. As shown in Figure 11, after a 
few iterations the RMS tracking error is reduced 
significantly over feedback alone.  The low bandwidth 
controller scenarios have an initial RMS error that is much 
larger than that of the high bandwidth controller.  However, 
the low bandwidth feedback controller integrates better with 
the ILC than the high bandwidth feedback controller in both 
ILC scenarios, which is observed in the Table 4 statistics.  
These values were tabulated from the same experimental test 
results in Figure 11, and only used the iterations after 
convergence (iterations 3-60) for the mean and standard 
deviation calculations.  Results in Table 4 show quantitative 
improvements of over 20% error reduction when using 
KLBW+QBandpass as opposed to the typical KHBW+QLowpass 
configuration.  As low frequency nonrepetitive exogenous 
signal content within the system increases this band pass Q-
filter approach will provide further benefit as explained in 
the simulation results of Section 4.   
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Figure 10. (a) KLBW Feedback Tracking Results (b) KHBW 
Feedback Tracking Results  
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Figure 11. RMS Error from 3µm 20Hz Sinusoid Reference 
 

The results in Figure 11 and Table 4 are explained by re-
examining Figures 2, 6, and 7.  The hysteresis effect, leading 
to non-repeating initial conditions, is primarily low 
frequency, and the reference signal is mid-frequency.  
Therefore, the successful design should have the feedback 
controller focus on suppressing disturbances in the low 
frequency range.  The low bandwidth feedback controller 
has a higher DC gain than its high bandwidth counterpart 
and is therefore more successful at eliminating the low 
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frequency effect.  The feedback controller then relies on the 
ILC to provide appropriate reference tracking signals in the 
mid-range frequency.  When low frequency nonrepetitive 
signal content is large enough, a band pass Q-filter design 
shows an additional improvement in performance compared 
to a low pass Q-filter. 
 
Table 4 - Statistics from RMS Error Signals of Experimental 
Sine Wave Tests (iterations 3-60) 

ILC Q-filter Design RMS error statistics for all four 
controller scenarios (iter. 3-60) Low Pass Band Pass

Mean  35.9 nm 35.4 nm Low 
Bandwidth Standard Dev.  3.3 nm 2.8 nm 

Mean  46.0 nm 41.1 nm 

Fe
ed

ba
ck

 

High 
Bandwidth Standard Dev.  8.0 nm 3.6 nm 

 

VI. CONCLUSION 
This work presents a design approach for frequency 

domain allocation of control authority for feedback + 
feedforward systems; in particular, H∞ and ILC.  Examining 
frequency content of non-repeating exogenous signals 
indicates where, within the limitations of the Bode Integral, 
the feedback sensitivity function should be minimized.  In 
these frequency ranges, ILC contributions can be minimized 
by shaping the Q-filter to prevent learning.  This design 
approach is in contrast to many ILC applications where the 
feedback design is often decoupled from the ILC design.  
Simulation and experimental results were presented 
demonstrating the validity of the proposed approach.  While 
the data sets (disturbances, references) were limited, further 
results similar to Sections 4 and 5, with different trajectories 
and disturbances, can be found in [21]. 
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