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Abstract— In this paper, an adaptive compensation scheme
is presented for controlling signal-dependent synthetic jet
actuator nonlinearities, using higher order approximation of
twin approximators for effective adaptive inversion of actuator
nonlinearities. Approximation of a nonlinearly parametrized ac-
tuator model by a linearly parametrized function is performed.
Adaptive inversion of actuator nonlinearities is implemented by
another approximator in the feedforward path. The network
reconstruction error is reduced in principle with usage of a
second-order approximation, compared to a first-order approx-
imation. A nonlinear state feedback control law is designed for
controlling a nonlinear dynamic system. Parameter projection
based adaptive laws ensure desired closed-loop stability.

Keywords: Actuator nonlinearity, adaptive inverse, non-
linear aircraft dynamics, stability, synthetic jet actuators.

I. Introduction
The characteristics of synthetic jet actuators used for

aircraft flight control are highly nonlinear and can change
significantly with the aircraft’s angle of attack [1], [2], [3].
An adaptive inversion approach [9] has been used for com-
pensation of actuator nonlinearities, in controlling a dynamic
system. The design of an adaptive inverse needs to be further
developed for synthetic jet actuator nonlinearities, to handle
their complex characteristics and signal-dependence and to
improve the nonlinearity inversion accuracy.

Selmic et al. [8] have addressed the problem of compensat-
ing a nonparametrizable deadzone-like actuator nonlinearity,
by using two coupled neural networks which are tuned
such that an effective inversion is adaptively achievable. To
handle signal-dependent actuator nonlinearities, an adaptive
nonlinearity inverse needs to be designed with networks with
increased dimensions [3]. Higher dimensional network based
adaptive inverse schemes need enhancement for improved
inversion accuracy, which will be studied in this paper. This
work is motivated from the need of such an inverse to handle
the intrinsically complicated nonlinear characteristics of ac-
tuators, for applications including aircraft flight control using
synthetic jet actuators. Our objective is to develop a new
adaptive inverse design with enhanced inversion accuracy.

As demonstrated in [1], [2], the input-output relationship
of a synthetic jet significantly depends on the angle of
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attack α of the aircraft wing, with the input to the actuator
being v(t), that is, we observe a state dependent actuator
control problem with an actuator nonlinearity function u =
f(v(t), α) proceeded at the input of a dynamic system
ẋ = f0(x) + g(x)u. Such a nonlinear function f(v(t), α)
is difficult to model. Approximately, for an actuator function
f1(v) at a low angle (α ≈ 3◦) of attack and an actuator
function f2(v) at a high angle (α ≈ 24◦) of attack, the
actuator nonlinearity function f(v, α) may be expressed as

f(v, α) = a(α)f1(v) + b(α)f2(v), (1)

where a(α) and b(α) are certain functions that determine the
dependency of the actuator nonlinearity on the signal α, and
f1(v) and f2(v) are static nonlinearity functions dependent
on the actuator input v. Such a signal-dependent actuator
nonlinearity can be compensated for by using enhanced
designs of the inverse scheme of [8].

We will develop an approximation based inverse for a
signal-dependent actuator nonlinearity. There are several ap-
proaches for approximation available in literature, including
neural network based models, fuzzy logic approximators,
wavelets and splines. A neural network based design is used
for demonstration and is based on the work by Selmic et
al. [8]. The synthetic jet actuator application is studied for
illustration of research motivation and demonstration of our
new adaptive inverse control design.

The two main contributions of this work are:

• A new and improved higher-order inverse parametriza-
tion scheme in presence of signal dependent actuator
nonlinearities, thereby improving accuracy of approxi-
mation, is presented.

• An application of this scheme to synthetic jet actuation
in aircraft fight control systems, is presented.

The paper is organized as follows. In Section II, an
adaptive compensation scheme for signal-dependent actuator
nonlinearities is developed, using a high-order approximation
based inverse. In Section III, we present a benchmark study
of an adaptive inverse based feedback control scheme, by
combining it with a feedback control law applied to a non-
linear aircraft dynamic model with synthetic jet actuators. In
Section IV, we develop an adaptation scheme for parameter
updates of the coupled nonlinearity approximation functions
used to build the adaptive nonlinearity inverse, and show the
closed-loop system stability and tracking properties.
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II. Higher Order Parametrization of Inverse Schemes
In this section, we present a modified parametrization

scheme for adaptive inversion of signal dependent actuator
nonlinearities, using second-order terms of the Taylor series
functional expansion of the approximating functions.

As a motivating example, we consider a synthetic jet
actuator nonlinearity characteristic u = N(v, α) which
depends on the angle of attack α, and the actuator input
v, where u is the lift coefficient (force) on airfoil surface.

It is well-known that approximators such as RBF net-
works or feedforward-type neural networks (NNs) and
fuzzy logic approximators have a powerful universal ap-
proximation property, that is, for any continuous function
f(v, α),∀ (v, α) ∈ S ⊂ R2, one has

u = N(v, α) = f(v, α) = WTφ(v, α) + ε1(v, α),

where φ(v, α) is a basis vector, W is a constant weighting
vector (for u ∈ R) and ε1(v, α) is the approximation error.

As a demonstrative tool of this new parametrization
scheme, we use a neural network approximator with the basis
φ(v, α) = σ(V Tx1 + v0), and the actuator output is

u = WTσ(V Tx1 + v0) + ε1(v, α), (2)

where x1 = [v, α]T , and σ(·) ∈ RL is a hidden layer
activation vector, and V and v0 are the first-layer weighting
matrix and vector of the neural network [7], [8].

The functional approximation properties of neural net-
works is used to convert an unknown nonlinear function
into a set of unknown constant parameters W and V , and
a bounded disturbance ε1(v, α). A neural network of this
type is capable of approximating any smooth function to
any desired accuracy. Note that W and V indicate constant
parameter values that minimize ε1(v, α).

Using this desirable property, we propose to employ a
neural network to estimate the characteristic u = N(v, α):

û = ŴTσ(V Tx1 + v0), (3)

where Ŵ is an estimate of the ideal NN weight W .

This neural network is used as an actuator nonlinearity
estimator or observer. The output of this neural network will
be used for tuning a second neural network which will be
used as the nonlinearity compensator.

For the inverse characteristic v = NI(ud, α) such that

u = N(NI(ud, α), α) = ud, (4)

where ud is the desired input signal, we use another neural
network WT

i σi(V
T
i x2 +v0i) which acts as the compensator,

to estimate the function udNN given by

udNN
4
= NI(ud, α)− ud
= WT

i σi(V
T
i x2 + v0i) + ε2(ud, α), (5)

where σi(·) ∈ RLi is a hidden layer activation vector, Vi
and v0i are the basic NN elements (a matrix and a vector),

x2 = [ud, α]T and ε2(ud, α) is the network approximation
error. Then, the estimate of udNN is

ûdNN = ŴT
i σi(V

T
i x2 + v0i), (6)

where Ŵi is an estimate of the NN weighting vector Wi.
The weights V and Vi are chosen based on the activation
functions σ and σi, and they are kept fixed.

An estimation scheme for nonsmooth actuator nonlineari-
ties with first order parametrization is presented in [8]. This
paper extends that work to higher order parametrization and
approximation in presence of signal dependent nonlinearities.

From (2) and (4) we get

ud = WTσ
(
V T [udNN + ud, α]T + v0

)
+ ε1 (v, α) . (7)

Using (5) and (6), we get

ud = WTσ

(
V T

[
W̃T
i σi(V

T
i x2 + v0i) + ε2(ud, α), 0

]T
+V T

[
x2 + [ûdNN , 0]T

]
+ v0

)
+ ε1(v, α), (8)

where W̃i = Wi − Ŵi is the weight parameter error.

A. New Inverse Parametrization
Next, we describe the effectiveness of this coupled neural

network nonlinearity approximation by developing a control
error expression. This expression is critical in developing
adaptive update laws for the parameter estimates. For devel-
oping control error, we assume that

(A1) the ideal weights W and Wi are bounded
such that ‖W‖F ≤WM and ‖Wi‖F ≤WiM with
WM and WiM known bounds.

The key to extending theory developed for linear-in pa-
rameter functions [9] to neural networks with one hidden
layer involves a Taylor series expansion of the hidden-layer
output. Using Taylor series expansion of ud in (8) for Wi at
Ŵi up to the second order (for ε2 at 0 nominally), we get

ud = WTσ
(
V T

(
x2 + [ûdNN , 0]T

)
+ v0

)
+ ε1(v, α)

+WTσ′
(
V T

(
x2 + [ûdNN , 0]T

)
+ v0

)
V T

·
[
W̃T
i σi

(
V Ti x2 + v0i

)
+ ε2(ud, α), 0

]T
+

1
2
WTσ

′′
(
V T

(
x2 + [ûdNN , 0]T

)
+ v0

)
·
[
W̃T
i σi

(
V Ti x2 + v0i

)
+ ε2(ud, α), 0

]
V V T

·
[
W̃T
i σi

(
V Ti x2 + v0i

)
+ ε2(ud, α), 0

]T
+WTR2

(
W̃i, ud, α

)
, (9)

where W̃ = W − Ŵ is a weight estimation error, and
WTR2

(
W̃i, ud, α

)
is the remainder of the second Taylor

polynomial and σ′(z) and σ′′(z) is the first and second
derivatives of σ(z) = [σ1(z1), . . . , σL(zL)]T with respect
to z = [z1, . . . , zL]T respectively.
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Remark 2.1: The higher order approximation naturally
provides a more accurate approximation compared to the
first order approximation presented in [8]. In fact, it can
be shown that for higher order approximation even beyond
second order, the control error can be expressed as a linear
parametrization of weighting errors W̃ and W̃i, with the
model mismatch term accounting for the higher order com-
ponents. The norm of this model mismatch term, in principle,
is lower for higher order approximations.

The estimate on the remainder of the second Taylor
polynomial describes how far the approximation is from the
true function. Since we use the second Taylor polynomial,
the reminder term is only degree 3 and satisfy the inequality.

Since x1 = x2 + [ûdNN , 0]T , using (2), we get

u = WTσ
(
V T

(
x2 + [ûdNN , 0]T

)
+ v0

)
+ε1(v, α). (10)

Substituting (10) into (9), we get

u− ud = −WTσ′
(
V Tx1 + v0

)
V T [ε2(ud, α), 0]T

−WTσ′
(
V Tx1 + v0

)
V T

[
W̃T
i σi

(
V Ti x2

+v0i) , 0]T − 1
2
WTσ

′′ (
V Tx1 + v0

)
·
[
W̃T
i σi

(
V Ti x2 + v0i

)
+ ε2(ud, α), 0

]
V V T

·
[
W̃T
i σi

(
V Ti x2 + v0i

)
+ ε2(ud, α), 0

]T
−WTR2

(
W̃i, ud, α

)
. (11)

Next, utilizing the weighting errors W̃ = W − Ŵ , W̃i =
Wi− Ŵi, we express (11) such that it is composed of terms
which are linear in W̃ and W̃i, and the model mismatch term
ε. The model mismatch term is composed of the nonlinear
terms in W̃ and W̃i, and terms with ε(ud, α) components.
Finally, the control error u− ud is given by

u− ud = W̃Tσ′
(
V Tx1 + v0

)
V T [ûdNN , 0]T − ŴT

·σ′
(
V Tx1 + v0

)
V T

[
W̃T
i σi

(
V Ti x2 + v0i

)
, 0
]T

−1
2
W̃Tσ

′′(
V Tx1 + v0

)
[ûdNN , 0]V V T [ûdNN , 0]T

+
1
2
ŴTσ

′′(
V Tx1 + v0

)
V T [ûdNN , 0]T

·
[
W̃T
i σi

(
V Ti x2 + v0i

)
, 0
]
V + ε

= −ŴTΨ
[
W̃T
i σi

(
V Ti x2 + v0i

)
, 0
]T

+W̃TΨ [ûdNN , 0]T + ε, (12)

where Ψ is given by

Ψ =
(
σ′
(
V Tx1 + v0

)
− 1

2
σ

′′(
V Tx1 + v0

)
[ûdNN , 0]V

)
V T ,

and ε defined as the modeling mismatch error with a desir-
able bounded norm is given by

ε = −WTσ′
(
V Tx1 + v0

)
V T [ε2(ud, α), 0]T

−W̃Tσ′
(
V Tx1 + v0

)
V T
[
WT
i σi

(
V Ti x2 + v0i

)
, 0
]T

−1
2
WTσ

′′ (
V Tx1 + v0

)
V T

[
ε22(ud, α), 0

]T
[1, 0]V

−WTσ
′′ (
V Tx1 + v0

)
V T [1, 0]T

·
[
W̃T
i σi

(
V Ti x2 + v0i

)
ε2(ud, α), 0

]
V −WT

·σ
′′ (
V Tx1 + v0

) [
W̃T
i σi

(
V Ti x2 + v0i

)
, 0
]
V V T

·
[
WT
i σi

(
V Ti x2 + v0i

)
, 0
]T

+
1
2
W̃Tσ

′′ (
V Tx1 + v0

)
·V T [ûdNN , 0]T

[
WT
i σi

(
V Ti x2 + v0i

)
, 0
]
V

−WTR2

(
W̃i, ud, α

)
. (13)

Remark 2.2: The important features of (12) are: (i) it
contains the second-order approximation terms related to
σ′′, and (ii) it has a parametrization linear in terms of the
neural network weight errors W̃T

i , W̃T , which are desirable
for the adaptive inversion design. Unlike that with a first-
order approximation seen in the literature, the inclusion of
the second-order terms related to σ′′ has the potential to
increase the approximation accuracy. Moreover, higher-order
approximations can be similarly developed.

B. Approximation Error Analysis
It is important to note that the choice of W , V , v0

and v0i is based on the space x = [v, ud, α]T . The term
R2

(
W̃i, ud, α

)
is bounded as

‖R2(·)‖F ≤
1
6
‖σ

′′′
(·)‖‖V ‖3F

(
‖W̃i‖3F ‖σi(·)‖3

+ ‖ε2(ud, α)‖3 + 3‖W̃i‖2F ‖σi(·)‖2‖ε2(ud, α)‖
+3‖W̃i‖F ‖σi(·)‖‖ε2(ud, α)‖2

)
, (14)

where σ′′′(x) is the third derivative of σ(x).
Using (13) and (14), the model mismatch error ε(t)

satisfies the following condition

|ε| ≤ ‖W‖F ‖σ′(·)‖‖V ‖F ‖ε2(ud, α)‖
+‖W̃‖F ‖σ′(·)‖‖V ‖F ‖Wi‖F ‖σi(·)‖

+
1
2
‖W‖F ‖σ

′′
(·)‖‖V ‖2F ‖ε2(ud, α)‖2

+‖W‖F ‖σ
′′
(·)‖‖V ‖2F ‖W̃i‖F ‖σi(·)‖‖ε2(ud, α)‖

+‖W‖F ‖σ
′′
(·)‖‖V ‖2F ‖Wi‖F ‖σi(·)‖2‖W̃i‖F

+
1
2
‖W̃‖F ‖σ

′′
(·)‖‖V ‖2F ‖Ŵi‖F ‖σi(·)‖2‖Wi‖F

+
1
6
‖W‖F ‖σ

′′′
(·)‖‖V ‖3F

(
‖W̃i‖3F ‖σi(·)‖3

+‖ε2(ud, α)‖3 + 3‖W̃i‖2F ‖σi(·)‖2‖ε2(ud, α)‖
+3‖W̃i‖F ‖σi(·)‖‖ε2(ud, α)‖2

)
= δ̄1‖W̃i‖3F + δ̄2‖W̃i‖2F + δ̄3‖W̃i‖F

+δ̄4‖W̃i‖F ‖W̃‖F + δ̄5‖W̃‖F + δ̄6, (15)
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where δ̄1, . . . , δ̄6 are unknown bounded constants. Using
assumption (A1) and ‖W̃‖F ≤ WM + ‖Ŵ‖F , ‖W̃i‖F ≤
WiM + ‖Ŵi‖F , we get

|ε| ≤ δ1‖Ŵi‖3F + δ2‖Ŵi‖2F + δ3‖Ŵi‖F
+δ4‖Ŵi‖F ‖Ŵ‖F + δ5‖Ŵ‖F + δ6 = βTΩ, (16)

where β = [δ1, . . . , δ6]T is a vector of bounded constants
(not assumed to be known and are adaptively updated), and

Ω =
[
‖Ŵi‖3F , ‖Ŵi‖2F , ‖Ŵi‖F , ‖Ŵi‖F ‖Ŵ‖F , ‖Ŵ‖F , 1

]T
is

a known vector.
The vector β is bounded because ‖ε2(ud, α)‖ is bounded

for bounded α. We define an estimator for the bound of the
model mismatch error βTΩ, as

ε̂ = β̂TΩ, (17)

where β̂ = [δ̂1, . . . , δ̂6]T is updated from parameter projec-
tion based adaptive law.

C. Adaptive Compensation based Feedback Control
As the estimates Ŵ and Ŵi approach the actual NN

parameters W and Wi, the neural network precompensator
effectively provides an inverse for the synthetic jet actuator
nonlinearity. Section IV will demonstrate tuning methodol-
ogy so that Ŵ and Ŵi are close to W and Wi. The adaptive
control system error given by (12) is directly related to the
approximation error and is crucial in guaranteeing closed-
loop stability. Through the second-order Taylor expansion,
the control error u−ud is expressed in a linearly parametriz-
able form with respect to the parameter errors W̃ and W̃i.

Figure 1 describes a state feedback inverse control system
where two approximators are used. The first approximator is
used as an estimator of actuator nonlinearity, while the sec-
ond is used as a compensator. The state feedback scheme and
the aircraft pitch plane dynamics given by ẋ = f0(x)+g(x)u
is presented in the next section. The actuator nonlinearity
model N(·) and the approximators N̂(·) and N̂I(·) are given
in (2), (3), and (6) respectively. The signal ua is an additional
input signal.

i ẋ = f0 + g u

ua

x
-

-
N(·)

N̂(·)
N̂I(·)

?

-

- -
-

-

- -
-

-

-

ud

v
u

α
α

α

ûdNN û

+

Fig. 1. Adaptive inverse compensation scheme.

III. A Benchmark Control System
In this section, synthetic jet application to state feedback

adaptive control is studied for illustration of research moti-
vation and demonstration of improved system performance.
From a comparison of the low-angle-of-attack model[1] and

the high-angle-of-attack model[2], we can conclude that the
synthetic jet characteristic for a wide range of angles of
attack inevitably depends on the angle of attack of the
aircraft, and it is inherently nonlinear in nature. That is, in
addition to the applied input voltage, the actuator nonlinearity
characteristics change significantly with the angle of attack.

Our goal is to develop an adaptive inverse compensation
scheme which is applicable at a wide range of angles of
attack. We present a new state feedback adaptive inverse
control scheme with two higher order approximators to
cancel N(θ∗; v, α). The most likely platforms for application
of this technology are the new generation of stealth aircraft
designed which lack vertical surfaces.

The states of the nonlinear system are

x =
[
Va γ α q

]T
, (18)

where Va is the magnitude of the aircraft velocity relative to
the aircraft, γ is the flight-path angle which is assumed to be
positive when the aircraft is climbing, q is the pitch angle,
and α is the angle of attack.

Nonlinear Pitch-plane Dynamics
The nonlinear pitch-plane dynamics can be expressed as

V̇a =
T

m
cosα− g sin γ, (19a)

γ̇ =
1

mVa
(u+ T sinα−mg cos γ) , (19b)

α̇ = q − 1
mVa

(u+ T sinα−mg cos γ) , (19c)

q̇ =
Izz − Ixx
Iyy

τ u, (19d)

where u is the net lift force, m is the aircraft mass, τ u is
the pitch moment, T = ua is the thrust, and inertias in the
body axes are represented as Iij , i = x, y, z, j = x, y, z.

Control Inputs. The control inputs are the thrust signal
T and the lift force u(t). The objective is to develop an
integrated control law ud(t) for all angles of attack until
stall. We use the thrust T to control the velocity Va, q to
control α, and the desired lift ud imparts a pitch moment to
control q. The desired trajectory is specified by the reference
states (Vc, αc), which are differentiable and bounded.

For the feedback control design, we assume that
(A2) the velocity Va does not approach 0, the angle
γ does not approach ±90◦, and −24◦ ≤ α ≤ 24◦,

so that the nonlinear aircraft dynamics avoid singularities.

A. Velocity Control
From the velocity dynamics in (19a), for velocity control,

the desired thrust T as a control command is

T =
m

cosα

(
g sin γ + V̇c −KV Ṽ

)
, (20)

where Vc is the reference signal, Ṽ = Va−Vc, is the velocity
error, KV > 0, is a constant gain.

Using (19a), (20), the velocity error dynamics is given by
˙̃V = −KV Ṽ . (21)
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B. Flight path angle control
With thrust T given by (20), (19b) can be expressed as

γ̇ = fγ +
1

mVa
(u+ T sinα) , (22)

where fγ is a known function. From (22), we generate

αc = arcsin

(
mVaFγ − ud − β̂TΩ

T

)
, (23)

where Fγ = γ̇c − fγ − Kγ γ̃, and γc is the available flight
path angle, Kγ > 0 is a constant gain, γ̃ = γ − γc, is flight
path error. Note that β̂TΩ term has been added for ensuring
stability in the Lyapunov sense by cancelling the effect of
βTΩ. The solution of αc is valid in the region∣∣∣mVaFγ − ud − β̂TΩ

∣∣∣ < δ |T | , (24)

where δ is a constant determined by the allowable values of
αc: αc ∈ (−25◦, 25◦), δ = 0.1736.

Using (22)–(24), the dynamics of γ̃ is

˙̃γ = −Kγ γ̃ +
1

mVa

(
u− ud − β̂TΩ + T (sinα− sinαc)

)
.

Lyapunov stability analysis requires linearization of γ̃. For
small errors α̃ = α− αc, the flight path angle error is

˙̃γ = −Kγ γ̃+
1

mVa

(
u− ud − β̂TΩ + T (α̃ cosαc +O(α̃))

)
.

(25)

C. Angle of attack control
With thrust T given by (20), (19c) can be expressed as

α̇ = fα −
1

mVa
u+ q, (26)

where fα is a known function. For angle of attack control,
we generate the signals qc, from the following equation

qc = α̇c−fα−Kαα̃+
1

mVa

(
ud + β̂TΩ + T γ̃ cosαc

)
, (27)

where αc is a reference signal, and Kα > Kγ > 0 are
constant gains, α̃ = α − αc, is angle of attack error, and β̂
is an adaptive estimate of β. Note that β̂TΩ and T γ̃ cosαc
ensure stability in the Lyapunov sense.

Using (26), (27), and (12), the dynamics of α̃ is

˙̃α = −Kαα̃+ q̃ − 1
mVa

(
u− ud − β̂TΩ

)
, (28)

where q̃ is the body axis rate error.

D. Pitch Rate Control
The state feedback control law can be expressed as

ud =
1
τ

(
Iyy

Izz − Ixx

)
(−Kq q̃ − α̃+ q̇c)− β̂TΩ, (29)

where Kq > Kα > 0, so that qc given by (27), is achievable.
The first component in (29) represents a negative feedback

of q̃. Using (19d), and (29), the dynamics of q̃ is

˙̃q = −kq q̃ − α̃+
Izz − Ixx
Iyy

τ
(
u− ud − β̂TΩ

)
, (30)

where q̃ = q − qc and u− ud is available from (12).

The control objective now is to choose the adaptive laws
for Ŵ and Ŵi for local stable system.

IV. Parameter Adaptation and Stability Analysis
It is possible to guarantee that Ŵ (t), Ŵi(t), and β̂(t)

remain within a convex region defined in a parameter space
that contains the ideal target weights. In this section, we for-
mulate update laws for the parameter estimates Ŵ (t), Ŵi(t),
and β̂(t) so that the control objective is achievable.
Adaptive update laws. We choose the adaptive laws as

˙̂
W (t) = ga(t) + ha(t),
˙̂
W i(t) = gc(t) + hc(t),

˙̂
β(t) = Γ3Ω|e(t)|+ hβ(t), (31)

where ga(t) and gc(t) are adaptation functions given by

gc(t) = −Γ2e(t)[σi
(
V Ti x2 + v0i

)
, 0]TΨT Ŵ ,

ga(t) = Γ1e(t)Ψ[ûdNN , 0]T , Γi = ΓTi > 0, (32)

where Γi, i = 1, 2, 3, are adaptation gain matrices and

e(t) =
γ̃ − α̃
mVa

+
Izz − Ixx
Iyy

τ q̃, (33)

and ha(t), hc(t) and hβ(t) are projection functions which
ensure that the parameter estimates stay in a convex region
for certain desired physical properties.

For parameter projection we denote Wj , Ŵj(t),Wij ,

Ŵij (t), haj (t) and hcj (t) as the jth components of W,
Ŵ (t),Wi, Ŵi(t), ha(t) and hc(t), respectively, for j =
1, 2, . . . , n1 and j = 1, 2, . . . , n2 as the case may be. The
convex region with ideal target weights is

Wj ∈
[
W a
j ,W

b
j

]
, Wij ∈

[
W a
ij ,W

b
ij

]
. (34)

With Ŵj(0) ∈ [W a
j ,W

b
j ], Ŵij (0) ∈ [W a

ij
,W b

ij
], the projec-

tion functions haj (t), hcj (t) and hβk(t) are

haj (t) =


0 if Ŵj(t) ∈ (W a

j ,W
b
j ),

if Ŵj(t) = W a
j , gaj (t) ≥ 0,

if Ŵj(t) = W b
j , gaj (t) ≤ 0,

−gaj (t) otherwise,

(35)

hcj (t) =


0 if Ŵij (t) ∈ (W a

ij
,W b

ij
),

if Ŵij (t) = W a
ij
, gcj (t) ≥ 0,

if Ŵij (t) = W b
ij
, gcj (t) ≤ 0,

−gcj (t) otherwise,

(36)

hβk(t) =


0 if δ̂k(t) ∈

(
δbk, δ

d
k

)
,

if δ̂k(t) = δbk, Γ3Ωe(t) ≤ 0,
if δ̂k(t) = δdk, Γ3Ωe(t) ≥ 0,

Γ3Ωe(t) otherwise,

(37)

where k = 1, . . . , 4, hβ = [hβ1, . . . , hβ2]T .
Note the coupled nature of the adaptive laws Ŵ (t) and

Ŵi(t) reinforcing the mutual dependence of the two neural
networks. Next, we analyze the aircraft stability performance.
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Theorem 1: Under assumptions (A1) and (A2), the error
dynamics (21), (25), (28), and (30) from state feedback
control law governed by (20), (23), (27) and (29), with
parameters updated from the adaptive laws (31) guarantee
that the overall closed-loop system is locally stable and x̃
converge to the compact set S(δ2) given by

S(δ2) =

{
x̃

∣∣∣∣∣
∫ t+T

t

‖x̃(τ)‖22dτ ≤ δ2T + c0

}
,

that is, x̃ is δ2-small in the mean squared sense, and c0 is a
positive constant, for x̃ = [Ṽ γ̃ α̃ q̃]T .

Proof: Consider the positive definite function

VL =
1
2
x̃T x̃+

1
2
W̃TΓ−1

1 W̃ +
1
2
W̃T
i Γ−1

2 W̃i +
1
2
β̃TΓ−1

3 β̃,

(38)
where β̃(t) = β − β̂(t). Using (21), (25), (28), (30), and
(33), and differentiating VL, we have

V̇L = −KV Ṽ
2 −Kγ γ̃

2 −Kαα̃
2 −Kq q̃

2 − W̃TΓ−1
1

˙̂
W

−W̃T
i Γ−1

2
˙̂
W i + e(t)

(
u− ud − β̂TΩ

)
− β̃TΓ−1

3
˙̂
β

+∆, (39)

where ∆ = T γ̃
mVa

O(α̃) ≤ ηγ̃ such that O(α̃) represent higher
order error terms for computable bound η.

Substituting (12) and (31) in (39), we have

V̇L = −KV Ṽ
2 −Kγ γ̃

2 −Kαα̃
2 −Kq q̃

2 − W̃TΓ−1
1 ha(t)

−W̃T
i Γ−1

2 hc(t)− W̃e(t)Ψ[ûdNN , 0]T − e(t)β̂TΩ
+W̃T

i e(t)[σi
(
V Ti x2 + v0i

)
, 0]TΨT Ŵ − β̃TΩ|e(t)|

−β̃TΓ−1
3 hβ(t) + ∆ + e(t)

(
W̃TΨ [ûdNN , 0]T

−ŴTΨ
[
W̃T
i σi

(
V Ti x2 + v0i

)
, 0
]T

+ ε

)
. (40)

Since |ε| ≤ βTΩ, on cancellation of terms, we have

V̇L = −KV Ṽ
2 −Kγ γ̃

2 −Kαα̃
2 −Kq q̃

2 − β̃TΓ−1
3 hβ(t)

−W̃TΓ−1
1 ha(t)− W̃T

i Γ−1
2 hc(t) + ηγ̃. (41)

With bounds on the initial estimates and the projection
functions (35)-(37), it follows that

Ŵj ∈
[
W a
j ,W

b
j

]
, j = 1, . . . , n1,

Ŵij ∈
[
W a
ij ,W

b
ij

]
, j = 1, . . . , n2, (42)

W̃Tha(t) ≥ 0, W̃T
i hc(t) ≥ 0, β̃Thβ(t) ≥ 0. (43)

With this property, (41) reduces to

V̇L = −KV Ṽ
2 −Kγ γ̃

2 −Kαα̃
2 −Kq q̃

2 + ηγ̃. (44)

Using the inequality xy ≤ ζ2x2 +
1

4ζ2
y2, ∀ζ 6= 0, for

ζ2 = Kγ
2 , |η| ≤ σ, we find that

V̇L ≤ −Kx̃2 +
1

2Kγ
σ2, (45)

where K = [KV
Kγ
2 Kα Kq]. Therefore, we have∫ t+T

t

‖x̃(τ)‖22dτ ≤ δ2T + c0, (46)

where ∀t ≥ 0 and any T ≤ 0, c0 and δ2 are given as

c0 = sup
t≥0

1
‖K‖

(VL(t)− VL(t+ T )) , δ2 =
σ2

2‖K‖Kγ
. (47)

Hence, we have that x̃(τ) ∈ S(δ2), where δ can be adjusted
by appropriately choosing the design parameters, and that W̃
and W̃i are bounded by parameter projection. ∇

Thus far, we have developed a higher-order approxima-
tion based adaptive inverse design for compensating signal-
dependent actuator nonlinearities and applied it to a bench-
mark aircraft flight dynamic system with synthetic jet ac-
tuators. A detailed numerical evaluation of such an adaptive
control system is crucial, in order to verify the desired system
stability and tracking properties, but it is not available yet.

V. Concluding Remarks
Signal-dependent actuator nonlinearities are present in

some important applications such as flight control of aircraft
systems with synthetic jet actuators whose characteristics
depend on the aircraft’s angle of attack. Adaptive inversion of
such actuator nonlinearities needs to be specifically designed
to handle the actuator nonlinearity’s uncertain structure and
signal dependence, to increase the inversion accuracy. In this
paper we have developed a framework for such a desired
adaptive inverse, by using a higher-order approximation
scheme for implementing the adaptive inverse. An important
future task is to evaluate the performance of such an adaptive
inverse compensation control system.
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