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Abstract— This paper presents new non-fragile H∞ filter
design methods for linear discrete-time systems. The filter to
be designed is assumed to be with additive gain variations,
which reflect the FWL effects in filter digital implementations.
A notion of structured vertex separator is proposed to approach
the problem, and exploited to develop sufficient conditions for
the non-fragile H∞ filter design in terms of solutions to a set
of linear matrix inequalities (LMIs). Moreover, to reduce the
design conservativeness, the slack variable method is adopted
to realize the decoupling between the Lyapunov matrix and
the system dynamic matrix. The designs render the augmented
system asymptotically stable and guarantee the H∞ attenuation
level less than a prescribed level. A numerical example is given
to illustrate the design methods and the design benefits.

I. INTRODUCTION

In the course of filter implementation based on different design
algorithms, it turns out that the filters can be sensitive with respect
to errors in the filter coefficients ([3], [16]). The sources for
this include, but not limited to, imprecision in analogue-digital
conversion, fixed word length, finite resolution instrumentation and
numerical roundoff errors. By means of several examples, it is
demonstrated in the control design formalism [8] that relatively
small perturbations in controller parameters could even destabilize
the closed-loop system. So a significant issue is how to design
a filter or controller for a given plant such that the filter or
controller is insensitive to some amount of error with respect to
its gain, i.e., the designed filter or controller is resilient or non-
fragile. This issue has received some attention from the control
systems community, and some relevant results have appeared in
the last decade to tackle the problem of designing controllers that
are capable of tolerating some level of controller gain variations
([3],[5],[7], [15]). The problem of resilient Kalman filtering with
respect to estimator gain perturbations is considered in [16]. In
[10], the problem of designing robust resilient linear filtering for a
class of continuous-time systems with norm-bounded uncertainty is
investigated. Recently, [2] develops an approach of designing the
optimal filter transfer function and its realization.
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Noting that the above works deal with the non-fragile problem
with the consideration of norm-bounded type of gain uncertainty.
However, this type of uncertainty cannot reflect the uncertain
information due to the FWL effects exactly. Correspondingly, the
interval type of uncertainty [9] is more exact than the former type
to describe the uncertain information, but till now, there is no
work on the non-fragile filter design problem with taking account
of interval gain uncertainty. On the other hand, when considering
the the interval type of uncertainty [9], the vertices of the set
of uncertain parameters grow exponentially with the number of
uncertain parameters, which may result in numerical problem for
systems with high dimensions. These problems motivate our work
in this paper.

This paper is concerned with the problem of non-fragile H∞ fil-
ter design for linear discrete-time systems. The filter to be designed
is assumed to be with additive gain variations of the interval type,
which are due to the FWL effects when the filter is implemented.
Firstly, an LMI-based sufficient condition is given for the solvability
of the non-fragile H∞ filtering problem, which requires checking
all of the vertices of the set of uncertain parameters that grows
exponentially with the number of uncertain parameters. It will be
very difficult to apply the result to the systems with high orders.
To overcome the difficulty, a notion of structured vertex separator
is proposed to approach the problem, and exploited to develop
sufficient conditions for the non-fragile H∞ filter design in terms
of solutions to a set of LMIs. The structured vertex separator-based
method can significantly reduce the number of the LMI constraints
involved in the design condition. It should be mentioned that the
similar method has been used in [17]. Moreover, we adopt the
slack variable method [1] to realize the decoupling between the
Lyapunov matrix and the system dynamic matrix, which reduces
the design conservativeness. The designs guarantee the asymptotic
stability of the estimation errors, and the H∞ performance of the
system from the exogenous signals to the estimation errors less
than a prescribed level. It should be mentioned that the existing
method given in [16] and [11], for the non-fragile problem with
norm-bounded gain variations, is also applicable for the non-fragile
H∞ filtering problem considered here. But this method is more
conservative than our new proposed one, which will be shown in
Section III.

Notation: For a column-rank deficient matrix H , NH denotes
a matrix whose columns form a basis for the null space of H . I
denotes the identity matrix with an appropriate dimension. 0i×j

represents zero matrix of i rows and j columns. The symbol ∗
within a matrix represents the the symmetric entries.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem statement
Consider an LTI discrete-time model described by

x(k + 1) = Ax(k) + B1ω(k),
z(k) = C1x(k),
y(k) = C2x(k) + D21ω(k).

(1)

where x(k) ∈ Rn is the state, y(k) ∈ Rp is the measured output,
ω(k) ∈ Rr is the disturbance input and z(k) ∈ Rq is the regulated
output, respectively. A, B1, C1, C2 and D21 are known constant
matrices of appropriate dimensions.
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Consider a filter with gain variations of the following form:

ξ(k + 1) = (AF + ∆AF )ξ(k) + (BF + ∆BF )y(k),
zF (k) = (CF + ∆CF )ξ(k).

(2)

where ξ(k) ∈ Rn is the filter state, zF (k) is the estimation of
z(k), and the constant matrices AF , BF and CF are filter matrices
to be designed, ∆AF , ∆BF and ∆CF represent the interval type
of additive gain variations with the following form:

∆AF = [δaij ]n×n, |δaij | ≤ δa, i, j = 1, · · · , n,
∆BF = [δbij ]n×p, |δbij | ≤ δa, i = 1, · · · , n, j = 1, · · · , p,
∆CF = [δcij ]q×n, |δcij | ≤ δa, i = 1, · · · , q, j = 1, · · · , n.

(3)
Remark 1. The additive gain variation model of form (3) is from
[9], which has been extensively used to describe the FWL effects.
Let ek ∈ Rn, hk ∈ Rp and gk ∈ Rq denote the column vectors in
which the kth element equals 1 and the others equal 0. Then the
gain variations of the form (3) can be described as :

∆AF =

nX
i=1

nX
j=1

δaijeie
T
j , ∆BF =

nX
i=1

pX
j=1

δbijeih
T
j ,

∆CF =

qX
i=1

nX
j=1

δcijgie
T
j .

Combining filter (2) with system (1), we obtain the filter error
system as:

xe(k + 1) = Aexe(k) + Beω(k),
ze(k) = Cexe(k).

(4)

where xe(k) = [x(k)T , ξ(k)T ]T , ze(k) = z(k) − zF (k) is the
estimation error, and

Ae =

»
A 0

(BF + ∆BF )C2 AF + ∆AF

–
,

Be =

»
B1

(BF + ∆BF )D21

–
, Ce =

ˆ
C1 −CF −∆CF

˜
.

The transfer function matrix of the augmented system (4) from ω
to ze is given by

Gzeω(z) = Ce(zI −Ae)
−1Be.

Then the problem under consideration in this paper is as follows:
Non-fragile H∞ filtering problem with additive filter gain
variations: Given a positive constant γ, find a filter described by
(2) with the gain variations of the form (3) such that the resulting
system (4) is asymptotically stable and ‖Gzeω(z)‖ < γ.

B. Useful lemmas
In this part, some useful lemmas are presented firstly.
Lemma 1: [14] Let matrices Q = QT , G, and a compact subset

of real matrices H be given. Then the following statements are
equivalent:
(i) for each H ∈ H

ξT Qξ < 0 for all ξ 6= 0 such that HGξ = 0;

(ii) there exists Θ = ΘT such that

Q + GT ΘG < 0,NT
HΘNH ≥ 0 for all H ∈ H.

Lemma 2: [4] Let Gazω(z) = Ca(zI −Aa)−1Ba, then Aa is
Shur stable and ‖Gazω(z)‖ < γ for some constant γ > 0 if and
only if there exists a symmetric matrix X > 0, such that

2
64
−X 0 XAa XBa

∗ −I Ca 0
∗ ∗ −X 0
∗ ∗ ∗ −γ2I

3
75 < 0. (5)

Now, to facilitate the presentation of Lemma 3, we denote

G0zeω(z) = Ce0(zI −Ae0)
−1Be0, (6)

where

Ae0 =

»
A 0

BF C2 AF

–
, Be0 =

»
B1

BF D21

–
,

Ce0 =
ˆ
C1 −CF

˜
.

(7)

Then, we have
Lemma 3: Let γ > 0 be a given constant. Then the following

statements are equivalent:
(i) Ae0 is Shur stable, and ‖G0zeω(z)‖ < γ;
(ii) there exists a symmetric positive matrix X > 0 such that

2
64
−X 0 XAe0 XBe0

∗ −I Ce0 0
∗ ∗ −X 0
∗ ∗ ∗ −γ2I

3
75 < 0; (8)

(iii) there exist a symmetric positive matrix X > 0 and a matrix G
such that

2
64

X −G−GT 0 GT Ae0 GT Be0

∗ −I Ce0 0
∗ ∗ −X 0
∗ ∗ ∗ −γ2I

3
75 < 0; (9)

(iv) there exist a nonsingular matrix T , and a symmetric matrix
P > 0 with

P =

»
Y N
N −N

–
, (10)

such that
2
64
−P 0 PAea PBea

∗ −I Cea 0
∗ ∗ −P 0
∗ ∗ ∗ −γ2I

3
75 < 0, (11)

where

Aea =

»
A 0

BFaC2 AFa

–
, Bea =

»
B1

BFaD21

–
,

Cea =
ˆ
C1 −CFa

˜
.

(12)

and

AFa = T−1AF T, BFa = T−1BF , CFa = CF T. (13)

(v) there exist a nonsingular matrix T, a symmetric matrix X > 0
and a matrix G with structure

G =

»
Y N
N −N

–
, (14)

such that
2
64

X −G−GT 0 GT Aea GT Bea

∗ −I Cea 0
∗ ∗ −X 0
∗ ∗ ∗ −γ2I

3
75 < 0 (15)

holds, where Aea, Bea and Cea are defined by (12).
Proof: Due to the limit of the space, it is omitted.

Lemma 4: Let matrices Q, F1 and F2 be constant matrices
with appropriate dimensions. Then the following statements are
equivalent:
(i)

Q + F1ΩF2 + (F1ΩF2)
T < 0,

where Ω = diag[δ1, · · · , δs], for |δi| ≤ δa, i = 1, · · · , s.
(ii)

Q + F1ΩF2 + (F1ΩF2)
T < 0, for Ω ∈ Ωv,
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where Ωv = {Ω : δi ∈ {−δa, δa}, i = 1, · · · , s}.
(iii) there exists a symmetric matrix Θ ∈ R2s×2s such that

»
Q F1

F T
1 0

–
+

»
F2 0
0 I

–T

Θ

»
F2 0
0 I

–
< 0, (16)

»
I
Ω

–T

Θ

»
I
Ω

–
≥ 0, for all Ω ∈ Ωv. (17)

Proof: Due to the limit of the space, it is omitted.

III. NON-FRAGILE H∞ FILTER DESIGN WITH ADDITIVE
GAIN VARIATIONS

In this section, an LMI-based method for designing H∞ filters
with respect to additive gain uncertainties is presented, and further,
a comparison between the new proposed method and the existing
method is given.

A. Non-fragile H∞ filter design methods

Let G with structure (14), i.e., G =

»
Y N
N −N

–
. To facilitate

the presentation, we denote S = Y + N and

M0(∆AF , ∆BF , ∆CF )

=

2
666664

Ξ1 Ξ2 0 ST A ST A ST B1

∗ Ξ3 0 Ξ5 Ξ6 Ξ7

∗ ∗ −I Ξ4 C1 0
∗ ∗ ∗ −P̄11 −P̄12 0
∗ ∗ ∗ ∗ −P̄22 0
∗ ∗ ∗ ∗ ∗ −γ2I

3
777775

, (18)

where

Ξ1 = P̄11 − S − ST , Ξ2 = P̄12 − S − ST ,
Ξ3 = P̄22 − S − ST + N + NT , Ξ4 = C1 − CF −∆CF ,
Ξ5 = (S −N)T A + FBC2 + NT (∆BF C2 + ∆AF ) + FA,
Ξ6 = (S −N)T A + FBC2 + NT ∆BF C2,
Ξ7 = (S −N)T B1 + FBD21 + NT ∆BF D21.

(19)
Then the following theorem presents a sufficient condition for the
solvability of the non-fragile H∞ filtering problem with additive
gain uncertainties.

Theorem 1. Consider system (1). Let γ > 0 and δa > 0 be
given constants. If there exist matrices FA, FB , CF , S, N, P̄12 and
P̄11 > 0, P̄22 > 0, such that the following LMIs hold:

M0(∆AF , ∆BF , ∆CF ) < 0, δaij , δbik, δclj ∈ {−δa, δa},
i, j = 1, · · · , n; k = 1, · · · , p; l = 1, · · · , q, (20)

then filter (2) with additive uncertainty described by (3) and

AF = (NT )−1FA, BF = (NT )−1FB , CF = CF (21)

solves the non-fragile H∞ filtering problem for system (1).
Proof: By Lemma 3, it is sufficient to show that there exist

a matrix G with structure (14) and a symmetric positive matrix

P =

»
P11 P12

P T
12 P22

–
> 0 such that

M1 =

2
64

P −G−GT 0 GT Ae GT Be

∗ −I Ce 0
∗ ∗ −P 0
∗ ∗ ∗ −γ2I

3
75 < 0 (22)

holds for all δaij , δbik and δclj satisfying (3).
Denote

Γ1 =

»
I I
I 0

–
, Γ̄1 = diag{Γ1, I, Γ1, I},

P̄11 = P11 + P12 + P T
12 + P22,

P̄12 = P11 + P T
12, P̄22 = P11.

Then (22) is equivalent to

M2 =Γ̄1M1Γ̄
T
1

=

2
666664

Ξ1 Ξ2 0 ST A ST A ST B1

∗ Ξ3 0 Π1 Π2 Π3

∗ ∗ −I Ξ4 C1 0
∗ ∗ ∗ −P̄11 −P̄12 0
∗ ∗ ∗ ∗ −P̄22 0
∗ ∗ ∗ ∗ ∗ −γ2I

3
777775

< 0 (23)

holds for all δaij , δbik and δclj satisfying (3), where Ξ1, Ξ2, Ξ3, Ξ4

are defined by (19), and

Π1 = (S −N)T A + NT (BF C2 + ∆BF C2 + AF + ∆AF ),

Π2 = (S −N)T A + NT BF C2 + NT ∆BF C2,

Π3 = (S −N)T B1 + NT BF D21 + NT ∆BF D21.

Obviously, M2 is convex for each δi, for all δi ∈ {δaij , δbik, δclj

satisfying (3)}, so by using (21), (23) is equivalent to (20).
Remark 2. Theorem 1 presents a sufficient condition in terms

of solutions to a set of LMIs for the solvability of the non-fragile
H∞ filtering problem. By the proofs of Theorem 1 and Lemma 3,
Theorem 1 also shows that the non-fragile H∞ filtering problem
becomes a convex one when the state-space realizations of the
designed filters with gain variations admit the slack variable matrix
G with the structure of (14). For the case that the designed filter
contains no gain variations, from Lemma 3, it follows that the
design condition given in Theorem 1 reduces to a necessary and
sufficient condition for the standard H∞ filtering problem, which
means that the structure constraint (14) on the slack matrix G does
not result in any conservativeness for the standard H∞ filter design.
For the non-fragile filter design method given in Theorem 1, it
should be noted that the number of LMIs involved in (20) is
2n2+np+nq , which results in the difficulty of implementing the
LMI constraints in computation. For example, when n = 5 and
p = q = 1, the number of LMIs involved in (20) is 235, which
already exceeds the capacity of the current LMI solver in Matlab.
To overcome the difficulty raising from implementing the design
condition given in Theorem 1, the following method is developed.
To facilitate to formulate Theorem 2, denote

Fa1 = [fa11 fa12 · · · fa1la ], Fa2 = [fT
a21 fT

a22 · · · fT
a2la ]T ,

(24)
where la = n2 + np + nq, and

fak1 =
ˆ
01×n (NT ei)

T 01×q 01×n 01×n 01×r

˜T
,

fak2 =
ˆ
01×n 01×n 01×q eT

j 01×n 01×r

˜
,

for k = (i− 1)n + j, i, j = 1, · · · , n.

fa1k =
ˆ
01×n (NT ei)

T 01×q 01×n 01×n 01×r

˜T
,

fa2k =
ˆ
01×n 01×n 01×q hT

j C2 hT
j C2 hT

j D21

˜
,

for k = n2 + (i− 1)p + j, i = 1, · · · , n, j = 1, · · · , p.

fa1k =
ˆ
01×n 01×n −gT

i 01×n 01×n 01×r

˜T
,

fa2k =
ˆ
01×n 01×n 01×q eT

j 01×n 01×r

˜
,

for k = n2 + np + (i− 1)n + j, i = 1, · · · , q, j = 1, · · · , n.

Let k0, k1, · · · , ksa be integers satisfying k0 = 0 < k1 < · · · <
ksa = la, and matrix Θ have the following structure

Θ =

»
diag[θ1

11 · · · θsa
11 ] diag[θ1

12 · · · θsa
12 ]

diag[θ1
12 · · · θsa

12 ]T diag[θ1
22 · · · θsa

22 ]

–
, (25)

where θi
11, θ

i
12 and θi

22 ∈ R(ki−ki−1)×(ki−ki−1), i = 1, · · · , sa.
Then, we have

Theorem 2. Consider system (1). Let γ > 0 and δa > 0 be given
constants. If there exist matrices FA, FB , CF , S, N, P̄12, P̄11 >

21



0, P̄22 > 0 and symmetric matrix Θ with the structure described
by (25) such that the following LMIs hold:

»
Q Fa1

F T
a1 0

–
+

»
Fa2 0
0 I

–T

Θ

»
Fa2 0
0 I

–
< 0, (26)

»
I

diag[δki−1+j · · · δki ]

–T »
θi
11 θi

12

(θi
12)

T θi
22

–

×
»

I
diag[δki−1+j · · · δki ]

–
≥ 0,

for all δki−1+j ∈ {−δa, δa},
j = 1, · · · , ki − ki−1, i = 1, · · · , sa,

(27)

where

Q =

2
666664

Ξ1 Ξ2 0 ST A
∗ Ξ3 0 (S −N)T A + FBC2 + FA

∗ ∗ −I C1 − CF

∗ ∗ ∗ −P̄11

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
ST A ST B1

(S −N)T A + FBC2 (S −N)T B1 + FBD21

C1 0
−P̄12 0
−P̄22 0
∗ −γ2I

3
777775

.

(28)

with Ξ1, Ξ2, Ξ3 defined by (19). Then filter (2) with additive gain
uncertainties described by (3) and the filter gain parameters given
by (21) solves the non-fragile H∞ filtering problem for system (1).

Proof. By (20), we have

M0 = Q + ∆Q + ∆QT < 0, (29)

where

∆Q =

2
666664

0 0 0 0 0 0
0 0 0 ∆Q1 ∆Q2 ∆Q3

0 0 0 ∆Q4 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3
777775

with

∆Q1 =

nX
i,j=1

δaijN
T eie

T
j +

nX
i=1

pX
j=1

δbijN
T eih

T
j C2,

∆Q2 =

nX
i=1

pX
j=1

δbijN
T eih

T
j C2,

∆Q3 =

nX
i=1

pX
j=1

δbijN
T eih

T
j D21,

∆Q4 = −
qX

i=1

nX
j=1

δcijgje
T
j .

By using (24), it follows that (29) is equivalent to

M0 = Q +
Pla

i=1 δifa1ifa2i + (
Pla

i=1 δifa1ifa2i)
T

= Q + Fa1∆̃aFa2 + (Fa1∆̃aFa2)
T < 0,

(30)

where ∆̃a = diag[δ1, · · · , δla ], for all δi ∈ {−δa, δa}. By Lemma
4, it follows that (30) is further equivalent to that there exists a
symmetric matrix Θ ∈ Rla×la such that (26) and

»
I

∆̃a

–T

Θ

»
I

∆̃a

–
≥ 0 (31)

hold for all δi ∈ {−δa, δa}, i = 1, · · · , la. Notice that the set of
Θ satisfying (25) is a subset of the set of Θ satisfying (31), hence
the conclusion follows.

Remark 3. From the proof of Theorem 2, it follows that when
sa = 1, the set of Θ satisfying (25) is equal to the set of Θ satisfy-
ing (31), and the design conditions given in Theorem 2 and Theorem
1 are equivalent to checking all the parameter vertices. Θ satisfying
(26) and (31) (or (27) with sa = 1) is said to be a vertex separator
[6]. Notice that the number of LMIs involved in (31) or (27) with
sa = 1 still is 2n2+np+nq, so that the difficulty of implementing
the LMI constraints remains. To overcome the difficulty, Theorem 2
presents a sufficient condition for the non-fragile H∞ filter design
in terms of the separator Θ with the structure described by (25),
where the number of LMIs involved in (27) is

Psa
i=1 2ki−ki−1 ,

which can be controlled not to grow exponentially by reducing the
value of max ki − ki−1 : i = 1, · · · , sa. Compared with the Θ
being of full block in (26) and (31), Θ with the structure described
by (25) satisfying (26) and (27) is said to be a structured vertex
separator. However, it should be noted that the design condition
given in Theorem 2 may be more conservative than that given in
Theorem 1 because of the structure constraint on Θ. But the design
condition proposed in Theorem 2 solves the numerical computation
problem, which cannot be solved by the design condition given in
Theorem 1. On the other hand, in Theorem 2, the smaller value of
sa is, the less conservativeness is introduced.

B. Comparison with the existing design method
In the following, we will introduce the result of non-fragile H∞
filter design with norm-bounded gain variations. And at the same
time, the relationship with our result is discussed.
Similar to [10] and [17], the norm-bounded type of gain variations
∆AF , ∆BF and ∆CF can be overbounded [13] by the following
norm-bounded uncertainty:

∆AF = MaF1(t)Ea, ∆BF = MbF2(t)Eb,
∆CF = McF3(t)Ec,

(32)

where

Ma = [Ma1 · · ·Man2 ], Ea = [ET
a1 · · ·ET

an2 ]
T ,

Mb = [Mb1 · · ·Mbnp], Eb = [ET
b1 · · ·ET

bnp]T ,

Mc = [Mc1 · · ·Mcnq], Ec = [ET
c1 · · ·ET

cnq]
T ,

with

Mak = ei, Eak = eT
j

for k = (i− 1)n + j, i, j = 1, · · · , n,

Mbk = ei, Ebk = hT
j

for k = n2 + (i− 1)p + j, i = 1, · · · , n, j = 1, · · · , p,

Mck = gi, Eck = eT
j

for k = n2 + np + (i− 1)n + j, i = 1, · · · , q, j = 1, · · · , n.

and F T
i (t)Fi(t) ≤ δ2

aI for i = 1, 2, 3, represent the uncertain
parameters, here δa is the same as before. Then, the following
lemma is presented to design the non-fragile H∞ filter with gain
variations (32) by using the method [10] and [17].

Lemma 5: Consider system (1). Let γ > 0, δa > 0 be given
constants. If there exist matrices F̄A, F̄B , CF , S̄ > 0, N̄ < 0 and
scalar ε > 0, such that the following LMI holds:

2
4

Q̄ Ma1 δaεMT
a2

∗ −εI 0
∗ ∗ −εI

3
5 < 0, (33)

where

Ma1 =

2
666664

0 0 0
N̄Ma N̄Mb 0

0 0 −Mc

0 0 0
0 0 0
0 0 0

3
777775

,

22



Ma2 =

2
4

0 0 0 Ea 0 0
0 0 0 EbC2 EbC2 EbD21

0 0 0 Ec 0 0

3
5 .

Q̄ =

2
666664

−S̄ −S̄ 0 S̄A S̄A S̄B1

∗ −S̄ + N̄ 0 Q1 Q2 Q3

∗ ∗ −I C1 − CF C1 0
∗ ∗ ∗ −S̄ −S̄ 0
∗ ∗ ∗ ∗ −S̄ + N̄ 0
∗ ∗ ∗ ∗ ∗ −γ2I

3
777775

,

with Q1 = (S̄ − N̄)A + F̄A + F̄BC2, Q2 = (S̄ − N̄)A +
F̄BC2, Q3 = (S̄ − N̄)B1 + F̄BD21, then filter (2) with additive
norm-bounded gain uncertainty described by (32) and AF =
(N̄T )−1F̄A, BF = (N̄T )−1F̄B , CF = CF solves the non-
fragile H∞ filtering problem for system (1).
Lemma 5 presents a method for designing non-fragile H∞ filters
with norm-bounded gain variations via the existing technique. To
show the relationship between the conditions for designing non-
fragile H∞ filters given in Lemma 5 and Theorem 2, the following
Lemma is presented.

Lemma 6: Consider system (1), if Lemma 5 is feasible, then
Theorem 2 is feasible.

Proof: Let S = P̄11 = P̄12 = S̄, N = N̄ , P̄22 = S̄ − N̄ > 0,
then it is easy to see that Q = Q̄, Fa1 = Ma1 and Fa2 = Ma2,
i.e., condition (33) becomes

2
4

Q Fa1 δaεF T
a2

∗ −εI 0
∗ ∗ −εI

3
5 < 0. (34)

In Theorem 2, when sa = la, according to (34) and F T
i (t)Fi(t) ≤

δ2
aI, i = 1, 2, 3, and by the Schur complement, there exists a matrix

Θ with the structure

Θ =

»
εδ2

aI 0la×la

0la×la −εI

–
, (35)

such that the following LMIs hold:

»
Q Fa1

F T
a1 0

–
+

»
Fa2 0
0 I

–T

Θ

»
Fa2 0
0 I

–

=

»
Q + εδ2

aF T
a2Fa2 Fa1

F T
a1 −εI

–
< 0, (36)

»
I
δi

–T »
θi
11 θi

12

(θi
12)

T θi
22

– »
I
δi

–
= εδ2

a − εδ2
i ≥ 0,

for all i = 1, · · · , la. (37)

Thus, the proof is complete.
Remark 4. From the proof of Lemma 6, it follows that Lemma

5 is more conservative than Theorem 2 with sa = la. However, as
indicated in Remark 3, the case of sa = la is the worst case of
the method. So the existing non-fragile H∞ filter design method
with the norm-bounded gain variations is more conservative than
the non-fragile H∞ filter design method proposed in this paper.

C. Evaluation of H∞ performance index

In Theorem 2, for obtaining the convex design condition, we
restrict the slack variable matrix G with structure (14), which may
result in more conservative evaluation of the H∞ performance
index bound. So, in this subsection, for a designed filter, the matrix
variable G without the restriction is exploited for obtaining less
conservative evaluation of the H∞ performance index bound.
When the filter parameter matrices AF , BF and CF are known,
the problem of minimizing γ subject to (3) for a given δa > 0

and ‖ Gzeω(z) ‖< γ can be converted into the one: minimize γ2

subject to the following LMIs:
2
64

P −G−GT 0 GT Ae GT Be

∗ −I Ce 0
∗ ∗ −P 0
∗ ∗ ∗ −γ2I

3
75 < 0,

for all δaij , δbik, δclj ∈ {−δa, δa},
i, j = 1, · · · , n; k = 1, · · · , p; l = 1, · · · , q,

(38)

where Ae, Be and Ce are defined as in (5).
Similar to the design condition given in Theorem 1, the above
method is also with the numerical computation problem. To solve
the problem, the following lemma provides a solution using the
structured vertex separator approach.
Denote

Ga1 = [ga11 ga12 · · · ga1la ], Ga2 = [gT
a21 gT

a22 · · · gT
a2la ]T .

(39)
where

ga1k =
ˆ`

01×n eT
i

´
G 01×q 01×2n 01×r

˜T
,

ga2k =
ˆ
01×2n 01×q 01×n eT

j 01×n

˜
,

for k = (i− 1)n + j, i, j = 1, · · · , n.

ga1k =
ˆ`

01×n eT
i

´
G 01×q 01×2n 01×r

˜T
,

ga2k =
ˆ
01×2n 01×q hT

j C2 01×n hT
j D21

˜
,

for k = n2 + (i− 1)p + j, i = 1, · · · , n, j = 1, · · · , p.

ga1k =
ˆ
01×2n −gT

i 01×2n 01×r

˜T
,

ga2k =
ˆ
01×2n 01×q 01×n eT

j 01×n

˜
,

for k = n2 + np + (i− 1)n + j, i = 1, · · · , q, j = 1, · · · , n.

Then we have
Lemma 7: Consider the system (1). Let γ > 0, δa > 0 be

constants and filter parameter matrices AF , BF , CF be given. Then
‖ Gzeω(z) ‖< γ holds for all δaij , δbik and δclj satisfying (3), if
there exist a matrix G, a positive definite matrix P > 0 and a
symmetric matrix Θ with the structure described by (25) such that
(27) and the following LMI hold:

»
Qs Ga1

GT
a1 0

–
+

»
Ga2 0
0 I

–T

Θ

»
Ga2 0
0 I

–
< 0 (40)

where

Qs =

2
64

P −G−GT 0 GT Ae0 GT Be0

∗ −I Ce0 0
∗ ∗ −P 0
∗ ∗ ∗ −γ2I

3
75

with Ae0, Be0 and Ce0 are defined by (7).
Proof: By using (38) and (39), it is similar to the proof of

Theorem 2, and omitted here.
Remark 5. For evaluating the H∞ performance bound of the

transfer function from ω to ze, the condition given in Lemma 7
usually is less conservative than that given in Theorem 2 because
no structure constraint on the slack variable matrix G in Lemma 7
is imposed.

IV. EXAMPLE

An example is given to illustrate the effectiveness of the proposed
method. Consider a linear system of form (1) with

A =

2
4

0 1 −0.5
−1 −0.5 1
−1 0 1

3
5 , B1 =

2
4
−1 0
0.5 0
−1 0

3
5 ,

C1 =
ˆ
1 −1 1

˜
, C2 =

ˆ−1 0.5 2
˜
, D21 =

ˆ
0 0.9

˜
.
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For the case that the designed filter contains no gain variations, by
the standard H∞ filtering method [12] for discrete-time systems,
the optimal H∞ performance index of the standard closed-loop
system is achieved as γopt = 3.7282.
In the following, tables and a figure are given to compare the
proposed method with the existing method.

A. Comparison
In this subsection, tables are given to provide a comparison

between the proposed method given by Theorem 2 and the existing
method given by Lemma 5.
Firstly, the H∞ performance indexes achieved by the designs are
showed in Table 1.

TABLE I
PERFORMANCE INDEXES BY DESIGN WITH δa = 0.05

Lem. 5 Th.2(sa = 15) Th.2 (sa = 5)
γ 4.7319 4.1791 4.1790

From Table 1, we can see that compared with the optimal H∞
performance index bound γopt = 3.7282, the performance index
of the filter designed by Lemma 5 is degraded 26.92%. The
performance indexes of the filters designed by Theorem 2 are
degraded the same as 12.09% (for sa = 15 or sa = 5), which
are much more improved than 26.92%.
For convenience, denote the filter designed by Lemma 5 as Fnorm,
denote the filters designed by Theorem 2 as Fin15 for sa = 15 and
Fin5 for sa = 5, respectively. For these designed filters, Lemma 7
gives better performance indexes shown in Table 2.

TABLE II
PERFORMANCE INDEXES EVALUATION BY LEMMA 7 WITH δa = 0.05

Fnorm Fin15 Fin5

γ(sa = 15) 4.3539 4.1069 −−
γ(sa = 5) 4.3439 −− 4.1060

Obviously, compared with γopt = 3.7282, by Lemma 7, the H∞
performance indexes of filter Fnorm are degraded 16.78% for
sa = 15 and 16.51% for sa = 5. Correspondingly, the performance
indexes of filters Fin15 and Fin5 are degraded 10.16% for sa = 15
and 10.13% for sa = 5, respectively.

V. CONCLUSION

In this paper, the problem of non-fragile H∞ filter design for
linear discrete-time systems has been addressed, where the filter
to be designed is assumed to be with additive gain variations of
interval type due to the FWL effects. A notion of structured vertex
separator is proposed to approach the problem, and exploited to
develop sufficient conditions for the non-fragile H∞ filter design
in terms of solutions to a set of LMIs. The designs guarantee
the asymptotic stability of the estimation errors, and the H∞
performance of the system from the exogenous signals to the
estimation errors less than a prescribed level. A comparison between
our method and the existing method for non-fragile H∞ filter design
is presented to indicate the superiority of our proposed method. A
numerical example has shown the effectiveness of the proposed
approach.
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