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Abstract— An approach is proposed to joint optimization of trajecto-
ries and measurement accuracies of mobile nodes in a sensor network
collecting measurements for parameter estimation of a distributed
parameter system. The problem is cast as maximization of the log-
determinant of the information matrix associated with the estimated
parameters over the set of all feasible information matrices, which
yields a formulation in terms of convex optimization. This makes it
possible to employ powerful tools of optimum experimental design
theory to characterize the optimal solution and adapt the Wynn-
Fedorov algorithm to construct its numerical approximation. As a
crucial subtask in each iteration, a nontrivial optimal control problem
must be solved, which is accomplished using the MATLAB PDE toolbox
and the RIOTS 95 optimal control toolbox which handles various
constraints imposed on the sensor motions. The effectiveness of the
method is illustrated with a numerical example regarding a two-
dimensional diffusion equation.

I. INTRODUCTION

States in distributed parameter systems (DPS’s), i.e., systems de-
scribed by partial differential equations (PDEs), vary both spatially
and temporally, but it is generally impossible to measure them over
the whole spatial domain. Consequently, we are faced with the
design problem of how to locate a limited number of measurement
sensors so as to obtain as much information as possible about
the process at hand. The location of sensors is not necessarily
dictated by physical considerations or by intuition and, therefore,
some systematic approaches should still be developed in order to
reduce the cost of instrumentation and to increase the efficiency of
identifiers.

Although it is well-known that the estimation accuracy of DPS
parameters depends significantly on the choice of sensor locations,
there have been relatively few contributions to the experimental
design for those systems. The importance of sensor planning has
been recognized in many application domains, e.g., regarding air
quality monitoring systems, groundwater-resources management,
recovery of valuable minerals and hydrocarbon, model calibration
in meteorology and oceanography, chemical engineering, hazardous
environments and smart materials [1]–[10]. Over the past years,
increasingly thorough research on the development of strategies
for efficient sensor placement has been observed (for reviews,
see papers [11], [12] and comprehensive monographs [10], [13]).
Nevertheless, much still has to be done in this respect, particularly
in the light of recent advances in wireless sensor networks [14]–
[19].

Nowadays, mobile platforms for sensors are available (mobile
robots or unmanned air vehicles) which offer an appealing alter-
native to common stationary sensors with fixed positions in space
[15]–[18], [20]. The complexity of the resulting design problem is
expected to be compensated by a number of benefits. Specifically,
sensors are not assigned to fixed positions which are optimal only
on the average, but are capable of tracking points which provide
at a given time instant best information about the parameters to be
identified. Consequently, by actively reconfiguring a sensor system

This work is supported in part by the NSF International Research and
Education in Engineering (IREE) grant #0540179. Christophe Tricaud is
supported by Utah State University President Fellowship (2006-2007)

C. Tricaud and Y. Q. Chen are with the Department of Elec-
trical and Computer Engineering, Utah State University, 4160 Old
Main Hill, Utah State University, Logan, UT 84322-4160, USA
ctricaud@cc.usu.edu, yqchen@ieee.org
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we can expect the minimal value of an adopted design criterion
to be lower than the one for the stationary case. Areas of direct
application of such mobile sensing techniques include air pollutant
measurements in the environment obtained from monitoring cars
moving in an urban area, or atmospheric variables acquired using
instruments carried in a satellite or aircraft [21]. Low-cost mobile
platforms with wireless communications capabilities for sensor
networks are now available. They get cheaper and cheaper, and
more advanced ones are under development. With a group of such
autonomous vehicles equipped with sensors, we can enhance the
performance of the measurements.

The number of publications on optimized mobile observations
for parameter estimation is limited. In the seminal article [22],
Rafajłowicz considers the D-optimality criterion and seeks an
optimal time-dependent measure, rather than the trajectories them-
selves. On the other hand, Uciński [10], [23], [24], apart from gen-
eralizations of Rafajłowicz’s results, develops some computational
algorithms based on the Fisher information matrix. He reduces
the problem to a state-constrained optimal-control one for which
solutions are obtained via the methods of successive linearizations
which is capable of handling various constraints imposed on sensor
motions. In turn, in [25] Uciński and Chen attempted to properly
formulate and solve the time-optimal problem for moving sensors
which observe the state of a DPS so as to estimate some of its
parameters.

In the literature on mobile sensors, it is most often assumed
that the optimal measurement problem consists in the design of
trajectories of a given number of identical sensors. In this paper,
we formulate it in quite a different manner. First of all, apart
from sensor controls and initial positions, the number of sensors
constitutes an additional design variable. Additionally, we allow
for different measurement accuracies of individual sensors, which
are quantified by weights steering the corresponding measurement
variances. This leads to a much more general formulation which
most often produces an uneven allocation of experimental effort
between different sensors. The corresponding solutions could then
be implemented on a sensor network with heterogeneous mobile
nodes. It turns out that these solutions can be determined using
convex optimization tools commonly used in optimum experimen-
tal design [26]–[28]. As a result, much better accuracies of the
parameter estimates can be achieved.

II. OPTIMAL SENSOR LOCATION PROBLEM

Let Ω ⊂ R
n be a bounded spatial domain with sufficiently

smooth boundary Γ, and let T = (0, tf ] be a bounded time interval.
Consider a distributed parameter system (DPS) whose scalar state
at a spatial point x ∈ Ω̄ ⊂ R

n and time instant t ∈ T̄ is denoted by
y(x, t). Mathematically, the system state is governed by the partial
differential equation (PDE)

∂y

∂t
= F

(
x, t, y,θ

)
in Ω × T , (1)

where F is a well-posed, possibly nonlinear, differential operator
which involves first- and second-order spatial derivatives and may
include terms accounting for forcing inputs specified a priori. The
PDE (1) is accompanied by the appropriate boundary and initial
conditions

B(x, t, y, θ) = 0 on Γ × T, (2)

y = y0 in Ω × {t = 0}, (3)
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respectively, B being an operator acting on the boundary Γ and
y0 = y0(x) a given function. Conditions (2) and (3) complement
(1) such that the existence of a sufficiently smooth and unique
solution is guaranteed. We assume that the forms of F and B are
given explicitly up to an m-dimensional vector of unknown constant
parameters θ which must be estimated using observations of the
system. The implicit dependence of the state y on the parameter
vector θ will be be reflected by the notation y(x, t; θ).

We assume that the vector θ ∈ R
m is to be estimated from

measurements made by N moving sensors over the observation
horizon T . We call xj : T → Ωad the trajectory of the j-th sensor,
where Ωad ⊂ Ω ∪ Γ is a compact set representing the area where
measurements can be made. The observations are of the form

zj(t) = y(xj(t), t) + ε(xj(t), t), t ∈ T, j = 1, . . . , N, (4)

where ε constitutes the measurement noise which is assumed to be
is zero-mean, Gaussian, spatial uncorrelated and white [29]–[31],
i.e.,

E
{
ε(xj(t), t)ε(xi(τ ), τ )

}
= δjiδ(t − τ )

σ2

pj

, (5)

where σ2/pj defines the intensity of the noise, σ2 is a constant term,
pj stands for a positive scaling factor, δij and δ( · ) standing for the
Kronecker and Dirac delta functions, respectively. Although white
noise is a physically impossible process, it constitutes a reasonable
approximation to a disturbance whose adjacent samples are uncor-
related at all time instants for which the time increment exceeds
some value which is small compared with the time constants of the
DPS. The white-noise assumption is consistent with most of the
literature on the subject.

Note that instead of several mobile sensors whose accuracies are
characterized by the same variance σ2, we use sensors for which the
variance of measurement errors is σ2/pj . This means that a large
weight pj indicates that the j-th sensor guarantees more precise
measurements than sensors with lower weight values. With no loss
of generality, we assume that the weights pj satisfy the following
normalization condition:

N∑

j=1

pj = 1, pj ≥ 0, j = 1, . . . , N, (6)

i.e., they belong to the probability simplex.
In the presented framework, the parameter identification problem

is usually formulated as follows: Given the model (1)–(3) and
the outcomes of the measurements zj along the trajectories xj ,

j = 1, . . . , N , determine an estimate θ̂ ∈ Θad (Θad being the set
of admissible parameters) which minimizes the generalized output
least-squares fit-to-data functional given by [30], [32]

θ̂ = arg min
ϑ∈Θad

N∑

j=1

pj

∫

T

[
zj(t) − y(xj(t), t; ϑ)

]2
dt (7)

where y now solves (1)–(3) for θ replaced by ϑ.

We feel, intuitively, that the parameter estimate θ̂ depends on the
number of sensors N , the trajectories xj and the associated weights
pj since the right-hand side of eqn. (7) does it. This fact suggests
that we may attempt to select these design variables so as to produce
best estimates of the system parameters after performing the actual
experiment. Note that the weights pj can be interpreted here as
sensor costs, which are inversely proportional to the variances of
the corresponding measurement errors introduced by them. The
weights must sum up to unity, which means that our budget on
the experiment is fixed. Then the problem is how to spend it, i.e.,
how many and how accurate sensors to buy so as to get the most
accurate parameter estimates while assuming that their trajectories
are also going to be optimized in a way.

To form a basis for the comparison of different design settings,
a quantitative measure of the ‘goodness’ of particular settings is
required. A logical approach is to choose a measure related to the
expected accuracy of the parameter estimates to be obtained from

the data collected (note that the design is to be performed off-
line, before taking any measurements). Such a measure is usually
based on the concept of the Fisher Information Matrix (FIM) [9],
[22] which is widely used in optimum experimental design theory
for lumped systems [26]–[28]. When the time horizon is large,
the nonlinearity of the model with respect to its parameters is
mild and the measurement errors are independently distributed and
have small magnitudes, the inverse of the FIM constitutes a good
approximation of the covariance matrix for the estimate of θ [26]–
[28].

The FIM has the following representation [10], [29]:

M =

N∑

j=1

pj

∫

T

g(xj(t), t)gT(xj(t), t) dt, (8)

where

g(x, t) = ∇ϑy(x, t;ϑ)
∣∣
ϑ=θ0 (9)

denotes the vector of the so-called sensitivity coefficients, θ0 being
a prior estimate to the unknown parameter vector θ [10], [23].

The sought optimal design settings can be found by maximizing
some scalar function Ψ of the information matrix. The introduction
of the design criterion permits to cast the sensor location problem
as an optimization problem, and the criterion itself can be treated
as a measure of the information content of the observations. Several
choices exist for such a function [26]–[28] and the most popular
one is the D-optimality criterion

Ψ[M ] = log det(M ). (10)

Its use yields the minimal volume of the confidence ellipsoid for
the estimates. In what follows, we shall restrict our attention to this
optimality criterion.

III. MOBILE SENSOR MODEL

A. Node Dynamics

Although measurement accuracies may vary from sensor to sen-
sor, we assume that all sensors are conveyed by identical vehicles
whose motions are described by

ẋ
j(t) = f (xj(t), uj(t)) a.e. on T , x

j(0) = x
j
0 (11)

where a given function f : R
n × R

r → R
n is required to be

continuously differentiable, x
j
0 ∈ R

n defines an initial sensor
configuration, and uj : T → R

r is a measurable control function
which satisfies

ul ≤ u
j(t) ≤ uu a.e. on T (12)

for some constant vectors ul and uu, j = 1, . . . , N .

For each j = 1, . . . , N , given any initial position x
j
0 and any

control function, there is a unique absolutely continuous function
xj : T → R

n which satisfies (11) a.e. on T . In what follows, we
will call it the state trajectory corresponding to x

j
0 and uj .

B. Pathwise State Constraints

In reality, some restrictions on the motions are inevitably induced.
First of all, all sensors should stay within the admissible region Ωad

where measurements are allowed. We assume that it is a compact
set defined as follows:

Ωad = {x ∈ Ω ∪ Γ | bi(x) ≤ 0, i = 1, . . . , I} (13)

where bi’s are given continuously differentiable functions. Accord-
ingly, the conditions

bi(x
j(t)) ≤ 0, ∀ t ∈ T (14)

must be fulfilled, where 1 ≤ i ≤ I and 1 ≤ j ≤ N .
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C. Parameterization of Vehicle Controls

From now on we make the assumption that the controls of the
available vehicles can be represented in parametric form

u
j(t) = η(t, aj), t ∈ T, (15)

where η denotes a given function such that η( · , aj) is continuous
for each fixed aj and η(t, · ) is continuous for each fixed t, the
constant parameter vector aj ranging over a compact set A ⊂ R

q.
An exemplary parameterization can rely on using B-splines as
employed in numerous optimal control solvers, e.g., RIOTS 95
described later.

Based on this parameterization, we can define the mapping χ
which assigns every cj = (xj

0, a
j) ∈ Ωad × A a trajectory xj =

χ(cj) through solving (11) for the initial position x
j
0 and control

defined by (15).
Since only the controls and trajectories satisfying the imposed

constraints are interesting, we introduce the set

C =
{
c = (x0, a) ∈ A × Ωad : η( · , a) satisifes (12),

χ(c) satisfies (14)
}

(16)

and assume that it is nonempty. A trivial verification shows that C
is also compact.

Given N sensors, we thus obtain trajectories xj corresponding to
vectors cj ∈ R

n+q, j = 1, . . . , N . The FIM can then be rewritten
as

M (ξN) =
N∑

j=1

pj

∫

T

g(x(t), t)gT(x(t), t)
∣∣∣
x=χ(cj)

dt. (17)

where, for simplicity of notation, we represent the decision variables
as the table

ξN =

{
c1, c2, . . . , cN

p1, p2, . . . , pN

}
. (18)

Applying the terminology of optimum experimental design, we call
this table a discrete design, while c1, . . . , cN are termed the support
points and p1, . . . , pN are referred to as the corresponding weights.

Observe that a design ξN can be interpreted as a discrete
probability distribution on a finite subset of C, cf. (6). As is standard
in optimum experimental design theory, we can extend this idea and
think of a design as a probability measure ξ for all Borel sets of
C including single points. With respect to such a modification, we
can define the FIM analogous to (17) for a design ξ:

M (ξ) =

∫

C

Υ(c) ξ(dc), (19)

where

Υ(c) =

∫

T

g(x(t), t)gT(x(t), t)
∣∣∣
x=χ(c)

dt. (20)

The integration in (19) is to be understood in the Lebesgue-
Stieltjes sense. This leads to the so-called continuous designs which
constitute the basis of the modern theory of optimal experiments
and originate in seminal works by Kiefer and Wolfowitz [33]. It
turns out that such an approach drastically simplifies the design
and the remainder of the paper is devoted to this issue.

IV. CHARACTERIZATION OF OPTIMAL SOLUTIONS

For clarity, we adopt the following notational conventions: Here
and subsequently, we will use the symbol Ξ(C) to denote the set
of all probability measures on C. Let us also introduce the notation
M(C) for the set of all admissible information matrices, i.e.,

M(C) =
{
M (ξ) : ξ ∈ Ξ(C)

}
(21)

Then we may redefine an optimal design as a solution to the
optimization problem

ξ⋆ = arg max
ξ∈Ξ(C)

Ψ[M (ξ)]. (22)

The theoretical results presented in this section constitute
straightforward adaptations of their counterparts of Chapter 3 in
[10]. We begin with certain convexity and representation properties
of M(ξ).

Lemma 1: For any ξ ∈ Ξ(C) the information matrix M (ξ) is
symmetric and non-negative definite.

Lemma 2: M(C) is compact and convex.

Lemma 3: For any M 0 ∈ M(C) there always exists a purely
discrete design ξ of the form (18) with no more than m(m+1)/2+1
support points such that M (ξ) = M 0. If M 0 lies on the boundary
of M(C), then the number of support points is less than or equal
to m(m + 1)/2.

The above lemma makes it justified to restrict our attention only
to discrete designs with a limited number of supporting points, so
the introduction of continuous designs being probability measures
for all Borel sets of C, which may seem at first sight a superfluous
complication, is solely a technicality. On the other hand, it greatly
simplifies the reasoning and does lead to very tangible results.

The next result provides a characterization of the optimal designs.

Theorem 1: We have the following properties:

(i) An optimal design exists which is discrete and comprises no
more than m(m + 1)/2 support points (i.e., one less than
predicted by Lemma 3).

(ii) The set of optimal designs is convex.
(iii) A design ξ⋆ is optimal iff

max
c∈C

ϕ(c, ξ⋆) = m, (23)

where
ϕ(c, ξ) = trace[M−1(ξ)Υ(c)] (24)

(iv) For any purely discrete optimal design ξ⋆, the function
ϕ( · , ξ⋆) has value zero at all support points.

It is now clear that the function ϕ is of paramount importance
in our considerations, as it determines the location of the support
points in the optimal design ξ⋆ (they are situated among its points
of global maximum). Moreover, given any design ξ, it indicates
points at which a new observation contributes to the greatest extent.
Indeed, adding a new observation atomized at a single point c+

amounts to constructing a new design

ξ+ = (1 − λ)ξ + λξc+ (25)

for some λ ∈ (0, 1). If λ is sufficiently small, then it may be
concluded that

Ψ[M (ξ+)] − Ψ[M (ξ)] ≈ λϕ(c+, ξ) (26)

i.e., the resulting increase in the criterion value is approximately
equal to λϕ(c+, ξ).

Analytical determination of optimal designs is possible only in
simple situations and for general systems it is usually the case
that some iterative design procedure will be required. The next
theorem, called the equivalence theorem, is useful in the checking
for optimality of designs.

Theorem 2: The following characterizations of an optimal design
ξ⋆ are equivalent in the sense that each implies the other two:

(i) the design ξ⋆ maximizes Ψ[M (ξ)],
(ii) the design ξ⋆ minimizes max

c∈C
ϕ(c, ξ), and

(iii) max
c∈C

ϕ(c, ξ⋆) = m.

All the designs satisfying (i)–(iii) and their convex combinations
have the same information matrix M (ξ⋆).

The above results provide us with tests for the optimality of
designs. In particular,

1. If the sensitivity function ϕ(c, ξ) is less than or equal to m
for all c ∈ C, then ξ is optimal.
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2. If the sensitivity function ϕ(c, ξ) exceeds m, then ξ is not
optimal.

The interesting thing about these results is that in addition to
revealing striking minimax properties of optimal designs, they also
provide sequential numerical design algorithms. The underlying
idea is quite simple. Suppose that we have an arbitrary (non-
optimal) design ξk obtained after k iteration steps. Further, let
ϕ( · , ξk) attain its maximum (necessarily > m) at c = c0

k. Then
the design

ξk+1 = (1 − λk)ξk + λkξc0
k

(27)

(here ξc0
k

stands for the unit-weight design concentrated at c0
k) leads

to an increase in the value of Ψ[M (ξk+1)] for a suitably small λk.
This follows since the derivative with respect to λk is positive, i.e.,

∂

∂λk

Ψ[M (ξk+1)]
∣∣∣
λk=0+

= m − ϕ(c0
k, ξk) > 0 (28)

The steps in using the outlined gradient method can be briefly
summarized as follows [26], [27], [34], [35]:

Step 1. Guess a discrete non-degenerate starting design measure
ξ0 (we must have det(M (ξ0)) 6= 0). Choose some
positive tolerance ǫ ≪ 1. Set k = 0.

Step 2. Determine c0
k = arg max

c∈C
ϕ(c, ξk). If ϕ(c0

k, ξk) < m+

ǫ, then STOP.
Step 3. For an appropriate value of 0 < λk < 1, set

ξk+1 = (1 − λk)ξk + λkξc0
k

increment k by one and go to Step 2.

In the same way as for the classical first-order algorithms in
common use in optimum experimental designs for many years, it
can be shown that the above algorithm converges to an optimal
design provided that the sequence

{
λk

}
is suitably chosen. For

example, the choices which satisfy one of the conditions below
will yield the convergence:

(i) lim
k→∞

λk = 0,
∞∑

k=0

λk = ∞ (Wynn’s algorithm),

(ii) λk = arg min
λ

Ψ[(1 − λ)M (ξk) + λM (ξc0
k
)] (Fedorov’s

algorithm),

Computationally, Step 2 is of crucial significance but at the
same time it is the most time-consuming step in the algorithm.
Complications arise, among other things, due to the necessity of
calculating a global maximum of ϕ( · , ξk) which is usually mul-
timodal (getting stuck in one of local maxima leads to precocious
termination of the algorithm). Therefore, while implementing this
part of the computational procedure an effective global optimizer
is essential.

V. OPTIMAL CONTROL FORMULATION OF THE
SEARCH FOR THE CANDIDATE SUPPORT POINT

Step 2 of the Wynn-Fedorov algorithm of the previous section
necessitates determination of arg max

c∈C
ϕ(c, ξk). This formulation

can be interpreted as a finite-dimensional approximation to the
following optimization problem: Find the pair (x0, u) which max-
imizes

J(x0, u) = trace
[
M

−1(ξk)

∫

T

g(x(t), t)gT(x(t), t) dt.
]

=

∫

T

g
T(x(t), t)M−1(ξk)g(x(t), t) dt

(29)

over the set of feasible pairs

P =
{
(x0, u) | u : T → R

r
is measurable,

ul ≤ u(t) ≤ uu a.e. on T , x0 ∈ Ωad

}
, (30)

subject to the pathwise state inequality constraints (14).
Evidently, its high nonlinearity excludes any possibility of finding

closed-form formulas for its solution. Accordingly, we must resort

to numerical techniques. A number of possibilities exist in this
respect [36], [37], but since this problem is already in canonical
form, we can solve it using one of the existing packages for numer-
ically solving dynamic optimization problems, such as RIOTS 95
[38], DIRCOL [39] or MISER [40]. In our implementation, we
employed the first of them, i.e., RIOTS 95, which is designed as a
MATLAB toolbox written mostly in C and running under Windows
98/2000/XP and Linux. It provides an interactive environment for
solving a very broad class of optimal control problems. The users’s
problems can be prepared purely as M-files and no compiler is
required to solve them. To speed up the solution process, the
functions defining the problem can be coded in C and then compiled
and linked with some pre-built linking libraries. The implemented
numerical methods are supported by the theory outlined in [36],
which uses the approach of consistent approximations. Systems
dynamics can be integrated with fixed step-size Runge-Kutta in-
tegration, a discrete-time solver or a variable step-size method. The
software automatically computes gradients for all functions with
respect to the controls and any free initial conditions. The controls
are represented as splines, which allows for a high-degree of
function approximation accuracy without requiring a large number
of control parameters. There are three main optimization routines,
each suited for different levels of generality, and the most general
is based on sequential quadratic programming methods (it was also
used in our computations reported in the next section).

Note that in RIOTS 95 the controls are internally approximated
by linear, quadratic or cubic splines, and this immediately defines
the parameterization (15).

VI. ILLUSTRATIVE EXAMPLE

In this section, we use demonstrative example to illustrate our
method. We consider the two-dimensional diffusion equation

∂y

∂t
= ∇ · (κ∇y) + F (31)

for x ∈ Ω = (0, 1)2 and t ∈ [0, 1], subject to homogeneous
zero initial and Dirichlet boundary conditions, where F (x, t) =
20 exp(−50(x1 − t)2). The spatial distribution of the diffusion
coefficient is assumed to have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (32)

In our example, we select the initial estimates of the parameter
values as θ0

1 = 0.1, θ0
2 = −0.05 and θ0

3 = 0.2, which are assumed
to be nominal and known prior to the experiment. The excitation
function F in (31) simulates a source with a vertical line support
along the x2-axis, which moves like a plane wave with constant
speed from the left to the right boundary of Ω within the observation
interval [0, 1].

The determination of the Fisher information matrix for a given
experiment requires the knowledge of the vector of the sensitivity
coefficients g = col[g1, g2, g3] along sensor trajectories. The FIM
can be obtained using the direct differentiation method [10] by
solving the following system of PDEs:

∂y

∂t
= ∇ · (κ∇y) + F, (33)

∂g1

∂t
= ∇ · ∇y + ∇ · (κ∇g1),

∂g2

∂t
= ∇ · (x1∇y) + ∇ · (κ∇g2),

∂g3

∂t
= ∇ · (x2∇y) + ∇ · (κ∇g3),

in which the first equation represents the original state equation
and the next three equations are obtained from the differentiation
of the first equation with respect to the parameters θ1, θ2 and θ3,
respectively. The initial and Dirichlet boundary conditions for all
the four equations are homogeneous.

The system (33) has been solved numerically using the routines
from MATLAB PDE toolbox and stored g1, g2 and g3 interpolated
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at the nodes of a rectangular grid in a four-dimensional array (we
applied uniform partitions using 21 grid points per each spatial
dimension and 31 points in time), cf. Appendix I in [10] for
details. Since values of g1, g2 and g3 may have been required at
points which were not necessarily nodes of that grid, the relevant
interpolation was thus performed using cubic splines in space (for
this purpose MATLABs procedure interp2 has been applied) and
linear splines in time. Since, additionally, the derivatives of g with
respect to spatial variables and time were required during the tra-
jectory optimization process, these derivatives were approximated
numerically using the central difference formula.

Next, we used RIOTS 95 to determine D-optimal sensor tra-
jectories in accordance with the Wynn-Fedorov algorithm. The
dynamics follow the simple model

ẋ
j(t) = u

j(t), x
j(0) = x

j
0, (34)

and additional constraints

|uj
i (t)| ≤ 0.7, ∀t ∈ T, i = 1, . . . , 6 (35)

restricting the maximum sensor velocity components were imposed
on the controls. Our goal is to design their trajectories so as to
obtain possibly the best estimates of θ1, θ2 and θ3.

A program was implemented using a low-cost PC (AMD Athlon
3800+, 2GB RAM) running on Windows XP and MATLAB 701
(R2006a). We run the program twice with 4 iterations and 200
randomly chosen initial positions for each iteration. Each run
took between 10 and 45 seconds for each initial position. This is
necessary if we wish to get an approximation to a global maximum
in Step 2 of the Wynn-Fedorov algorithm. This is a trade-off
between the computation time and the number of possible initial
positions.

Figs. 1 and 3 present the results obtained for these two simula-
tions. The initial sensor positions are marked with open circles, and
the sensors positions at the consecutive points of the time grid are
marked with dots. When available, weights are inserted inside the
figures, each weight being positioned by its respective trajectory.

The first run gives two different trajectories with weights of
0.54807 and 0.45193. Based on the generalized weighted LS crite-
rion each weight can be interpreted in terms of an experimental cost,
which is inversely proportional to the variance of the observation
error along a given trajectory. Thus we may think of the weights as
the cost related e.g. to the sensitivity of the measurement devices.
Following this interpretation, we should spent approx. 55% of
total experimental costs to assure more accurate sensor for the
first trajectory, and approx. 45% to the second trajectory, which
requires less sensitive sensor. In contrary, the second run results
in three distinct trajectories with weights of 0.44464, 0.34726
and 0.2081 (cf. Fig. 3). However, combining second and third
trajectories together with the total weight 0.55536, we can observe
that this solution is quite similar to the previous one with only two
distinct sensor paths. The differences can be explained in terms of
the suboptimality of the solutions for the internal problem in Step. 2
of the Wynn-Fedorov algorithm (in order to assure the compromise
between the computational burden and the quality of solution, in
practice we are satisfied with fairly good approximation of global
optimum). Thus, in both simulations we come up with only different
suboptimal solutions to our problem, but with acceptable quality in
the practical sense. The obtained Fisher information matrices are

M(1) =

(
124.3815 68.0614 25.7666
68.0614 41.5653 13.4240
25.7666 13.4240 8.7691

)

(36)

M(2) =

(
130.0149 72.3503 26.6154
72.3503 44.2181 14.1798
26.6154 14.1798 8.6267

)
(37)

with the criterion values Ψ equal to 7.4888 and 7.3672, respec-
tively.

For comparison, we also present the results obtained using the
technique described in [10] for D-optimum trajectories of moving

sensors. This strategy is similar to ours but does not use weights in
the computation of the FIM (or more precisely, the weights are fixed
and assumed to be equal for each trajectory). Results are shown in
Fig. 2 (2 sensors) and Fig. 4 (3 sensors).
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Fig. 1. Optimal trajectory of 2 sensors using weighted D-optimality
criterion (Ψ = 7.4888)
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Fig. 2. Optimal trajectory of 2 sensors using standard D-optimality criterion
(Ψ = 7.4017)

VII. CONCLUSION

The results contained in this paper show that some well-known
methods of optimum experimental design for linear regression
models can be applied to the setting of the mobile sensor trajectory
design problem for parameter estimation of DPS’s in case we wish
to simultaneously optimize the number of sensors and their trajecto-
ries, as well as to optimally share the experimental effort. The latter
is understood here as allowing for different measurement accuracies
of individual sensors, which are quantified by weights steering the
corresponding measurement variances. This leads to a much more
general setting which most frequently produces an uneven allocation
of experimental effort between different sensors. This remains in
contrast with the existing approaches. The corresponding solutions
could then be implemented on a sensor network with heterogeneous
mobile nodes. In the paper we demonstrate that these solutions can
be determined using convex optimization tools commonly employed
in optimum experimental design and show how to apply numerical
tools of algorithmic optimal control to support the determination of
the optimal solutions.
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