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Abstract— This paper describes robust stabilization and
PID control for discrete-time and discrete-value (discretized
/quantized) control systems. Although all control systems are
currently realized using discretized signals, the analysis and
design of such nonlinear discrete-time control systems has not
been elucidated. In this paper, the robust stability analysis
of discrete-time and discrete-value (digital) control systems
with discretizing units at the input and output sides of a
nonlinear continuous element (sensor/actuator) are examined
in a frequency domain, and a method of designing PID control
and robust stabilization for nonlinear discretized systems on a
grid pattern in the time and control variables space is presented.
A modified Nichols diagram and parameter specifications are
used in this study. Numerical examples are provided to verify
the validity of the designing method.

I. INTRODUCTION

Currently, almost all feedback control systems are re-

alized using discretized (discrete-time and discrete-value,

i.e., digital) signals. However, the analysis and design of

discretized/quantized control systems has not been entirely

elucidated. The first attempt to elucidate the problem was

described in a paper by Kalman [1] in 1956. Since then, many

researchers have studied this problem, particularly the aspect

of understanding and mitigating the quantization effects in

quantized feedback control, e.g.,[2], [3], [4]. However, few

results have been obtained for the stability analysis of the

nonlinear discrete-time feedback system.

This paper describes the robust stability analysis of

discrete-time and discrete-value control systems and presents

a method for designing (stabilizing) PID control for nonlinear

discretized systems. The PID control scheme has been widely

used in practice and theory thus far irrespective of whether

it is continuous or discrete in time [5], [6] since it is a basic

feedback control technique.

In the previous study [7], a robust stability condition

for nonlinear discretized control systems that accompany

discretizing units (quantizers) at equal spaces was examined

in a frequency domain. It was assumed that the discretization

is executed at the input and output sides of a nonlinear

continuous elemet (sensor/actuator) and that the sampling

period is chosen such that the size is suitable for discretiza-

tion in the space. This paper presents a designing problem

for discretized control systems on a grid pattern in the time

and controller variables space. In this study, the concept of

modified Nyquist and Nichols diagrams for nonlinear control
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Fig. 1. Nonlinear sampled-data PID control system.
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Fig. 2. Discretized nonlinear PID control system.

systems given in [8], [9] is applied to the designing procedure

in the frequency domain.

II. DISCRETIZED CONTROL SYSTEM

The discretized control system in question is represented

by a sampled-data (discrete-time) feedback system with two

samplers, S1 and S2, as shown in Fig. 1. In the figure, D and

H denote the discretizing and the zero-order holding units,

respectively, which are usually performed in A/D (D/A)

conversion. Moreover, N(·), C, and G(s) are a nonlinear

continuos element, a digital controller (compensator) based

on the PID control scheme, and a linear continuous plant

(physical system to be controlled), respectively.

When the two samplers operate synchronously with a

sampling period h, the nonlinear sampled-data control sys-

tem can be transformed into a discrete-time control system

as shown in Fig. 2. Here, G(z) is the z-transform of

G(s) together with the zero-order hold, C(z) is the z-

transform of the digital PID controller C, and D1 and D2

are the discretizing units at the input and output sides of

the nonlinear element, respectively. The relationship between

e and u† = Nd(e) is a stepwise nonlinear characteristic

on a grid pattern as shown in Fig. 3. In this paper, a

round-down discretization, which is usually executed on a

computer, is applied. Therefore, the relationship between e†

and u† is indicated by small circles on the stepwise nonlinear

characteristic.
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Fig. 3. Discretized nonlinear characteristics on a grid pattern.
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In Figs. 1 and 2, each symbol e, u, y, · · · indicates the
sequence e(k), u(k), y(k), · · · , (k = 0, 1, 2, · · · ) in discrete
time, but for continuous value. Each symbol e†, u†, · · ·
indicates a discrete value that can be assigned to an integer
number, e.g.,

e
† ∈ {· · · ,−3γ,−2γ,−γ, 0, γ, 2γ, 3γ, · · · },

u
† ∈ {· · · ,−3γ,−2γ,−γ, 0, γ, 2γ, 3γ, · · · },

where γ is the resolution of each variable (γ > 0).

In the above expression, it is assumed that the input and

output signals of the nonlinear characteristic have the same

resolution in the discretization. Here, e† and u† also represnt

the sequence e†(k) and u†(k). Without loss of generality,

hereafter, we assume γ = 1.0.

On the other hand, the time variable t is defined as

t ∈ {0, h, 2h, 3h, · · · }

for the sampling period h. In other words, the following

integer time sequence is defined:

k ∈ Z+, Z+ = {0, 1, 2, 3, · · · }.

That is, the variables e†(k), u†(k), and u†
c(k) are defined on

a grid pattern that is composed of integers in the time and

controller variables space.

In this paper, the stepwise nonlinear characteristic for the

controller, as shown in Fig. 3,

Nd(e) = Ke + g(e), 0 < K < ∞, (1)

is partitioned into the following two sections:

|g(e)| ≤ ḡ < ∞, (2)

for |e| < ε, and

|g(e)| ≤ β |e|, 0 ≤ β < ∞, (3)

for |e| ≥ ε. Equation (2) represents a bounded nonlinear

characteristic that exists in a finite region. On the other

hand, equation (3) represents a sectorial nonlinearity for

which the equivalent linear gain exists in a limited range.

When considering the robust stability in a global sense, it

is sufficient to consider the nonlinear term (3) for |e| ≥ ε

1 + qδ g∗(·)

βqδ
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Fig. 4. Nonlinear subsystem.
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Fig. 5. Equivalent feedback system.

because the nonlinear term (2) can be treated as a disturbance

signal [7]. (In this study, a fluctuation or an offset of error

is assumed to be allowable in |e| < ε.)

III. EQUIVALENT DISCRETE-TIME SYSTEM

Based on the above consideration, the following new

sequences e∗†m (k) and v∗†m (k) are defined:

e∗†m (k) = e†m(k) + q · ∆e†(k)

h
, (4)

v∗†
m (k) = v†

m(k) − βq · ∆e†(k)

h
. (5)

where q is a non-negative number, e†m(k) and v†m(k) are

neutral points of sequences e†(k) and v†(k), and ∆e†(k) is

the backward difference of sequence e†(k). The relationship

between equations (4) and (5) with respect to the continuous

values is shown by the block diagram in Fig. 4. In this figure,

δ is defined as

δ(z) :=
2

h
· 1 − z−1

1 + z−1
. (6)

Thus, the loop transfer function from v∗ to e∗ can be given

by W (β, q, z), as shown in Fig. 5, where

W (β, q, z) =
(1 + qδ(z))G(z)C(z)

1 + (K + βqδ(z))G(z)C(z)
, (7)

and r′, d′ are transformed exogenous inputs. Here, the

variables such as v∗, u′ and y′ written in Fig. 5 indicate

the z-transformed ones.

In this paper, the following assumption is provided on the

basis of the relatively fast sampling and the slow response

of the controlled system.

[Assumption] The absolute value of the backward differ-

ence of sequence e(k) does not exceed γ, i.e.,

|∆e(k)| = |e(k) − e(k − 1)| ≤ γ. (8)

If condition (8) is satisfied, ∆e†(k) is exactly ±γ or 0

because of the discretization. That is, the absolute value of

the backward difference can be given as

|∆e†(k)| = |e†(k) − e†(k − 1)| = γ or 0. �
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The assumption stated above will be satisfied by the follow-

ing examples. The phase trace of backward difference ∆e†

is shown in the figure.

IV. NORM INEQUALITIES

In this section, some lemmas with respect to an ℓ2 norm of

the sequences are presented. Here, we define a new nonlinear

function

f(e) := g(e) + β e. (9)

When considering the discretized output of the nonlinear

characteristic, v† = g(e†), the following expression can be

given:

f(e†(k)) = v†(k) + βe†(k). (10)

From inequality (3), it can be seen that the function (10)

belongs to the first and third quadrants.

When considering the equivalent linear characteristic, the

following inequality can be defined:

0 ≤ ψ(k) :=
f(e†(k))

e†(k)
≤ 2β. (11)

When this type of nonlinearity ψ(k) is used, inequality (3)

can be expressed as

v†(k) = g(e†(k)) = (ψ(k) − β)e†(k). (12)

For the neutral points of e†(k) and v†(k), the following

expression is given from (10):

1

2
(f(e†(k)) + f(e†(k − 1))) = v†

m(k) + βe†m(k). (13)

Moreover, equation (12) is rewritten as

v†
m(k) = (ψ(k) − β)e†m(k).

Since |e†m(k)| ≤ |em(k)|, the following inequality is satisfied

when a round-down discretization is executed:

|v†
m(k)| ≤ β|e†m(k)| ≤ β|em(k)|. (14)

Based on the above premise, the following norm condi-

tions are examined [7].

[Lemma-1] The following inequality holds for a positive

integer p:

‖v†
m(k)‖2,p ≤ β‖e†m(k)‖2,p ≤ β‖em(k)‖2,p. (15)

Here, ‖ · ‖2,p denotes the Euclidean norm, which can be

defined by

‖x(k)‖2,p :=

(

p
∑

k=1

x2(k)

)1/2

.

(Proof) The proof is clear from inequality (14). �

[Lemma-2] If the following inequality is satisfied with

respect to the inner product of the neutral points of (10) and

the backward difference:

〈 v†
m(k) + βe†m(k),∆e†(k) 〉p ≥ 0, (16)

the following inequality can be obtained:

‖v∗†
m (k)‖2,p ≤ β‖e∗†m (k)‖2,p (17)

for any q ≥ 0. Here, 〈·, ·〉p denotes the inner product, which

is defined as

〈 x1(k), x2(k) 〉p =

p
∑

k=1

x1(k)x2(k).

(Proof) The following equation is obtained from (4) and (5):

β2‖e∗†m (k)‖2
2,p − ‖v∗†

m (k)‖2
2,p

= β2‖e†m(k)‖2
2,p − ‖v†

m(k)‖2
2,p

+
2βq

h
· 〈v†

m(k) + βe†m(k),∆e†(k)〉p. (18)

Thus, (17) is satisfied by using the left inequality of (15).

Moreover, as for the input of g∗(·), the following inequality

can be obtained from (18) and the right inequality (15):

‖v∗†
m (k)‖2,p ≤ β‖e∗m(k)‖2,p. (19)

�

The left side of inequality (16) can be expressed as a sum

of trapezoidal areas.

[Lemma-3] For any step p, the following equation is satis-

fied:

σ(p) := 〈 v†
m(k) + βe†m(k),∆e†(k) 〉p

=
1

2

p
∑

k=1

(f(e†(k)) + f(e†(k − 1)))∆e†(k). (20)

(Proof) The proof is clear from (13).

In general, the sum of trapezoidal areas holds the following

property.

[Lemma-4] If inequality (8) is satisfied with respect to the

discretization of the control system, the sum of trapezoidal

areas becomes non-negative for any p, that is,

σ(p) ≥ 0. (21)

(Proof) The proof was presented in [7]. �

V. ROBUST STABILITY IN A GLOBAL SENSE

By applying a small gain theorem to the loop transfer

characteristic (7), the following robust stability condition of

the discretized nonlinear control system can be derived [7].

[Theorem] If there exists a q ≥ 0 in which the sector

parameter β with respect to nonlinear term g(·) satisfies the

following inequality, the discrete-time control system with

sector nonlinearity (3) is robust stable in an ℓ2 sense:

β < β0 = Kη(q0, ω0) = max
q

min
ω

Kη(q, ω), (22)

when the linearized system with nominal gain K is stable.

The η-function is written as follows:

η(q, ω) :=

−qΩsin θ +
√

q2Ω2 sin2 θ + ρ2 + 2ρ cos θ + 1

ρ
,

∀ω ∈ [0, ωc], (23)
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where Ω(ω) is the distorted frequency of angular frequency

ω and is given by

δ(ejωh) = jΩ(ω) = j
2

h
tan

(

ωh

2

)

, j =
√
−1 (24)

and ωc is a cut-off frequency. In addition, ρ(ω) and θ(ω) are

the absolute value and the phase angle of KG(ejωh)C(ejωh),
respectively.

(Proof) Based on the loop characteristic in Fig. 5, the

following inequality can be given with respect to z = ejωh:

‖e∗m(z)‖2,p ≤ c1‖r′m(z)‖2,p + c2‖d′m(z)‖2,p

+ sup
z=1

|W (β, q, z)| · ‖w∗†
m (z)‖2,p. (25)

Here, r′m(z) and d′m(z) denote the z-transformation for the

neutral points of sequences r′(k) and d′(k), respectively.

Moreover, c1 and c2 are positive constants.

By applying inequality (19), the following expression is

obtained:
(

1 − β · sup
z=1

|W (β, q, z)|
)

‖e∗m(z)‖2,p

≤ c1‖r′m(z)‖2,p + c2‖d′m(z)‖2,p. (26)

Therefore, if the following inequality (i.e., the small gain

theorem with respect to ℓ2 gains) is valid,

|W (β, q, ejωh)|

=

∣

∣

∣

∣

(1 + jqΩ(ω))ρ(ω)ejθ(ω)

K + (K + jβqΩ(ω))ρ(ω)ejθ(ω)

∣

∣

∣

∣

<
1

β
. (27)

the sequences e∗m(k), em(k), e(k) and y(k) in the feedback

system are restricted in finite values when exogenous inputs

r(k), d(k) are finite and p → ∞. From the square of both

sides of inequality (27), (22) is given. �

VI. MODIFIED NICHOLS DIAGRAM

In the previous papers [8], [9], the inverse function was

used instead of the η-function, i.e., ξ(q, ω) =
1

η(q, ω)
. Using

the notation, inequality (22) can be rewritten as follows:

M0 = ξ(q0, ω0) = min
q

max
ω

ξ(q, ω) <
K

β
. (28)

When q = 0, the ξ-function can be expressed as:

ξ(0, ω) =
ρ

√

ρ2 + 2ρ cos θ + 1
= |T (ejωh)|, (29)

where T (z) is the complementary sensitivity function for the

discrete-time system.

It is evident that the following curve on the gain-phase

plane,

ξ(0, ω) = M, (M : const.) (30)

corresponds to the contour of the constant M in the Nichols

diagram. In this study, since an arbitrary non-negative num-

ber q is considered, the ξ-function that corresponds to (29)

and (30) is given as follows:

ρ

−qΩsin θ +
√

q2Ω2 sin2 θ + ρ2 + 2ρ cos θ + 1
= M.

(31)

Fig. 6. Modified contours and gain-phase curves (M = 1.4, cq =

0.0, · · · , 4.0).

ρ

GP2

GP1

Q2

Mp

θ

P2

From this expression, the following quadratic equation can

be obtained:

(M2 − 1)ρ2 + 2ρM(M cos θ − qΩsin θ) + M2 = 0. (32)

The solution of this equation is expressed as follows:

ρ = − M

M2 − 1
(M cos θ − qΩsin θ) (33)

± M

M2 − 1

√

(M cos θ − qΩsin θ)2 − (M2 − 1).

The modified contour in the gain-phase plane (θ, ρ) is

drawn based on the equation of (33). Although the distorted

frequency Ω is a function of ω, the term qΩ = cq ≥ 0
is assumed to be a constant parameter. This assumption for

M contours was also discussed in [9]. Figure 6 shows an

example of the modified Nichols diagram for cq ≥ 0 and

M = 1.4. Here, GP1 is a gain-phase curve that touches

an M contour at the peak value (Mp = ξ(0, ωp) = 1.4).

On the other hand, GP2 is a gain-phase curve that crosses

the θ = −180◦ line and all the M contours at the gain

crossover point P2. That is, the gain margin gM becomes

equal to −20 log10 M/(M + 1) = 4.68[dB]. The latter case

corresponds to the discrete-time system in which Aizerman’s

conjecture is valid. At the continuous saddle point P2, the

following equation is satisfied:
(

∂ξ(q, ω)

∂q

)

q=q0,ω=ω0

= 0. (34)

Evidently, the phase margin pM is obtained from the phase

crossover point Q2.

VII. CONTROLLER DESIGN

The PID controller C applied in this study is given by the

following algorithm:

uc(k) = Kpu
†(k) + Ci

k
∑

j=0

u†(j) + Cd∆u†(k), (35)

where ∆u†(k) = u†(k)−u†(k−1) is a backward difference

in integer numbers, and each coefficient is defined as

Kp, Ci, Cd ∈ Z+, Z+ = {0, 1, 2, 3 · · · }.
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Here, Kp, Ci, and Cd correspond to Kp, Kph/TI , and

KpTD/h in the following (discrete-time z-transform expres-

sion) PID algorithm:

C(z) = Kp

(

1 +
h

TI(1 − z−1)
+

TD

h
(1 − z−1)

)

. (36)

We use algorithm (35) without division because the variables

u†, uc, and coefficients Kp, Ci, Cd are integers.

Using the z-transform expression, equation (35) is written

as:

uc(z) = C(z)u(z)

=
(

Kp + Ci(1 + z−1 + z−2 + · · · ) + Cd(1 − z−1)
)

u(z).

In the closed form, controller C(z) can be given as

C(z) = Kp + Ci ·
1

1 − z−1
+ Cd(1 − z−1) (37)

for discrete-time systems. When comparing equations (36)

and (37), Ci and Cd become equal to Kph/TI and KpTD/h,

respectively.

The design method adopted in this paper is based on the

classical parameter specifications in the modified Nichols

diagram. This method can be conveniently designed, and it

is significant in a physical sense (i.e., mechanical vibration

and resonance).

VIII. NUMERICAL EXAMPLES

[Example-1] Consider the following controlled system:

G(s) =
K1

(s + 0.04)(s + 0.2)(s + 0.4)
, (38)

where K1 = 0.0001 = 1.0×10−4. The discretized nonlinear

characteristic (discretized sigmoid, i.e. arc tangent [10]) is

as shown in Fig. 3. Here, the resolution value is γ = 1 as

described in section 2. For C-language expression, it can be

written as

e† = γ ∗ (double)(int)(e/γ)

u = 0.4 ∗ e† + 3.0 ∗ atan(0.6 ∗ e†)

u† = γ ∗ (double)(int)(u/γ),

where (int) and (double) denote the conversion into an

integral number (a round-down discretization) and the re-

conversion into a double-precision real number, respectively.

In this paper, the sampling period is chosen as a base

unit h = 1. When choosing the nominal gain K = 1.0 and

the threshold ε = 2.0, the sectorial area of the stepwise

nonlinear characteristic for ε ≤ |e| can be determined as

TABLE I

PID PARAMETERS FOR EXAMPLE-1 (gM : GAIN MARGINS, pM : PHASE

MARGINS, Mp : PEAK VALUES, β0 : ALLOWABLE SECTORS).

Kp Ci Cd β0 gM [dB] pM [deg] Mp

(i) 100 0 0 1.34 4.6 67.6 0.91

(ii) 100 2 20 1.07 13.4 56.8 1.07

(iii) 100 4 20 1.02 12.1 45.3 1.32

Fig. 7. Modified contours and gain-phase curves for Example-1 (M = 1.4,
cq = 0.0, · · · , 4.0).

ρ

GP3

GP2

GP1

θ

Fig. 8. Step responses for Example-1.

(ii)

(iii)

(i)

[0.5, 1.5] drawn by dotted lines in the figure. Fig. 7 shows

gain-phase curves of KG(ejωh)C(ejωh) on the modified

Nichols diagram. Here, GP1, GP2, and GP3 are cases (i),

(ii), and (iii), respectively. The PID parameters are specified

as shown in Table I. The gain margins gM , the phase margin

pM and the peak value Mp can be obtained from the gain

crossover points P , the phase crossover points Q, and the

points of contact with regard to the M contours, respectively.

The max-min value β0 is calculated from (22) (e.g., (i))

as follows:

β0 = max η(q, ω0) = η(q0, ω0) = 0.91.

Therefore, the allowable sector for nonlinear characteristic

g(·) is given as [0.0, 1.91]. The stability of discretized control

system (i) (and also systems (ii),(iii)) will be guaranteed.

In this example, the continuous saddle point (34) appears

(i.e., Aizerman’s conjecture is satisfied). Thus, the allowable

sector of equivalent gain Kℓ can be given as 0 < Kℓ < 1.91.

Figure 8 shows time responses for the three cases, and

Figure 9 shows phase traces. As is obvious from Fig. 9,

assumtion (8) is satisfied. The step response (i) remains a

sutained oscillation and an off-set. However, as for (ii) and

(iii) the responses are improved by using the PID, especially

integral (I: a summation in this paper) algorithm.
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Fig. 9. Phase traces for Example-1.

∆e

e

TABLE II

PID PARAMETERS FOR EXAMPLE-2 (gM : GAIN MARGINS, pM : PHASE

MARGINS, Mp : PEAK VALUES, β0 : ALLOWABLE SECTORS).

Kp Ci Cd β0 gM [dB] pM [deg] Mp

(i) 100 0 0 0.91 15.5 40.6 1.44

(ii) 100 2 20 0.65 15.4 28.6 2.02

(iii) 100 4 20 0.46 14.4 17.1 3.36

[Example-2] Consider the following controlled system:

G(s) =
K2(s + 0.2)(−s + 0.4)

(s + 0.02)(s + 0.04)(s + 1.0)
, (39)

where K2 = 0.001 = 1.0 × 10−3. The same nonlinear

characteristic and the nominal gain are chosen as shown in

Example-1. The modified Nichols diagram with gain-phase

curves of KG(ejωh)C(ejωh) is as shown in Fig. 10. Here,

GP1, GP2 and GP3 are cases (i), (ii), and (iii), and the

PID parameters are specified as shown in Table I. Figure 11

shows time responses for the three cases. In this example,

although the allowable sector of equivalent linear gain (e.g.,

case (iii)) is 0 < Kℓ < 4.1, the allowable sector for nonlinear

characteristic becomes [0.0, 1.46] as shown in Table II. Since

the sectorial area of the stepwise nonlinear characteristic is

[0.5, 1.5], the stability of the nonlinear control system cannot

be guaranteed. The response for (iii) actually fluctuates as

shown in Fig. 11. This is a counter example for Aizerman’s

conjecture.

IX. CONCLUSION

In this paper, we have described robust stabilization and

discretized PID control for continuous plants on a grid pat-

tern with respect to controller variables and time elapsed. A

robust stability condition for nonlinear discretized feedback

systems was presented along with a method for designing

PID control. The design procedure employs the modified

Nichols diagram and its parameter specifications. The sta-

bility margins of the control system are specified directly

in the diagram. Further, the numerical examples showed

that the time responses can be stabilized for the required

performance.

Fig. 10. Modified contours and gain-phase curves for Example-2 (M =

1.09, cq = 0.0, · · · , 4.0).

ρ
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Fig. 11. Step responses for Example-2.
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