
  

  

Abstract—This paper addresses stability analysis and robust 
stabilization for nonlinear systems in the presence of parametric 
uncertainties. The Takagi-Sugeno (T-S) fuzzy model with 
parametric uncertainties is used as the model for the uncertain 
nonlinear system. Both continuous-time and discrete-time cases 
of the T-S fuzzy system are considered. In the two cases, 
sufficient conditions are proposed for robust stabilization in the 
sense of Lyapunov asymptotic stability, which are represented 
in the form of linear matrix inequalities. Finally, the T-S fuzzy 
model of the chaotic Lorenz system, which has complex 
nonlinearity, is developed as a simulation platform. The validity 
and applicability of the proposed approach are successfully 
demonstrated by means of the numerical simulation for the 
continuous-time nonlinear system. 

I. INTRODUCTION 
T is well known that the most plants in the industry often 
have severe nonlinearity and uncertainties. So the stability 

analysis and synthesis of nonlinear systems is an important 
issue. Thus, the nonlinearity and uncertainties cause the 
additional difficulties to the control theory of general non- 
linear systems and the design of their controllers. In order to 
overcome these kinds of difficulties in the design of a 
controller for an uncertain nonlinear system, various methods 
have been developed in the last two decades. Among all the 
methods, a successful approach is fuzzy control. The fuzzy 
control technique represents a means of collecting human 
knowledge and expertise, and it has been applied to various 
industrial fields [1,2]. Recently, fuzzy control has attracted 
increasing attention, essentially because it can provide an 
effective solution to the controller design of the plants which 
are complex, uncertain, ill-defined, and have available 
qualitative knowledge from domain experts.  

In spite of the usefulness of fuzzy control, there are still 
many basic issues that remain to be further addressed. Its 
main drawback comes from the lack of a systematic control 
design methodology. Particularly, the stability analysis of a 
fuzzy system is not easy, and the parameter tuning is 
generally a time-consuming procedure, due to the nonlinear 
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and multi-parametric nature of the fuzzy control system. In 
order to resolve these problems, the idea that a linear system 
is adopted as the consequent part of a fuzzy rule has evolved 
into the innovative T-S fuzzy model. The T-S fuzzy system is 
proposed by Takagi and Sugeno in 1985 [3]. Recently, the 
T-S fuzzy model has become one of the useful control 
approaches for complex systems. It can provide an effective 
representation of complex nonlinear systems in terms of 
fuzzy sets [4]. Based on T-S fuzzy model, a great number of 
results appeared concerning stability analysis and design in 
the literature. The authors of [5-7] proved that the T-S fuzzy 
systems can approximate to any continuous functions in a 
compact set of nR at any preciseness. A lot of nonlinear 
systems can be represented by T-S fuzzy systems and allows 
the designers to take advantage of conventional linear system 
to analyze and design fuzzy control systems. Originally, 
Tanaka and his colleagues provided a sufficient condition for 
the quadratic stability of the T-S fuzzy systems in the sense of 
Lyapunov by considering a common Lyapunov function of 
the sub fuzzy systems in a series of papers [8]. In reference 
[9], an interesting quadratic stabilization condition is reported 
to release the conservatism by collecting the interactions in a 
single matrix. Very recently, a more relaxed stabilization 
condition is proposed in [10]. It admits more freedom in 
guaranteeing the stability of T-S fuzzy control systems. In 
reference [11], a new LMI-based stabilization condition is 
obtained by relaxing the results in references before. A 
rigorous proof is given to show that the stabilization 
condition can include the interesting results published 
recently as special cases.  

Although there are a lot references about the analysis of 
T-S model, most plants in the industry have uncertainties. So 
besides stability, another important requirement for a control 
system is its robustness, and this remains to be a central issue 
in the study of uncertain nonlinear control systems and the 
controller design. Kiriakidis [12] studied the issue of stability 
robustness against modeling errors in T-S fuzzy model-based 
control. Liu [13] provided the stability condition for T-S 
fuzzy systems with parametric uncertainties via a so-called 
fuzzy Lyapunov function which is a multiple Lyapunov 
function. Reference [13] deals with a robust design of fuzzy 
controllers for a class of uncertain nonlinear systems via a 
fuzzy Lyapunov function. In designing a robust fuzzy control 
system, the uncertain nonlinear systems are represented by 
T-S fuzzy model with parametric uncertainties. Lee [14] 
proposed some sufficient conditions in the linear matrix 
inequality (LMI) format and a systematic design procedure of 
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the controller design for a general nonlinear system with 
parametric uncertainties, for both continuous-time and 
discrete-time T-S fuzzy systems. Specifically, some new 
solutions are proposed to the robust stabilization problem for 
a class of nonlinear systems with time-varying, but norm- 
bounded parametric uncertainties.  

In this paper, we consider the problem of the robust fuzzy 
control for a class of uncertain nonlinear systems via a 
Lyapunov function. In the reference [14], the author divided 
the closed-loop system into two parts, and then considered 
each part as asymptotically stable. According to reference 
[11], this paper divided the closed-loop system into three 
parts. So the more interactions among the fuzzy subsystems 
should be considered. Then a more relaxed robust stabili- 
zation condition is obtained. The overall proposed design 
method presents a systematic and effective framework for 
continuous-time and discrete-time control of the complex 
systems such as chaotic systems.  

The remainders of this paper are organized as follows. 
Section II gives the models of both the continuous-time and 
discrete-time cases. Section III presents the controller design 
method for robust stabilization of T-S fuzzy systems in the 
presence of parametric uncertainties in both continuous-time 
and discrete-time. In Section IV, we show a controller design 
examples and simulation results. Finally, we summarize our 
work in Section V.  

II. PRELIMINARIES 
In this section, two fuzzy models, continuous-time and 

discrete-time models, proposed by Takagi and Sugeno, are 
described by If-Then rules which represent local linear 
input-output relations of nonlinear systems. In order to 
consider uncertain nonlinear system described by T-S fuzzy 
model with parametric uncertainties, consider the 
continuous-time T-S fuzzy system in which the i  th rule is 
formulated as follows. 

Plant Rule  i : 
If 1 1 is ( )  and and ( ) is i sz t M z t M…  

Then ( ) ( ) ( ) ( ) ( ).i i i ix t A A x t B B u t= + Δ + + Δ          (1) 
where ( 1,2, , , 1,2, , )ijM i r j s= =… …  is the fuzzy set and r  is the 
number of If-Then rules. ( ) ( 1,2 , )iz t i s= …  are the premise 
variables. ( ) nx t R∈  is the state vector, ( ) mu t R∈  is the input 
vector. Assume nn

iA R ×∈  and n m
iB R ×∈  are system matrix 

and input matrix respectively, iAΔ  and iBΔ  represent the 
parametric uncertainties. Given a pair of ( ( ), ( ))x t u t , and 
using the center of gravity method for defuzzification, the 
final output of the fuzzy system is inferred as follows. 

1
( ) ( ( ))[( ) ( ) ( ) ( )],

r

i i i i i
i

x t h z t A A x t B B u t
=

= + Δ + + Δ∑          (2) 

where 1( ( )) (( ( )),s
i j ij jz t M z tω == ∏

1
( ( )) ( ( ( )) / ( ( ))),

r

i i i
i

h z t z t z tω ω
=

= ∑  

and ( ( ))ij jM z t  is the grade of membership of ( )jz t in ijM  and 

( ( ))i z tω  represents the weight of the i th rule. It is easy to 
check that ( ( )) 0,ih z t ≥ 1,2 ,i r= …  and 1 ( ( )) 1.r

i ih z t= =∑   
Then, the state feedback controller for the continuous-time 

T-S fuzzy system is expressed as  
Controller Rule i : 

If 1 1 2 2 s( ) is  and ( ) is , , ( ) isi i isz t M z t M z t M  
Then ( ) ( ),iu t K x t=                                       (3) 

where, ( 1,2 , )iK i r= … , are the constant control gains to be 
determined. The designed fuzzy controller shares the same 
fuzzy sets in the premise parts with the plant and has local 
linear controllers in the consequent parts.  

The output of fuzzy state feedback controller can be 
represented by  

1
( )= ( ( )) ( ).

r

i i
i

u t h z t K x t
=
∑                              (4) 

Similarly to the continuous-time case, the discrete-time 
T-S fuzzy model and the corresponding model-based 
state-feedback controller are constructed as follows.  

Plant Rule i : 
If 1 1 is( ) is  and and  ( ) is i sz k M z k M…  

Then 
1

( 1) ( ( ))( ) ( ) ( ) ( ).
r

i i i i i
i

x t h z k G G x k H H u k
=

+ = + Δ + + Δ∑ (5) 

Controller Rule i : 
If 1 1 is( ) is  and and ( ) is i sz k M z k M…  

Then ( ) ( ),iu k K x k=                                          (6) 
where k and 1k +  denote the indexes of the time steps. 

Because of the uncertain matrices, it is not easy to design 
the controller gain matrices. In order to find these gain 
matrices iK , the uncertain matrices should be removed. 
Therefore, we assume, as usual, that the uncertain matrices 

iAΔ  and iBΔ  are admissibly norm-bounded and structured.  
Assumption 1: The parameter uncertainties considered 

here are norm-bounded, i.e. they are in the form  
[ ] 1 2( ) ( ) ( )[ ],i i i i i iA t B t D F t E EΔ Δ =  

where iD , 1iE  and 2iE  are known real constant matrices of 
appropriate dimensions, ( )iF t  is an unknown matrix function 
with Lebesgue-measurable elements satisfying ( ) ( ) ,T

i iF t F t I≤  
in which I  is the identity matrix of appropriate dimension.  

Lemma 1: Given constant matrices D  and E and a sym- 
metric constant matrix S  of appropriate dimensions, the 
following inequality holds 0T T TS DFE E F D+ + < , where F  
satisfies TF F R≤ , if and only if for some 0α > , 

1
1 0

0
0

T
T

R E
S E D

I D
α

α α
α

−
− ⎡ ⎤⎡ ⎤⎡ ⎤+ <⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

III. ROBUST STABILIZATION OF THE T-S FUZZY MODEL 
In this section, two kinds of stabilization conditions are 

presented. The sufficient conditions have guaranteed the 
global asymptotic stability of the controlled T-S fuzzy system 
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with parametric uncertainties. One is fuzzy state feedback 
stabilization problem for continuous-time system. The other 
is state feedback stabilization issue for discrete-time models.  

A. The stabilization for continuous-time fuzzy model 
Consider a continuous-time T-S fuzzy model, with para- 

metric uncertainties, described by the state-space equation (2). 
The objective is to design a T-S fuzzy model based state 
feedback controller for robust stabilization of the system (2) 
in the form of (4).  

By substituting (4) into (2), the corresponding closed-loop 
fuzzy system can be represented as 

1 1
( ) ( ( )) ( ( ))( ( ) ) ( ).

r r

i j i i i i j
i j

x t h z t h z t A A B B K x t
= =

= + Δ + + Δ∑∑   (7) 

The closed-loop system of (7) is found as follows.  
3

1

2

1 1

( ) ( ( ) ) ( )

(2( ) ( )( )

( ) ) ( )

r

i i i i i i
i

r r

i j i i j j i i i j
i j

j i

i i i

x t h A A B B K x t

h h A A A A B B K K

B B K x t

=

= =
≠

= + Δ + + Δ

+ + Δ + + Δ + + Δ +

+ + Δ

∑

∑∑  

2 1

1 1 1

(2( )

( )( ) ( )( )

r r r

i j l i j l i j l
i j i l j

i i i j l l i j

h h h A A A A A A

B B K K B B K K

− −

= = + = +

+ + + + Δ + Δ + Δ

+ + Δ + + + Δ +

∑ ∑ ∑  

( )( ) ( )( )) ( )j j i l i i j lB B K K B B K K x t+ + Δ + + + Δ +                 (8) 
The main result on the global asymptotic stability of the 

continuous-time T-S fuzzy model with parametric un- 
certainties is summarized in the following theorem. New 
stabilization condition is expressed in terms of LMIs.  

Theorem 1: Consider system (7), if there exist a symmetric 
and positive definite matrix P , some matrices iK , and some 
positive scalars ( , , 1,2 , )ijl i j l rα = …  such that the following 
LMIs are satisfied, then the continuous-time T-S fuzzy 
system (7) is asymptotically stabilizable via the T-S fuzzy 
model-based state feedback controller (4). 

1 2
1

0
0

iii

i i i iii
T
i iii

E Q E N I
D I

ψ
α

α −

∗ ∗⎡ ⎤
⎢ ⎥+ − ∗ <⎢ ⎥
⎢ ⎥−⎣ ⎦

, 1,2, , ,i r= …         (9) 

1 2

1 2

1 2
1

1

1

0
0 0 0
0 0 0
0 0 0 0
0 0 0 0 0

iij

i i i iii

i i j iij

j j i ijj
T
i iii
T
i iij
T
j ijj

E Q E N I
E Q E N I
E Q E N I

D I
D I
D I

γ
α

α
α

α
α

α

−

−

−

∗ ∗ ∗ ∗ ∗ ∗⎡ ⎤
⎢ ⎥+ − ∗ ∗ ∗ ∗ ∗⎢ ⎥
⎢ ⎥+ − ∗ ∗ ∗ ∗
⎢ ⎥

+ − ∗ ∗ ∗ <⎢ ⎥
⎢ ⎥− ∗ ∗
⎢ ⎥

− ∗⎢ ⎥
⎢ ⎥−⎣ ⎦

, 

1,2, , , , 1,2, ,i r j i j r= ≠ =… … ,                        (10) 

0
Λ ∗⎡ ⎤

<⎢ ⎥Π Ν⎣ ⎦
, 1,2, , 2, 1, , 1, 1, ,i r j i r l j r= − = + − = +… … … , (11) 

where           T T T
iii i i i i i iQA AQ N B B Nψ = + + + , 

2 2T T T T T T
iij i i j j i i i i j i i jQA AQ QA A Q N B B N N B B Nγ = + + + + + + +  

T T
i j j iN B B N+ + , 

1 2

1 2

1 2

1 2

1 2

1 2

0
0 0
0 0 0
0 0 0 0
0 0 0 0 0

ij

i i j iij

i i l iil

j j i ijj

j j l jjl

l l i ill

l l j jll

E E N I
E E N I
E E N I
E E N I
E E N I
E E N I

α
α

α
α

α
α

Ξ ∗ ∗ ∗ ∗ ∗ ∗⎡ ⎤
⎢ ⎥+ − ∗ ∗ ∗ ∗ ∗⎢ ⎥
⎢ ⎥+ − ∗ ∗ ∗ ∗
⎢ ⎥

+ − ∗ ∗ ∗Λ = ⎢ ⎥
⎢ ⎥+ − ∗ ∗
⎢ ⎥

+ − ∗⎢ ⎥
⎢ ⎥+ −⎣ ⎦

, 

2 2 2 2 2 2T T T T T
ijl i i j j l l j i i j

T T T T T T T T
l i i l i j j i l j j l i l

QA AQ QA A Q QA AQ N B B N

N B B N N B B N N B B N N B

Ξ = + + + + + + +

+ + + + + + +
T T

l i j l j iB N N B B N+ + + , 
1

1

1

1

1

1

0
0 0
0 0 0
0 0 0 0
0 0 0 0 0

iij

iil

ijj

jjl

ill

jll

I
I

I
I

I
I

α
α

α
α

α
α

−

−

−

−

−

−

⎡ ⎤∗ ∗ ∗ ∗ ∗
⎢ ⎥∗ ∗ ∗ ∗⎢ ⎥
⎢ ⎥∗ ∗ ∗
⎢ ⎥Ν =

∗ ∗⎢ ⎥
⎢ ⎥∗⎢ ⎥
⎢ ⎥⎣ ⎦

, 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

T
i
T

i
T

j
T

j
T

l
T

l

D
D
D
D
D
D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

Π = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Moreover, in this case, the fuzzy local state feedback gains 
are 1, 1,2, ,j jK N Q j r−= = …  and 1Q P−= , where ∗  denotes the 
transposed elements in the symmetric positions.  

Proof: For system (7), choose the Lyapunov function 
( ( )) ( ) ( ),TV x t x t Px t=                                  (12) 

where 0P >  is to be selected symmetric matrix. Then ( ( ))V x t  
is positive definite. The time derivative of this function along 
the trajectory of system in equation (12) is given by  

( ( )) ( ) ( ) ( ) ( )T TV x t x t Px t x t Px t= + .                     (13) 
Substituting (8) into equation (13) we get  

3

1

( ( )) ( ) (( ( ) )
r

T T
i i i i i i

i
V x t h x t A A B B K P

=

= + Δ + + Δ∑  

2

1 1

( ( ) )) ( )

( ) ( ) ( )

i i i i i

r r
T T

i j
i j

j i

P A A B B K x t

h h x t P P x tω ω
= =

≠

+ + Δ + + Δ

+ +∑∑  

2 1

1 1 1
( ) ( ) ( )

r r r
T T

i j l
i j i l j

h h h x t P P x tξ ξ
− −

= = + = +

+ +∑ ∑ ∑                     (14) 

where  
2( ) ( )( ) ( )i i j j i i i j i i iA A A A B B K K B B Kω = + Δ + + Δ + + Δ + + + Δ  
2( ) ( )( ) (i j l i j l i i i j lA A A A A A B B K K Bξ = + + + Δ + Δ + Δ + + Δ + +  

)( ) ( )( ) ( )( ).l i j j j i l i i j lB K K B B K K B B K K+ Δ + + + Δ + + + Δ +  
If the time derivative of (13) is negative definite uniformly 

for all ( )x t  and for all 0t > , then the controlled fuzzy system 
(8) is asymptotically stable. Therefore, if assume each sum of 
the equation (14) to be negative definite, then controlled 
continuous-time T-S fuzzy system is asymptotically stable. 
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First, consider that the first sum of the last equation in (14) 
is negative definite  

( ( ) ) ( ( ) ) 0,T
i i i i i i i i i iA A B B K P P A A B B K+ Δ + + Δ + + Δ + + Δ <  

1,2 ,i r= … .                                         (15) 
Using Assumption 1 to the (15) can be rewritten as  

1 2( )( ) ( ) )T
iii i i i i i i i i iPD F t E E K A B B KΦ + + + Δ + + Δ  

( ) 0i i i iP A A B K+ + Δ − < ,                          (16) 

where T T T
iii i i i i i iA P PA K B P PB KΦ = + + + . 

According to Lemma 1, the matrix inequality (16) satisfy- 
ing ( ) ( )T

i iF t F t I≤ , if and only if there exists a constant 1/ 2
iiiα  

such that  
1/ 2

1/ 2 1/ 2 1 2
1 2 1/ 2

( )
[ ( ) ]

( )
T iii i i i

iii iii i i i iii i T
iii i

E E K
E E K PD

PD
α

α α
α

−
− ⎡ ⎤+

Φ + + × ⎢ ⎥
⎣ ⎦

 

1
1 2

1 2
0

[( ) ] 0
0

i i iT iii
iii i i i i

iiii

E E KI
E E K PD

PDI
α

α

− +⎡ ⎤ ⎡ ⎤
= Φ + + × × <⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
(17) 

Then Applying the Schur complement to (17) we get  

1 2
1

0
0

iii

i i i iii
T
i iii

E E K I
D P I

α
α −

Φ ∗ ∗⎡ ⎤
⎢ ⎥+ − ∗ <⎢ ⎥
⎢ ⎥−⎣ ⎦

.                   (18) 

The matrix inequality as above is not an LMI. In order to 
use the convex optimization technique, (18) must be 
converted to an LMI via some variable changes or 
transformations. Define the transformation matrix and take a 
congruence trans- formation. We get  

1 1

1 2
1

0 0 0 0
0 0 0 0
0 0 0 0 0

T

iii

i i i iii
T
i iii

P P
I E E K I I

I D P I I
α

α

− −

−

⎡ ⎤ ⎡ ⎤Φ ∗ ∗⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥+ − ∗ ×⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

 

1 1

1 1
1 2

1

0
0

iii

i i i iii
T
i iii

P P
E P E K P I

D I
α

α

− −

− −

−

⎡ ⎤Φ ∗ ∗
⎢ ⎥= + − ∗ <⎢ ⎥
⎢ ⎥−⎣ ⎦

.                         (19) 

Letting 1Q P−=  and 1, 1,2, ,i iK N Q i r−= = …  get the first 
LMI (9) in Theorem 1.  

Similarly, consider the second sum of equation. Assume 
0T P Pω ω+ < ,                                     (20) 

Then, using Assumption 1, (20) can be represented as  

1 2

1 2

1 2

( ) 0 0
0 ( ) 0
0 0 ( )

i i ii

i i jiij i i j i

j j j i

E E KF t
E E KPD PD PD F t

F t E E K

+⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ +⎡ ⎤Θ + ⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦

 

1 2

1 2

1 2

( ) 0 0
0 ( ) 0 0
0 0 ( )

T T
i i i i

T
i i j i i i j

jj j i

E E K F t
E E K F t PD PD PD

F tE E K

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ ⎡ ⎤+ <⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦

,(21) 

where  
T T T T T T

iij i i j j j i i j i j j iA P PA A P PA K B P PB K K B P PB KΘ = + + + + + + + , 

Using Lemma 1 repeatedly, the matrix inequality (21) 
holds for all ( )iF t  satisfying  

( ) 0 0 ( ) 0 0
0 ( ) 0 0 ( ) 0
0 0 ( ) 0 0 ( )

T

i i

i i

j j

F t F t
F t F t I

F t F t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ≤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, 

if and only if there exists a constant such that  

1 2 1 2 1 2( ) ( ) ( )T T T
iij i i i i i j j j i i i jE E K E E K E E K PD PD PD⎡ ⎤Θ + + + +⎣ ⎦

1
1 2

1
1 2

1
1 2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 .
( )0 0 0 0 0
( )0 0 0 0 0
( )0 0 0 0 0

i i iiii

i i jiij

j j iijj
T

iiii
T

iiij
T

jijj

E E KI
E E KI
E E KI

PDI
PDI
PDI

α
α

α
α

α
α

−

−

−

+⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥+
⎢ ⎥× <⎢ ⎥

−⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥
⎢ ⎥− ⎢ ⎥⎣ ⎦⎣ ⎦

(22) 

Applying Schur complement to (22) and taking the 
congruence transformation with [ ]     P I I I I I  easily obtained  

1 1

1 1
1 2

1 1
1 2

1 1
1 2

1

1

1

0
00 0

0 0 0
0 0 0 0
0 0 0 0 0

iij

i i i iii

i i j iij

j j i ijj
T
i iii
T
i iij
T
j ijj

P P
E P E K P I
E P E K P I
E P E K P I

D I
D I
D I

α
α

α
α

α
α

− −

− −

− −

− −

−

−

−

⎡ ⎤Θ ∗ ∗ ∗ ∗ ∗ ∗
⎢ ⎥+ − ∗ ∗ ∗ ∗ ∗⎢ ⎥
⎢ ⎥+ − ∗ ∗ ∗ ∗
⎢ ⎥

<+ − ∗ ∗ ∗⎢ ⎥
⎢ ⎥− ∗ ∗⎢ ⎥
⎢ ⎥− ∗
⎢ ⎥−⎢ ⎥⎣ ⎦

(23) 

Denoting 1Q P−=  and 1, 1,2, ,i iK N Q i r−= = …  have the 
second LMI (10). 

Assume the third sum of equation  
0T P Pξ ξ+ < ,                                    (24) 

Using Assumption 1, Lemma 1 and applying the Schur 
complement to (24) repeatedly, then (11) can be obtained. 
Thus ( ( )) 0V x t < , if (15), (20) and (24) are satisfied. This 
completes the proof of the theorem.  

B. The stabilization for discrete-time fuzzy model 
In this section, we solves with the controller design 

problem for the discrete-time T-S fuzzy model with 
parametric uncertainties. The overall closed-loop fuzzy can 
be described as follows. 

1 1
( 1) ( ( )) ( ( ))( ( ) ) ( )

r r

i j i i i i j
i j

x k h z k h z k G G H H K x k
= =

+ = + Δ + + Δ∑∑ (25) 

Theorem 2: Consider system (25). If there exist a sym- 
metric and positive definite matrix P , some matrices ijlα , 
( , , 1,2 , )i j l r= …  such that the following LMIs are satisfied, 
then the discrete-time T-S fuzzy system (5) is asymptotically 
stabilizable via the T-S fuzzy model-based state-feedback 
controller (6).  

1 2
1

0
0

0 0

i i i

i i i iii
T
i iii

Q
G Q H N Q
E Q E N I

D I
α

α −

− ∗ ∗ ∗⎡ ⎤
⎢ ⎥+ − ∗ ∗⎢ ⎥ <
⎢ ⎥+ − ∗
⎢ ⎥

−⎣ ⎦

, 1,2, , ,i r= … (26) 

0
Σ ∗⎡ ⎤

<⎢ ⎥Ο Τ⎣ ⎦
, 1,2, , 2, 1, , 1, 1, ,i r j i r l j r= − = + − = +… … … (27) 
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1 2

1 2
1

1

1

3
3
0
0 0

0
0 0 0

0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

iij

i i i iii

i i j iij

j j i ijj
T
i iii
T
i iij
T
j ijj

Q
Q

GQ H N I
E Q E N I
E Q E N I

D I
D I
D I

α
α

α
α

α
α

−

−

−

− ∗ ∗ ∗ ∗ ∗ ∗ ∗⎡ ⎤
⎢ ⎥Μ − ∗ ∗ ∗ ∗ ∗ ∗⎢ ⎥
⎢ ⎥+ − ∗ ∗ ∗ ∗ ∗
⎢ ⎥

+ − ∗ ∗ ∗ ∗⎢ ⎥ <⎢ ⎥+ − ∗ ∗ ∗
⎢ ⎥

− ∗ ∗⎢ ⎥
⎢ ⎥− ∗⎢ ⎥
⎢ ⎥−⎣ ⎦

, 

1,2, , , , 1,2, ,i r j i j r= ≠ =… …                       (28) 
where 

1 2

1 2

1 2

1 2

1 2

1 2

6
6
0
0 0
0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

ijl

i i j iij

i i l iil

j j i ijj

j j l jjl

l l i ill

l l j jll

Q
Q

E E N I
E E N I
E E N I
E E N I
E E N I
E E N I

α
α

α
α

α
α

− ∗ ∗ ∗ ∗ ∗ ∗ ∗⎡ ⎤
⎢ ⎥Ε − ∗ ∗ ∗ ∗ ∗ ∗⎢ ⎥
⎢ ⎥+ − ∗ ∗ ∗ ∗ ∗
⎢ ⎥

+ − ∗ ∗ ∗ ∗⎢ ⎥Σ = ⎢ ⎥+ − ∗ ∗ ∗
⎢ ⎥

+ − ∗ ∗⎢ ⎥
⎢ ⎥+ − ∗⎢ ⎥
⎢ ⎥+ −⎣ ⎦

, 

2iij i i i i j j j iG Q H N H N G Q H NΜ = + + + + , 
2 2 2ijl i j l i j i l j i j l l iG Q G Q G Q H N H N H N H N H NΕ = + + + + + + +  

j iH N+ , 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

,
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

T
i
T

i
T

j
T

j
T

l
T

l

D
D
D
D
D
D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

Ο = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1

1

1

1

1

1

0
0 0
0 0 0
0 0 0 0
0 0 0 0 0

iij

iil

ijj

jjl

ill

jll

I
I

I
I

I
I

α
α

α
α

α
α

−

−

−

−

−

−

⎡ ⎤∗ ∗ ∗ ∗ ∗
⎢ ⎥∗ ∗ ∗ ∗⎢ ⎥
⎢ ⎥∗ ∗ ∗
⎢ ⎥Τ =

∗ ∗⎢ ⎥
⎢ ⎥∗⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Moreover, in this case, the fuzzy local state feedback gains 
are 1, 1,2, ,j jK N Q j r−= = …  and 1Q P−= , where ∗  denotes the 
transposed elements in the symmetric positions. 

Proof: For system (25), we choose the following discrete 
Lyapunov function  

( ( )) ( ) ( )TV x k x k Px k= ,                              (29) 
which is positive definite. By evaluating the difference of the 

( ( ))V x k .  
( ( )) ( ( 1)) ( ( ))V x k V x k V x kΔ = + −  

3

1

( ) ( )
(( ) ( ) )

r
T

i
i i i i i j

P
h x k x k

P G G H H K P=

− ∗⎡ ⎤
= ⎢ ⎥+ Δ + + Δ −⎣ ⎦

∑  

2

1 1

3
( ) ( )

3

r r
T

i j
i j

j i

P
h h x k x k

P= =
≠

− ∗⎡ ⎤
+ ⎢ ⎥Ω −⎣ ⎦
∑∑  

2 1

1 1 1

6
( ) ( )

6

r r r
T

i j l
i j i l j

P
h h h x k x k

P

− −

= = + = +

− ∗⎡ ⎤
+ ⎢ ⎥Ζ −⎣ ⎦
∑ ∑ ∑ ,           (30) 

where  
2 ( ) ( ) ( ) ( )i i j j i i i i i jP G G P G G H H K H H KΩ = + Δ + + Δ + + Δ + + Δ  

( )j j iH H K+ + Δ , 
2 ( ) ( )( )i i j j l l i i j lP G G G G G G H H K KΖ = + Δ + + Δ + + Δ + + Δ +  

( )( ) ( )( )j j i l l l i jH H K K H H K K+ + Δ + + + Δ + . 
Therefore, if the three sums in (30) are all uniformly 

negative definite, ( ( ))V x kΔ  is negative definite so the system 
is asymptotically stable. The proof applied the same method 
as in theorem 1, so the process of derivation is omitted.  

IV. SIMULATION RESULTS  
In this section, we simulate the control of the chaotic 

Lorenz system with parametric uncertainties. The control 
objective is to show the effectiveness of the proposed robust 
stabilization technique. 

The Lorenz equations are as follows 

1 1 2

2 1 2 1 3

3 1 2 3

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) .
( ) ( ) ( ) ( )

x t x t x t
d x t rx t x t x t x t
dt

x t x t x t bx t

σ σ− +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

                (31) 

The nonlinear system (30) is exactly represented by the 
following T-S fuzzy model.  

Plant Rule 1: If ( )1x t  is about 1M  
Then 1 1 1 1( ) ( ) ( ) ( ) ( )x t A A x t B B u t= + Δ + + Δ , 

Plant Rule 2: If ( )1x t  is about 2 M  
Then 2 2 2 2( ) ( ) ( ) ( ) ( )x t A A x t B B u t= + Δ + + Δ . 

The membership functions for the plant rules are shown in 
Fig. 1. 

1 21 2 1 1
1 1 1 2

2 1 2 1

( ) ( )( ( )) , ( ( )) ,x t M x t Mx t x t
M M M M

− + − −
Γ = Γ =

− −
 

1 1 2 2

1 2

0 0
1 , 1 ,

0 0
A r M A r M

M b M b

σ σ σ σ− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

The input matrices 1B  and 2B  are as arbitrarily chosen as 
bellow which guarantees the system controllability. 1BΔ  and 

2BΔ  are chosen as follows. 

1 2 1 2

1 0
0 , 0 .
0 0

B B B B
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = Δ = Δ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

In the simulation, the nominal values ( , , )r bσ of are (10, 28, 
8/3) for chaos to emerge. Assume all parameters uncertain 
bounded within 30% of their nominal values. Based on 
Assumption 1, we define  

1 2 11 12

0.3 0 0 0
0 0.3 0 , 0 0 ,
0 0 0.3 0 0

D D E E r
b

σ σ− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

[ ]21 22 0 0 0 .TE E= =  

The control objective is to make the chaotic system be 
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stabilized. By applying Theorem 1 and using LMI toolbox in 
the matlab, we obtain  

[ ]
[ ]

1

2

114.70429 68.07884 10.21541 ,

62.32490 38.61411 -10.48324 .

K

K

=

=
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Fig. 1. The membership functions for the T-S fuzzy model of 

 the Lorenz system. 
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Fig. 2. The time response of states. 
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Fig. 3. The time response of state of the controlled system. 

The response of uncontrolled states 1 2 3, ,x x x  for the 
chaotic Lorenz system is show in Fig. 2. The control result, 
for the nonlinear continuous-time system with parametric 
uncertainties, is shown in Fig. 3. The simulation results show 
that the T-S fuzzy model-based state-feedback controller not 
only can stabilize the nonlinear systems, but also has strong 
robustness against admissible norm-bounded parametric un- 
certainties.  

V. CONCLUSION 
In this paper, we have developed and analyzed the 

controller for both continuous-time and discrete-time T-S 
fuzzy models, and we have proposed a new robust fuzzy 
controller for T-S fuzzy models with parametric uncertainties. 
Based on the Lyapunov function approach, we obtained some 
robust stability conditions in the linear matrix inequality 
format and a systematic design procedure for the controller 
design of a general nonlinear system with parametric 
uncertainties. The designed controller can globally 
asymptotically stabilize the closed-loop T-S fuzzy system 
subject to all admissible parametric uncertainties. The design 
scheme was applied to the stabilizing control of the Lorenz 
system. Simulation results show the effectiveness of the new 
approach in controlling nonlinear systems with parametric 
uncertainties.  
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