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Abstract— This paper proposes a new control parametriza-
tion under Model Predictive Controller (MPC) framework
for constrained linear discrete time systems with bounded
additive disturbances. The parametrization takes the form of
a piecewise affine disturbance feedback and is a generalization
of the linear disturbance feedback proposed in the literature.
Thus, performance of the resultant MPC controller may be
improved. Properties and the numerical computations of the
parametrization are discussed. Under mild assumptions of the
disturbance set, the associated finite-horizon optimization can
be computed efficiently. Stability of the closed-loop system with
the proposed parametrization is also ensured.

I. INTRODUCTION

This paper is concerned with the Model Predictive Control
(MPC) of

x(t + 1) = Ax(t) + Bu(t) + w(t), (1)
(x(t), u(t)) ∈ Y, w(t) ∈ W, ∀ t ≥ 0 (2)

where x(t) ∈ Rn, u(t) ∈ Rm are respectively the state and
control of the system at time t, w(t) ∈ W ⊂ Rn is the
disturbance on the system at time t and Y represents the
joint state and control constraint on the system.

The MPC control of such a system is popular and has
a wide literature, see [1], [2], [3] and the references cited
therein. One aspect of the MPC control that continues
to be of research interest is the choice of the control
parametrization used in the N -stage finite horizon (FH)
optimization problem. It is well known that optimizing over
{u(0), · · ·u(N−1)} directly results in a conservative system
and the optimization should be over families of feedback
policies, see [1], [4] and others. One popular feedback policy
is u(t) = Kx(t) + c(t) where K is fixed apriori and
c(t) is the new optimization variable [2], [4], [5], [6], [7].
Such a policy has a reasonable domain of attraction and
good asymptotic behavior. More precisely, the system state
converges to

F∞(K) = W + (A + BK)W + (A + BK)2W + · · · , (3)

the minimal invariant set of x(t+1) = (A+BK)x(t)+w(t)
[2].

To further enlarge the domain of attraction, other families
of feedback policies have been proposed. For example,
time-varying state feedback law, u(t) = K(t)x(t) + c(t),
where K(t), c(t) changes with time has been attempted. Un-
fortunately, direct parametrization with affine time-varying

state feedback is unappealing as the resulting FH problem
is not computationally tractable [8]. Instead, Löfberg [8]
and van Hessem & Bosgra [9] proposed the parametriza-
tion of u(t) by time-varying disturbance feedback, u(t) =
v(t) +

∑t−1
i=0 C(i)w(i). This parametrization has the advan-

tage that the resulting FH optimization problem is convex
and computable. Recently, Goulart et. al. in [3] show the
equivalence of time-varying state feedback and time-varying
disturbance feedback. Consequently, the MPC systems using
either parametrization have the same domain of attraction.
They also show that, under mild assumptions, the origin of
the closed-loop system is input-to-state stable (ISS) under
the MPC control law derived using the time-varying state
feedback parametrization. More recently, Wang et.al. in [10]
propose a parametrization of the form

u(t) = Kx(t) + d(t) +
N−1∑

i=1

D(t, i)w(t− i) (4)

and show that it preserves the same domain of attraction
as the time varying disturbance feedback parametrization
discussed in [3], [8] but has a stronger stability result in
that the system state converges to F∞(K).

In an effort to further generalize the parametrization, this
paper proposes a control parametrization that covers an even
larger family of feedback policies. It uses a time-varying
piecewise affine disturbance feedback and is a non-trivial
extension of [10]. The proposed parametrization preserves
the strong stability results and the associated computations
of the FH optimization are reasonable.

The rest of this paper is organized as follows. Notations
and general assumptions are given in the rest of this section.
Details of the new control parametrization and the MPC
framework together with the cost function are given in
Section II. Properties and related issues of the segregated
disturbance set are discussed in Section III. Convex refor-
mulation and computational issues are introduced in Section
IV. Section V discusses the feasibility of the FH optimization
problem and stability of the closed-loop system. The last
section concludes the paper.

The following notations are used. Zk and Z+
k denote

respectively the integer sets {0, 1, · · · , k} and {1, · · · , k};
given matrices A ∈ Rn×m, B ∈ Rp×q and vector v ∈ Rn:
Ai is the ith column of A; vi is the ith element of v;
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A ⊗ B is the Kronecker product of A and B; vec(A) =[
AT

1 · · · AT
m

]T ∈ Rnm is the stacked vector of columns
of A; v > (≥) 0 means vi > (≥) 0 for all i; |v| :=
[|v1| · · · |vn|]T is the vector of absolute value of v. A square
matrix A Â (º)0 means A is positive definite (semi-
definite). For any A Â 0, ‖x‖2A = xT Ax. 1k is a k-vector
with all elements being 1. Given a set Ω, CH(Ω) denotes
the convex hull of Ω, int(Ω) denotes the interior of Ω and
δ(y|Ω) := maxω∈Ω yT ω is the support function on Ω. Also,
the boldface characters are used for collections of vectors or
matrices over the length of control horizon.

The system (1)-(2) is assumed to satisfy the following
assumptions:

(A1) (A,B) is stabilizable;
(A2) W ⊂ Rn is an absolute set;
(A3) the set

Y = {(x, u)| Yxx + Yuu ≤ 1a} ⊂ Rn+m (5)

is compact and contains the origin;
(A4) The size of W is sufficiently small such that there

exists a constraint-admissible disturbance invariant
set

Xf = {x| Gx ≤ 1b} ⊂ Rn (6)

for system (1) under the control law u = Kfx
for some feedback gain Kf ∈ Rm×n where A +
BKf is asymptotically stable and that F∞(Kf ) ⊂
int(Xf ).

Assumption (A1) is standard. Definition of an absolute set
and its implications are discussed in Section III. It will be
shown that (A2) is quite general and can be applied to many
disturbance models. The characterizations of Y in (A3) is
made out of the need for a concrete computational represen-
tation. The existence of Xf in (A4) is quite well known under
(A1)-(A3) when W is sufficiently small [11], [12]. F∞(Kf )
is also the set of reachable states under the disturbance input
for the system x(t + 1) = (A + BK)x(t) + w(t), x(0) = 0.
Hence, the last part of (A4) is a mild requirement that W is
sufficiently small such that F∞(Kf ) does not violate the Y
constraint.

II. CONTROLLER STRUCTURE AND THE MPC
FRAMEWORK

A. Control parametrization

The proposed control parametrization is a piecewise affine
function of w. Let w ∈ Rn be segregated into its positive
and negative parts by

wp := max{w, 0}, wm := max{−w, 0} (7)

where the max operation is taken component-wise. With this
definition, it is easy to see that wp, wm ∈ Rn, wp ≥ 0,
wm ≥ 0 and w = wp−wm. Correspondingly, the disturbance
set for (wp, wm) is expanded to

ΩW := {(w1, w2)| w1 − w2 ∈ W,w1 ≥ 0, w2 ≥ 0,

(w1)T w2 = 0} ⊂ Rn × Rn (8)

Clearly, there is a one-to-one mapping between w ∈ W and
(w1, w2) ∈ ΩW : for any w ∈ W , w1 = wp, w2 = wm while
for any (w1, w2) ∈ ΩW , w = w1−w2. The complementarity
condition (w1)T w2 = 0 in (8) also means that w1

i w2
i = 0

for all i ∈ Z+
n since wp ≥ 0, wm ≥ 0. Clearly, this last

condition means that ΩW is non-convex even when W is
convex.

Let the control horizon length be N , x(i), u(i) be the ith

predicted state and ith predicted control respectively within
the horizon at time t. The proposed u(i) takes the form





u(i) = Kfx(i) + c(i), i ∈ ZN−1

c(i) = d(i) +
∑N−1

j=1 Cp(i, j)wp(i− j)
+

∑N−1
j=1 Cm(i, j)wm(i− j)

(9)

where d(i) ∈ Rm, Cp(i, j), Cm(i, j) ∈ Rm×n are the
optimization variables, Kf is the specified state feedback
gain in (A4) and the disturbances wp(i− j) and wm(i− j)
are obtained from w(i− j) using (7). Also, the disturbance
w(i) is realized if i < 0 and is unknown if i ≥ 0. Hence,
c(i) contains the N−1 disturbances preceding time t+i and
is an affine function of wp(i− j) and wm(i− j), j ∈ Z+

N−1.
To simplify notations and presentation, let

u = [uT (0) uT (1) · · · uT (N − 1)]T

x = [xT (0) xT (1) · · · xT (N)]T

d = [dT (0) dT (1) · · · dT (N − 1)]T

w− = [wT (−(N − 1)) · · · wT (−1)]T

w+ = [wT (0) · · · wT (N − 1)]T

where w− (w+) is the collection of realized (future) dis-
turbances at current time. Using (7), w− and w+ can
be further separated into their positive and negative parts
wp−,wm−,wp+,wm+ and let Π− = [(wp−)T (wm−)T ]T ,
Π+ = [(wp+)T (wm+)T ]T . The rest of the variables in (9)
are collected in

Cp− =




Cp(0, N − 1) Cp(0, N − 2) · · · Cp(0, 1)
0 Cp(1, N − 1) · · · Cp(1, 2)
...

...
. . .

...
0 0 · · · Cp(N − 2, N − 1)
0 0 · · · 0




(10)

Cp+ =




0 · · · 0 0
Cp(1, 1) · · · 0 0

...
. . .

...
...

Cp(N − 2, N − 2) · · · 0 0
Cp(N − 1, N − 1) · · · Cp(N − 1, 1) 0




(11)

Cm− and Cm+ where the last two variables are defined in
the same way as (10) and (11) with the corresponding change
in the superscripts. Using these notations, the control policy
of (9) within the control horizon becomes

u = Kx + d + C−Π− + C+Π+ (12)

where K = [IN ⊗Kf 0], C− = [Cp− Cm−] and C+ =
[Cp+ Cm+]. Also, let C denote (C−, C+).
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B. MPC formulation
Using the above-mentioned notations, the FH optimization

based on the control parametrization of (9) can be summa-
rized as the following problem PN (d,C;x,Π−):

min
d,C

JN (d,C) (13)

s.t. x = Ax + Bu + GΠ+ (14)
u = Kx + d + C−Π− + C+Π+ (15)
(x(i), u(i)) ∈ Y ∀ Π+ ∈ ΩN

W , i ∈ ZN−1 (16)

x(N) ∈ Xf ∀ Π+ ∈ ΩN
W (17)

where K = [IN ⊗Kf 0] ,

A =




In

A
A2

...
AN




, B =




0 0 · · · 0
B 0 · · · 0

AB B · · · 0
...

...
. . .

...
AN−1B AN−2B · · · B




,

Ĝ =




0 0 · · · 0
In 0 · · · 0
A In · · · 0
...

...
. . .

...
AN−1 AN−2 · · · In




, G =
[
Ĝ − Ĝ

]
,

ΩN
W is the N times product space of ΩW and JN (d,C) is an

appropriate cost function whose details are discussed in the
next subsection. Let the feasible set of the FH optimization
problem be

ΠN (x,Π−) = {(d,C) | PN (d,C;x,Π−) is feasible}(18)

The set of admissible initial states to the FH problem is then

XN = {x|ΠN (x,Π−) 6= ∅}.
It appears from (18) that ΠN is a function of x and the past
disturbances Π−. The next theorem shows that whether ΠN

is empty depends only on x.
Theorem 1: If ΠN (x, Π̄−) 6= ∅ for some (x, Π̄−), then

ΠN (x,Π−) 6= ∅ for any Π− ∈ ΩN−1
W .

Proof: Choose (d̄, C̄) ∈ ΠN (x, Π̄−) and (x̄, ū) be
the corresponding control and state sequences obtained from
(14) and (15). Let

d̂ = d̄ + C̄−Π̄−, Ĉ− = 0 and Ĉ+ = C̄+.

From (15), (d̂, Ĉ) define the same feasible control sequence
ū for any Π− ∈ ΩN−1

W and hence, the same feasible state
sequence x̄. This also means that (d̂, Ĉ) ∈ ΠN (x,Π−) for
all Π− ∈ ΩN−1

W .
Following Theorem 1, the feasible set of FH optimization

problem can be stated as ΠN (x) instead of ΠN (x,Π−). Cor-
respondingly, the admissible initial state set can be defined
as

XN = {x| ΠN (x) 6= ∅}. (19)

Remark 1: Suppose PL
N and XL

N are the correspond-
ing FH problem and the admissible set when the control
parametrization (4) is used in (15) instead of (9) (For the
case where (4) is used, no segregation of w ∈ W is needed.

See [10] for details). It is easy to see that XL
N ⊆ XN because

(4) is a special case of (9).
The rest of the MPC formulation is standard: the FH opti-

mization problem is solved at each time t and the very first
term of (d∗(t),C∗(t)) = arg min PN (d,C;x(t),Π−(t)) is
applied to system (1) yielding the MPC control law

u(t) = Kfx(t) + d∗(0) +
N−1∑

j=1

(Cp∗(0, j)wp(t− j)

+ Cm∗(0, j)wm(t− j)) (20)

C. cost function

The cost function used in this work is similar with that
used in [10] and hence its discussion here is brief. Specifi-
cally, the cost function is

JN (d,C) :=
N−1∑

i=0

‖γ(i)‖2Ψ (21)

where

γ(i) = vec([d(i) Cp(i, 1) Cm(i, 1) · · ·
Cp(i,N − 1) Cm(i,N − 1)]),

and any Ψ Â 0. Connection of this cost function to the
expected standard LQ cost

VN (x,u) = E

[
N−1∑
i=0

(‖x(i)‖2Q + ‖u(i)‖2R) + ‖x(N)‖2P
]

(22)

where the expectation is taken over (wp−,wm−,wp+,wm+),
has also been made in [10], [13], [14] under additional
assumptions on Q,R, P, Kf and the mean and covariance
of disturbance w.

III. PROPERTIES OF THE ΩW AND RELATED SETS

The set ΩW , being non-convex even when W is convex,
means that the associated FH computations may be difficult.
This difficulty is circumvented when W satisfies (A2). We
first review the definition of absolute set.

Definition 1: A set V is an absolute set if it is compact,
convex, contains the origin in its interior and v ∈ V if and
only if |v| ∈ V .

From its definition, an absolute set is necessarily sym-
metric, or V = {−v : v ∈ V }. Examples of absolute
sets include those generated by the Lp norms and their
intersections: {v : ‖v‖p ≤ 1}, {v : ‖v‖∞ ≤ 1, ‖v‖2 ≤
r, ‖v‖1 ≤ g}. The use of absolute set as disturbance model
is also quite common, see [15], [16], [17] and [18].

Remark 2: Assumption (A2) is not as restrictive as it may
appear. Many non-symmetrical disturbances or disturbances
generated from a set with dimension different from Rn can
be represented as {w|w = Ew̄ + e, w̄ ∈ W̄ ⊂ R`} where W̄
is an absolute set and E and e are some appropriate matrices.
For such disturbance model, the exposition hereafter remains
valid but with w replaced by Ew̄ + e.

Remark 3: For some class of disturbances where W is
convex but cannot be represented by Lp norms, intersections
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of Lp norms or using Remark 2, the set ΩW may be
approximated by

ΩA
W = {(w1, w2)| w1 − w2 ∈ W,w1 ≥ 0, w2 ≥ 0}.

Suppose PA
N and XA

N are the corresponding FH problem and
the admissible initial set when ΩW is replaced by ΩA

W in
(16) and (17). It is easy to see that ΩW ⊆ ΩA

W and ΩA
W is

convex (since W is convex). Hence, PA
N is computationally

more amiable. Of course, the control law obtained is more
conservative since ΩW ⊆ ΩA

W and, hence, XA
N ⊆ XN .

Remark 4: While more conservative than PN , PA
N is less

conservative than PL
N , the FH problem when parametrization

(4) is used. Again, this is true because PL
N is a special

case of PA
N ( choose Cp(i, j) and Cm(i, j) in (9) such that

Cp(i, j) = −Cm(i, j) = D(i, j) ). Hence, if a feasible
solution exists for PL

N for all w ∈ W , a feasible solution
exists for PA

N for all (w1, w2) ∈ ΩA
W . This, together with

Remark 1, means that XL
N ⊆ XA

N ⊆ XN .
We now define a set that is closely related to W . Let

ΩB
W = {(w1, w2)| w1 + w2 ∈ W,w1 ≥ 0, w2 ≥ 0}(23)

and its connection to ΩW is given below.
Theorem 2: Suppose W satisfies assumption (A2), then

ΩB
W = CH(ΩW ).

Proof: (⇒)Consider (v1, v2) ∈ ΩW . It follows that
v1 ≥ 0, v2 ≥ 0 and (v1)T v2 = 0. Therefore, v1 + v2 =
|v1 − v2|. Since W is absolute and v1 − v2 ∈ W , we have
v1 +v2 = |v1−v2| ∈ W which implies that (v1, v2) ∈ ΩB

W .
Since the set ΩB

W is convex, we have CH(ΩW ) ⊆ ΩB
W . (⇐)

To show ΩB
W ⊆ CH(ΩW ), consider (u1, u2) ∈ ΩB

W and let
S0 = {(u1, u2)}. For all i ∈ Z+

n , let

Si =
⋃

(v1,v2)∈Si−1

{(v1−eiv1
i , v2+eiv1

i ), (v1+eiv2
i , v2−eiv2

i )}

where ei denotes a unit vector in Rn, with one at the ith

element and zeros otherwise. Observe that for all (v1, v2) ∈
Si, (v1, v2) ∈ CH(Si+1). Indeed, if v1

i + v2
i > 0, let λ =

v1
i /(v1

i + v2
i ) and it follows that

(v1, v2) = λ(v1−eiv1
i , v2+eiv1

i )+(1−λ)(v1+eiv2
i , v2−eiv2

i ).

Otherwise, if v1
i + v2

i = 0, we have (v1, v2) ∈ Si+1.
Therefore, by induction, we have (u1, u2) ∈ CH(Sn). We
can also induce that each (v1, v2) ∈ Sn satisfies v1, v2 ≥ 0,
v1 + v2 = u1 + u2 and v1

j v2
j = 0, j ∈ Z+

n . Hence,
|v1−v2| = v1 +v2 = u1 +u2 ∈ W . Since W is an absolute
set, we have v1 − v2 ∈ W and (v1, v2) ∈ ΩW . Therefore,
(u1, u2) ∈ CH(ΩW ).

It can be proved that all absolute set can be expressed in
the form of

V = {v : η(v) ≤ 1}, (24)

for some absolute norm function η : Rn 7→ R. By absolute
norm, η(·) satisfies the three standard properties of a norm
and the additional property of η(v) = η(|v|). Clearly, all
polynomial norms or Lp norms are absolute. However, a
polynomial norm induced by an invertible matrix, is not

necessary absolute. It is easy to see that the following
composite norm function

ζ(v) = max
l=1,...,L

{alηl(v)}, (25)

in which ηl(·) are absolute norms with al > 0 for all
l ∈ Z+

L , is absolute. Hence, for instance, {v : ‖v‖∞ ≤
1, ‖v‖2 ≤ r} can be expressed in the form of (24) with
η(v) = max{ 1

r‖v‖2, ‖v‖∞}. Given a vector norm η(·), the
dual norm η∗(·) is a norm function defined as

η∗(y) = max
η(v)≤1

yT v. (26)

IV. CONVEX REFORMULATION AND COMPUTATION

The role of the absolute set in the satisfaction of con-
straints (16) and (17) is made clear in the following theorem.

Theorem 3: Let W = {w : η(w) ≤ 1} ⊂ Rn be an
absolute set for some absolute norm function η(·), η∗(·) be
the corresponding dual norm and ΩB

W be as defined by (23).
The two sets

C1 = {(x, y, z) ∈ R2n+1|xT w1 + yT w2 ≤ z, ∀(w1, w2) ∈ ΩB
W }

C2 = {(x, y, z) ∈ R2n+1|η∗(t) ≤ z, t ≥ x, t ≥ y for some t}

are equivalent.
Proof: (⇒) Let (x, y, z) be an element of C1. It follows

from (23) that

z ≥ max{xT w1 + yT w2|w1 ≥ 0, w2 ≥ 0, η(w1 + w2) ≤ 1}
= max{xT w1 + yT w2| w1 ≥ 0, w2 ≥ 0,

w = w1 + w2, η(w) ≤ 1}
= max{t̄T w| w ≥ 0, η(w) ≤ 1, t̄i = max{xi, yi}} (27)

= max{t̄T |w| | η(w) ≤ 1, t̄i = max{xi, yi}} (28)

= max{tT |w| | η(w) ≤ 1, ti = max{0, t̄i}} (29)

= max{tT w| η(w) ≤ 1, ti = max{0, t̄i}} (30)
⇒ (x, y, z) ∈ C2

The first two relations come from the definitions of ΩB
W ,

W and the re-organization of the constraints. Equation (27)
comes from the fact that the optimal value can be achieved
by considering w1 and w2 where w1

i w2
i = 0 for all i. This is

true because the optimal w∗ is such that w∗i = w1∗
i if xi > yi

and w∗i = w2∗
i if xi ≤ yi for all i. Equation (28) follows

because W is an absolute set. Equation (29) comes from the
fact that if ti < 0, the optimal w∗i must be 0. Hence, the
maximum value can be obtained by letting ti = max{0, t̄i}.
Since t ≥ 0, the absolute sign on w can be relaxed based
on the fact that dual norm of absolute norm is also absolute.
The last implication follows since the existence of t, t ≥ x
and t ≥ y is established.

(⇐) Let (x, y, z) be an element of C2 with a suitable t ∈
Rn. Then, from the definition of η∗(·),
z ≥ max{tT (w1 + w2)| (w1 + w2) ∈ W, t ≥ x, t ≥ y}
≥ max{tT (w1 + w2)| (w1 + w2) ∈ W, w1 ≥ 0, w2 ≥ 0,

t ≥ x, t ≥ y}
≥ max{xT w1 + yT w2)| (w1 + w2) ∈ W, w1 ≥ 0, w2 ≥ 0}
= max{xT w1 + yT w2)| (w1, w2) ∈ ΩB

W }
⇒ (x, y, z) ∈ C1.
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Again, the first inequality holds from definition. The second
inequality follows from the imposition of two additional
constraints w1 ≥ 0, w2 ≥ 0. The third inequality follows
from the fact that tT w ≥ xT w and tT w ≥ yT w for all
w ≥ 0 since t ≥ x and t ≥ y. The last equality is from the
definition of ΩB

W which implies the inclusion.
Remark 5: The adaptation of Theorem 3 to disturbance

set defined by intersection of Lp norm sets is quite easy. For
example, if W = {w| ‖w‖∞ ≤ 1, ‖w‖2 ≤ r}, then η(v) =
max{ 1

r‖v‖2, ‖v‖∞}, η∗(v) = min{r‖v1‖2 + ‖v2‖1, v1 +
v2 = v} and the deterministic equivalence of C1 in Theorem
3 is C2 = {(x, y, z)| ∃t, t1, t2 ∈ Rn, ‖t2‖1+r‖t1‖2 ≤ z, t1+
t2 = t, t ≥ x, t ≥ y}.

Remark 6: Observe that the constraint η∗(t) ≤ z arising
in C2 in Theorem 3 is equivalent to

wT t ≤ z ∀w ∈ W

whose tractability and explicit formulation can be found
in [16]. In particular, if the set W is conic quadratic
representable, which includes sets prescribed by intersec-
tions of lp norms, p being a rational number, the re-
sulting robust counterpart is also conic quadratic repre-
sentable. For the representation power of conic quadratic
constraints we refer the interested reader to [19]. Software
involving conic quadratic representable constraints includes
SDPT3 (http://www.math.nus.edu.sg/ mattohkc/sdpt3.html)
and MOSEK (http://www.mosek.com/).

Using characterizations of Y and Xf in (5) and (6),
constraints (14)-(17) can be restated as

Āx + B̄d + F̄vec(
[
Cp−Cm−]

)

+ max
Π+∈ΩN

W

[B̄ [
Cp+Cm+]

+
[Ḡ − Ḡ]]

Π+ ≤ 1s (31)

where s = aN +b and expressions of Ā, B̄, Ḡ, F̄ are given in
Appendix. Since W is an absolute set, (31) can be restated
as

Āx + B̄d + F̄vec(
[
Cp−Cm−]

)

+ max
Π+∈(ΩB

W
)N

[B̄ [
Cp+Cm+]

+
[Ḡ − Ḡ]]

Π+ ≤ 1s (32)

following result of Theorem 2 and known property that
δ(y|C) = δ(y|CH(C)). In addition, an absolute norm func-
tion ηw(·) can be found such that WN = {w+| ηw(w+) ≤
1}. Applying the result of Theorem 3, (32) has the following
deterministic equivalence





Āx + B̄d + F̄vec([Cp−Cm−]) + µ ≤ 1s

ZT ≥ B̄Cp+ + Ḡ
ZT ≥ B̄Cm+ − Ḡ
µ = [η∗w(Z1) · · · η∗w(Zs)]

T

(33)

The numerical computations of PN with the above con-
straints can be achieved for the various norm functions
following Remark 6.

V. FEASIBILITY AND STABILITY

The next theorem shows the the feasibility of the FH
optimization problem and the stability of the closed-loop
system under the closed-loop control law (20).

Theorem 4: Suppose x(0) ∈ XN and assumptions
(A1-A4) are satisfied. The closed-loop system using the
MPC control law (20) has the following properties: (i)
PN (d,C, x(t),Π−(t)) is feasible for all t ≥ 0; (ii)
(x(t), u(t)) ∈ Y for all t ≥ 0; (iii) x(t) → F∞ as t → ∞;
(iv) There exists a finite t̃ such that x(t) ∈ Xf and c(t) = 0
for all t ≥ t̃.

Proof: The proof follows essentially the arguments in
[10] and uses the notation “|t” for the variables at time instant
t. (i) Feasibility of PN (d,C, x(t),Π−(t)) follows standard
arguments. If (d∗,C∗) is the optimal control at time t, choose
the feasible control at time t + 1 by




d(i|t + 1) = d∗(i + 1|t), i ∈ ZN−2,

Ck(i, j|t + 1) = Ck∗(i + 1, j|t), i ∈ ZN−2, k ∈ {p,m}
d(N − 1|t + 1) = 0, Ck(N − 1, j|t + 1) = 0, k ∈ {p,m}

(34)

(ii) The result follows directly from (i).
(iii) If J∗N (t) is the optimal value of PN (d,C, x(t),Π−(t))
and let ĴN (t + 1) be the value of JN (d,C) where (d,C)
are defined by (34), then it can be verified that

J∗N (t)− J∗N (t + 1) ≥ J∗N (t)− ĴN (t + 1) = ‖γ(0|t)‖2Ψ
where ‖γ(·)‖2Ψ is the norm function used in (21).
Hence, {J∗N (t)} is a monotonically non-increasing sequence
bounded from below and it tends to a limit as t →∞. This
necessary means that γ(0|t) tends to zero as t →∞. Hence,
c(t) tends to zero as t → ∞. The system state under (20)
can be written as

x(t) = Φtx(0) +
t−1∑

i=0

Φt−1−iBc(i) +
t−1∑

i=0

Φt−1−iw(i) (35)

where Φ = A + BKf . The first term on the right of (35)
approaches zero as t → ∞ because of (A4). The second
term approaches zero following the fact that c(t) → 0 as
t → ∞. The last term corresponds to a point in the set
Ft(Kf ) := W + · · ·+ Φt−1W , which approaches F∞(Kf )
as t → ∞ under assumption (A4). Hence the stated result
follows.
(iv) Following property (iii) and assumption (A4), x(t) enters
Xf in some finite time, t̃, and thereafter the optimal (d,C) =
0 for all t ≥ t̃ from the optimality of PN (d,C, x(t),Π−(t)).

VI. CONCLUSION

A piecewise linear disturbance feedback parametrization is
proposed for MPC of constrained linear systems with distur-
bances. This parametrization includes disturbance feedback
law as a special case, as a consequence, better performance
could be expected. Although the resulting FH optimization
problem is not directly computable, its equivalent convex
reformulation can be found if the disturbance set is ab-
solute. Even if the disturbance set is not absolute, the
new parametrization can still result at a MPC controller
which is less conservative than the one derived using linear
disturbance feedback. Also, the closed-loop system has a
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clearly-characterized asymptotic behavior if certain cost is
minimized.
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APPENDIX

Let ϕ = (I − BK)−1, Ȳx = IN ⊗ Yx, Ȳu =

IN ⊗ Yu, Y =
[

Ȳx 0 Ȳu

0 G 0

]
, then the matrices ap-

pearing in (31) are Ā = Y [
(ϕA)T (KϕA)T

]T
, B̄ =

Y [
(ϕB)T (I +KϕB)T

]T
, Ḡ = Y

[
(ϕĜ)T (KϕĜ)T

]T

and

F̄ = Y((Π−)T ⊗ [
(ϕB)T (I +KϕB)T

]T )
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