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Abstract— Recently, standard single-task kernel methods
have been extended to the case of multi-task learning under
the framework of regularization. Experimental results have
shown that such an approach can perform much better than
single-task techniques, especially when few examples per task
are available. However, a possible drawback may be compu-
tational complexity. For instance, when using regularization
networks, complexity scales as the cube of the overall number
of data associated with all the tasks. In this paper, an efficient
computational scheme is derived for a widely applied class of
multi-task kernels. More precisely, a quadratic loss is assumed
and the multi-task kernel is the sum of a common term
and a task-specific one. The proposed algorithm performs on-
line learning recursively updating the estimates as new data
become available. The learning problem is formulated in a
Bayesian setting. The optimal estimates are obtained by solving
a sequence of subproblems which involve projection of random
variables onto suitable subspaces. The algorithm is tested on a
simulated data set.

Index Terms— multi-task learning; machine learning; kernel
methods; regularization; Bayesian estimation; Kalman filtering

I. INTRODUCTION

The usual regression learning problem has to do with

reconstructing a multi-dimensional real-valued function from

discrete and noisy samples [1]. An interesting extension is

the so-called multi-task learning problem in which several

multi-dimensional functions (tasks) are simultaneously esti-

mated. For the problem to be significant it is necessary to

assume that the tasks are related to each other in some way

so that measurements taken on a task are informative with

respect to the other ones.

Important examples of multi-task learning are encountered

in biomedicine when multiple experiments are performed

in subjects from a population [2]. In fact, similar patterns

are observed in individual responses so that data from

a subject can help reconstructing also the responses of

other individuals. In pharmacokinetics (PK) and pharma-

codynamics (PD) the joint analysis of several individual

curves is currently used and goes under the name of pop-

ulation analysis [3]. In this field, the adopted models are

parametric, e.g. compartmental ones, so that data depend

nonlinearly on the parameters [4], [5]. The development

of the NONMEM software traces back to the seventies

[6], [7] whereas more sophisticated approaches include also

Bayesian MCMC algorithms [8], [9]. Only recently, machine
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learning/nonparametric approaches have been proposed for

the population analysis of PK/PD data [10], [11], [12].

In the machine learning literature, the term multi-task learn-

ing was originally introduced in [13]. A series of works

have pointed out the performance improvement achievable

by using a multi-task approach instead of a single-task

one which learns the functions separately [14], [15]. A

Bayesian treatment was developed in [16] where bounds are

obtained on the amount of information needed to learn a

task when it is simultaneously learned with several other

tasks. More recently, in [17] a regularized kernel method

has been proposed that relies on the theory of vector-valued

Reproducing kernel Hilbert spaces [18].

Among the open research topics formulated in [17] there are

computational complexity and development of on-line multi-

task learning schemes. A drawback of proposed multi-task

learning schemes is in fact the number of operations required

to achieve the estimates that may be much larger than that

involved by independent learning of the single tasks. For

instance, when using regularization networks, complexity

scales with the cube of the overall number of examples. In

[17] it is stated that, when all the k tasks share the same n

inputs and the multi-task kernel has a suitable structure, the

complexity can be reduced to O(kn3). In fact, an O(kn3)
algorithm for regularization networks in the longitudinal case

can be found in [19]. On-line multi-task learning occurs

when a set of examples for a new task is made available in

real-time. There is an obvious interest for the development

of effective (recursive) learning algorithms also for this kind

of problem.

The aforementioned open issues are addressed in this paper

for a widely applied class of multi-task problems, charac-

terized by quadratic loss and kernels which are the sum of

a common term and a task-specific one. In particular, we

develop a computationally efficient algorithm that solves the

on-line multi-task learning problem. The proposed algorithm

recursively updates the estimates as new data become avail-

able either for a new or an existing task. No constraints are

posed on the location of the input samples. The algorithm

exploits a Bayesian reformulation of the problem and the

estimates are recursively updated by solving a sequence of

subproblems involving projections of random variables onto

suitable subspaces. A key technical lemma developed in [12]

is used to compute some of the projections. Remarkably

enough, part of the overall scheme can be interpreted as

a Kalman filter operating on a system whose dimension

grows over time. Efficient formulas for the computation of

confidence intervals are also worked out.
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The paper is so organized. In Section 2, a brief review on

the nonlinear multi-task learning problem is presented. In

Section 3, the multi-task learning problem is stated within

a Bayesian framework. In Section 4, some notation used in

the paper is introduced and some technical results useful for

development of the new computational scheme are derived.

In Section 5 and 6, an efficient algorithm which solves the

on-line multi-task learning problem is worked out, while in

Section 7 simulated data are used to test the computational

scheme. Conclusions then end the paper.

II. A BRIEF REVIEW OF KERNEL-BASED MULTI-TASK

LEARNING

We are given a set of k task functions f i : X 7→ ℜ where

X denotes a compact set in ℜd. Notice that it is assumed that

there is a common input space for all the tasks. We assume

that for the i-th task the following ni examples are available

(x1,i, y1,i), (x2,i, y2,i), ..., (xni,i, yni,i), (1)

Our aim is to jointly estimate all the unknown functions

fi starting from these examples. To do this, we start by

following the approach described in [17] where the vector-

valued function f = [f1, f2, . . . , fk] belongs to a Reproducing

Kernel Hilbert Space (RKHS) of vector-valued functions

defined on X . Letting W denote a suitable Hilbert space

with inner product < ., . >W , it can be shown that there

exist operators Θi : X 7→ W, i = 1, ..., k such that

fi(x) =< w, Θi(x) >W x ∈ X i = 1, 2, ..., k

In addition, W is isometrically isomorphic to an RKHS

whose (multi-task) reproducing kernel is given by

K((x, l), (s, q)) =< Θl(x),Θq(s) >W x, s ∈ X

where l = 1, ..., k and q = 1, ..., k. According to the

regularization approach, the vector w ∈ W can be obtained

by minimizing the single-task functional

J(w) =
k

∑

i=1

ni
∑

l=1

V (yl,i, fi(x)) + γ‖w‖2
W

In the above equation, V : ℜ2 7→ ℜ denotes a loss function

which penalizes solutions which are not able to well account

for the experimental evidence, while γ is the regularization

parameter which has to balance the training error and the so-

lution smoothness measured by ‖w‖2
W . Under rather general

conditions on V , the representer theorem can be exploited to

obtain the following expression for the minimizer of J (see

e.g. [20]):

f̃j(x) =
k

∑

i=1

ni
∑

l=1

cl,iK ((x, j), (xl,i, i)) x ∈ X, j = 1, ..., k

(2)

where {cl,i} are suitable scalars. In particular, if square errors

are used, i.e. V (a, b) = (a − b)2 for every a, b ∈ ℜ, the

solution is given by a regularization network whose weights

{cl,i} are the solution of the following linear system of

equations

k
∑

i=1

ni
∑

l=1

[K((xl,i, i), (xj,q, q)) + γδljδiq] cl,i = yj,q (3)

where q = 1, ..., k, j = 1, ..., nq and δij is the Kroenecker

delta.

III. PROBLEM FORMULATION IN A BAYESIAN SETTING

In the sequel, we use E[.] to denote the expectation

operator and vectors are column vectors, unless otherwise

specified. In addition, given two random vectors q and w,

we define cov[q, w] = E[(q − E[q])(w − E[w])T ] and

V ar[q] = E[(q−E[q])(q−E[q])T ]. We also use In to denote

the identity matrix of size n × n.

From now, we assume that the following relation holds

yj,i = fi(xj,i) + ǫj,i (4)

where {ǫj,i} is white Gaussian noise of variance σ2.

Definition 1: We define the following vectors

yi = [y1,i . . . yni,i]
T yk = [yT

1 . . . yT
k ]T

ǫi = [ǫ1,i . . . ǫni,i]
T xi = [x1,i . . . xni,i]

T

while xk corresponds to the vector whose components are

given by the elements (with no repetitions) of the set
⋃k

i=1 xi.

¥

Notice that the cardinality of yk, denoted by nyk , is
∑k

i=1 ni, while the cardinality of xk, denoted as nxk , can

be much smaller than nyk .

The following proposition relies upon the duality between

Gaussian processes and RKHS, e.g. see [21]. It provides

a link between the solution of a regularization network

associated with a multi-task kernel and Bayesian estimation

of Gaussian random fields.

Proposition 2: Assume that {fi} are zero-mean Gaussian

random fields with covariances defined by

cov (fi(x), fq(s)) = K((x, i), (s, q)) x, s ∈ X

where i = 1, ..., k and q = 1, ..., k. Let also (4) hold

where {ǫj,i} are independent of {fi}. Then, for j = 1, ..., k,

the minimum variance estimate of fj conditioned on yk is

defined by (2,3) once γ is set to σ2.

¥

The following assumption introduces the specific class of

multi-task kernels which will be the focus of the paper.

Assumption 3: For each i and x ∈ X , we have

fi(x) = f̄(x) + f̂i(x)

4518



where f̄ and {f̂i} are zero-mean Gaussian random fields.

We also assume that {ǫj,i}, f̄ and {f̂i} are all mutually

independent.

¥

Assumption 3 extends the model described in Section

3.1.1 in [17] to nonlinear multi-task kernels (in a stochastic

setting). In particular, a kernel is defined for each task

which is a convex combination of two kernels. The first

one, if used alone, would correspond to learning independent

tasks and, in our Bayesian framework, is associated with

the auto-covariance of f̂i. The second one, if used alone,

would correspond to assuming that all tasks are actually the

same and is defined by the auto-covariance of f̄ . The use

of the convex combination of these two kernels amounts to

assuming that each task is given by the sum of an average

function and an individual shift specific for each task, see

e.g. [12].

When examples from k tasks are available and Proposition 2

is exploited, it would seem that the computational complexity

for obtaining the optimal function estimates scales as the

cube of nyk which is the cost of solving (3). The rest of the

paper is devoted to derive a more efficient numerical scheme

that exploits the specific structure of the problem coming

from Assumption 3. In addition, the goal is to perform

estimation in an online manner, as formalized below.

Problem 4: Fix k. For arbitrary x ∈ X and integer j,

compute efficiently E[fj(x)|yk]. Further, suppose that a new

set of examples relative to task k + 1 becomes available.

Then, compute efficiently E[fj(x)|yk+1].

IV. PRELIMINARY RESULTS

We start by providing some new notation that will be

used in the sequel.

Definition 5: Let f̄k be the vector whose components are

the elements of the set {f̄(x), x ∈ xk}. The components

of the vectors f̄k and f̂k are instead defined by the sets

{f̄(x), x ∈ xk} and {f̂k(x), x ∈ xk}, respectively.

¥

It comes from the definition above that

yk = f̄k + f̂k + ǫk (5)

Notice also that, for a suitable matrix F k and random vector

ǫ̂k, with ǫ̂k independent of f̄ , we can write

yk = F kf̄k + ǫ̂k ǫ̂k ⊥ f̄ (6)

The following three lemmas will prove useful in the

following.

Lemma 6: We have

a) E
[

f̄(x)|f̄k, yk
]

= E
[

f̄(x)|f̄k
]

∀x ∈ X , and in

particular E
[

f̄k+1|f̄k, yk
]

= E
[

f̄k+1|f̄k
]

b) E
[

f̂j(x)|f̄j , y
k
]

= E
[

f̂j(x)|f̄j , yj

]

¥

Lemma 7: We have

V ar
[

yk+1|y
k
]

= V ar
[

f̄k+1|y
k
]

+ V ar
[

f̂k+1

]

+ V ar [ǫk+1]

cov
[

f̄k+1, yk+1|y
k
]

= cov
[

f̄k+1, f̄k+1|y
k
]

E
[

yk+1|y
k
]

= E
[

f̄k+1|y
k
]

Proof: It suffices to exploit (5), replacing yk+1 with

f̄k+1 + f̂k+1 + ǫk+1, and recall that the latter three terms are

zero-mean and mutually independent.

In the equations below, we use N(µ,Σ) to denote the

multinormal density with mean µ and covariance Σ. The

following lemma is an immediate extension of that reported

in Appendix of [12]. We just stress that, differently from

the statement in [12], the symbol z here denotes a vector (in

place of a scalar) and the weaker condition V > 0 (in place

of Σ > 0) is invoked. The proof remains however identical.

Lemma 8: Let y, v and η be random vectors and F be a

matrix such that

y = Fη + v v ∼ N (0, Σv) Σv > 0

Let also
[

z

η

]

∼ N (0,Σ) Σ =

[

U Γ
ΓT V

]

v ⊥

[

z

η

]

V ar [z] = U V ar [η] = V V > 0

Then

V ar [z|y] = V ar [z|η] + V ar [E[z|η]|y]

where

V ar [z|η] = U − ΓV −1ΓT

V ar [E[z|η]|y] = ΓV −1V ar [η|y]V −1ΓT

V. RECURSIVE COMPUTATION OF THE POSTERIOR MEAN

AND AUTOCOVARIANCE OF f̄k

In this section we derive the recursive update formula for

E
[

f̄k|yk
]

and V ar
[

f̄k|yk
]

, as the number k of tasks and

corresponding examples increase. As it will be clear in the

sequel, these are the two key quantities to be propagated

over time in order to compute efficiently E
[

fj(x)|yk
]

(for

arbitrary j and x ∈ X). In particular, our numerical scheme

consists of the three steps listed below.

1) Initialization. This amounts to determine E
[

f̄1|y1

]

and V ar
[

f̄1|y1

]

2) Update related to possibly new inputs loca-

tions. This consists of extending E
[

f̄k|yk
]

and

V ar
[

f̄k|yk
]

to xk+1, i.e. for known E
[

f̄k|yk
]

and

V ar
[

f̄k|yk
]

one has to compute E
[

f̄k+1|yk
]

and

V ar
[

f̄k+1|yk
]

3) Measurement update. This consists of determining

E
[

f̄k+1|yk+1
]

and V ar
[

f̄k+1|yk+1
]

as a function

of E
[

f̄k+1|yk
]

and V ar
[

f̄k+1|yk
]
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A. Initialization

The following proposition solves Step 1 above.

Proposition 9: Let

A = V ar
[

f̄1

]

+ V ar
[

f̂1

]

+ V ar [ǫ1]

Then, we have

E
[

f̄1|y1

]

= V ar
[

f̄1

]

A−1y1

V ar
[

f̄1|y1

]

= V ar
[

f̄1

]

− V ar
[

f̄1

]

A−1V ar
[

f̄1

]

Proof: Exploiting well known results on estimation of

joint Gaussian vectors, see e.g. [22], [23], one has

E
[

f̄1|y1

]

= cov
[

f̄1, y1

]

(V ar [y1])
−1

y1

V ar
[

f̄1|y1

]

= V ar
[

f̄1

]

− cov
[

f̄1, y1

]

(V ar [y1])
−1

× cov
[

f̄1, y1

]T

Using the equation y1 = f̄1 + f̂1 + ǫ1 and the independence

assumptions, one immediately obtains

cov
[

f̄1, y1

]

= V ar
[

f̄1

]

V ar [y1] = V ar
[

f̄1

]

+ V ar
[

f̂1

]

+ V ar [ǫ1]

which completes the proof.

B. Update for handling new input locations

The following proposition provides the solution of Step 2.

It is worth stressing that the numerical procedure described

below is different from the predictor step in a Kalman filter

since the dimension of the state (i.e. the number of distinct

input locations up to the first k tasks) can increase. This

nontrivial issue will be handled by means of the projection

Lemma 8.

Proposition 10: Let ζ be a vector such that f̄k+1 =
[ζT (f̄k)T ]T and define

Hk =

[

cov
[

ζ, f̄k
]

V ar
[

f̄k
]

−1

Ink

]

Then, we have

E
[

f̄k+1|yk
]

= HkE
[

f̄k|yk
]

(7)

V ar
[

f̄k+1|yk
]

= V ar
[

f̄k+1
]

− Hkcov
[

f̄k+1, f̄k
]T

+ HkV ar
[

f̄k|yk
]

HT
k (8)

Proof: To derive (7), we first project f̄k+1 first onto

the space generated by f̄k and yk and then onto yk, i.e. we

write

E
[

f̄k+1|yk
]

= E
[

E
[

f̄k+1|f̄k, yk
]

|yk
]

Using Lemma 6 (point a), we obtain

E
[

f̄k+1|f̄k, yk
]

= E
[

f̄k+1|f̄k
]

= cov
[

f̄k+1, f̄k
] (

V ar
[

f̄k
])

−1
f̄k

Projecting the result onto yk and observing that

Hk = cov
[

f̄k+1, f̄k
] (

V ar
[

f̄k
])

−1

we also obtain

E
[

E
[

f̄k+1|f̄k, yk
]

|yk
]

= E
[

Hkf̄k|yk
]

= HkE
[

f̄k|yk
]

which proves (7).

To obtain (8), recall from (6) that yk = F kf̄k + ǫ̂k with

ǫ̂k ⊥ f̄k+1. Then, (8) is obtained from Lemma 8, with the

following assignments

z = f̄k+1 η = f̄k v = ǫ̂k

U = V ar
[

f̄k+1
]

V = V ar
[

f̄k
]

Γ = cov
[

f̄k+1, f̄k
]

C. Measurement update

The following result whose proof is omitted for reasons

of space performs the measurement update required by Step

3.

Proposition 11: Let

Ak = V ar
[

f̄k|y
k−1

]

+ V ar
[

f̂k

]

+ V ar [ǫk]

Then, we have

E
[

f̄k+1|yk+1
]

= E
[

f̄k+1|yk
]

+ cov
[

f̄k+1, f̄k+1|y
k
]

× A−1
k+1

(

yk+1 − E
[

f̄k+1|y
k
])

(9)

V ar
[

f̄k+1|yk+1
]

= V ar
[

f̄k+1|yk
]

−cov
[

f̄k+1, f̄k+1|y
k
]

A−1
k+1cov

[

f̄k+1, f̄k+1|y
k
]T

(10)

VI. SOLUTION OF THE ONLINE MULTI-TASK LEARNING

PROBLEM

The following proposition is the main result of the paper.

It shows that E
[

fj(x)|yk
]

admits a representation in terms

of a regularization network whose (nxk + nj)-dimensional

weight vector can be efficiently updated online as the

number of tasks and associated examples increase over

time. In particular, given k tasks, the complexity of the

proposed algorithm is O(kn3
xk). Recall that the number of

distinct input locations nxk may well be much smaller than

the overall number of examples nyk .

Proposition 12: Let

f̄k =
[

f̄k
1 , f̄k

2 , ..., f̄k
n

xk

]T

f̂j =
[

f̂1,j , f̂2,j , ..., f̂nj ,j

]T

Then, it holds that

E
[

fj(x)|yk
]

=

n
xk

∑

i=1

aicov
[

f̄(x), f̄k
i

]

+

nj
∑

i=1

bicov
[

f̂(x), f̂i,j

]

where, letting

a = [a1, ..., an
xk

]T b = [b1, ..., bnj
]T
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the weights of the regularization network are defined by

a =
(

V ar
[

f̄k
])

−1
E

[

f̄k|yk
]

b =
(

V ar
[

f̂j

]

+ V ar [ǫj ]
)

−1
(

yj − E
[

f̄j |y
k
])

and can be efficiently updated by means of Propositions 10

and 11.

Proof: We have

E
[

fj(x)|yk
]

= E
[

f̄(x)|yk
]

+ E
[

f̂j(x)|yk
]

(11)

As far as the first term on the right of (11) is concerned,

following the same arguments used in the first part of the

proof of Proposition 10, one obtains

E
[

f̄(x)|yk
]

= cov
[

f̄(x), f̄k
] (

V ar
[

f̄k
])

−1
E

[

f̄k|yk
]

from which the expression for a comes immediately.

In order to compute E
[

f̂j(x)|yk
]

, we still project twice. In

particular, we first project f̂j(x) onto the space spanned by

f̄j and yk and then onto yk, i.e. it holds that

E
[

f̂j(x)|yk
]

= E
[

E
[

f̂j(x)|yk, f̄j

]

|yk
]

Using Lemma 6 (point b) and recalling that yj = f̄j+f̂j+ǫj ,

one obtains

E
[

f̂j(x)|yk, f̄j

]

= E
[

f̂j(x)|yj , f̄j

]

= cov
[

f̂j(x), f̂j

]

×
(

V ar
[

f̂j

]

+ V ar [ǫj ]
)

−1
(

yj − f̄j

)

Projecting
(

yj − f̄j

)

onto yk, we have

E
[

f̂j(x)|yk
]

= cov
[

f̂j(x), f̂j

] (

V ar
[

f̂j

]

+ V ar [ǫj ]
)

−1

×
(

yj − E
[

f̄j |y
k
])

which completes the proof.

A. Computation of confidence intervals

Assume that data yk relative to the first k tasks have been

already processed and that V ar
[

f̄l|y
k
]

for l = 1, 2, ..., k

has been obtained by using Propositions 10 and 11. Now,

we consider the problem of computing the posterior variance

V ar
[

fl(x)|yk
]

for any x ∈ X and integer l, so as to obtain

confidence intervals for fl(x).
To this aim, it is useful to define

τ̄l =

[

f̄l

f̄l(x)

]

τ̂l =

[

f̂l

f̂l(x)

]

τl = τ̄l + τ̂l

Let also P be a matrix such that

yl = P τ̄l + f̂l + ǫl = Pτl + ǫl

Further, compute V ar
[

τ̄l|y
k
]

by means of Lemma 8. The

solution of the problem is then provided by the following

proposition, whose proof is omitted for reasons of space.

Proposition 13: Define Ml as

(

(

V ar
[

τ̄l|y
k
])

−1
− PT

(

V ar
[

f̂l

]

+ V ar [ǫl]
)

−1

P

)

−1

+V ar [τ̂l]

Then, it holds that

V ar
[

τl|y
k
]

= Ml − MlP
T

(

PMlP
T + V ar [ǫl]

)

−1
PMl

VII. NUMERICAL EXAMPLE

We consider the problem of learning online 20 mono-

dimensional tasks. Let X = [0, 10] and let also the auto-

covariances of f̄ and f̂i be given by Gaussian kernels. To be

specific

cov
[

f̄(q), f̄(w)]
)

= e−(q−w)2

cov
[

f̂i(q), f̂i(w)]
)

= e−( q−w

0.4 )
2

i = 1, 2, ..., 20

We assume that the vectors xi of input locations contain a

common subset of 100 input locations which are distributed

uniformly on X . Other input values are randomly chosen

and then added to the inputs locations so as to obtain

ni = 120 for i ∈ {1, 4, 6, 9, 11, 14, 16, 19}, ni = 110
for i ∈ {2, 5, 7, 10, 12, 15, 17, 20} and ni = 140 for

i ∈ {3, 8, 13, 18}. Estimates of the task functions have to

be computed starting from measurements corrupted by a

white Gaussian noise with a constant standard deviation

equal to 0.2. Notice that in this case ny10 = 2400 while

nx20 = 500. Thus, the standard algorithm would obtain the

regularization network weights by inverting a large matrix

of size 2400 × 2400, while using our method the solution

can be obtained by inverting matrices whose dimensions are

always less than 500 × 500.

In Fig. 1, we display the true function f̄ (thick line) and its

estimate E
[

f̄ |yk
]

(solid line), together with 95% confidence

intervals (dashed lines), for increasing values of k. It is seen

that the estimator exploits data relative to new incoming

tasks in order to improve the quality of the average curve

estimate and reduce the uncertainty around it. Finally, in the

top and bottom panels of Fig. 2, we also display the true

task functions f3 and f5 (thick line), their noisy samples

(circles), and the corresponding optimal estimates (solid

line).

VIII. CONCLUSIONS

Often, it is not possible to collect a large number of

examples in order to learn accurately a function. When

several related functions have to be learned simultaneously

the use of multi-task learning in place of standard single-task

methods may be of great value. However, the computational

complexity may significantly increase. For example, for

regularized kernel methods with square loss functions (i.e.

regularization networks), the number of operations scales

with the cube of the overall number of examples.

Recent work in the literature has proposed effective learning
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Fig. 1. True average f̄ (thick line) and optimal estimates for increasing
values of k (thin line) with 95% confidence intervals (dashed lines)
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Fig. 2. True fi (thick line), noisy samples (circles) and optimal estimates
(thin line) for task #3 (top panel) and task #5 (bottom panel)

methods when the multi-task kernel is a suitable combination

of two kernels [12], [19]. In this paper, a new efficient

algorithm has been developed in a Bayesian setting. In

particular, the proposed scheme, exploiting the existence

of common input locations among the tasks, reduces the

size of the matrices which have to be inverted to obtain

the estimates without assuming as in [19] that all tasks

share the same input locations. Our approach reconstructs

the task functions by solving a sequence of subproblems

which involve projections of random variables onto suitable

subspaces spanned by the data. This leads to an incremental

on-line algorithm which updates the regularization network

weights as new task examples become available over time.

Efficient formulas for the computation of confidence intervals

have also been worked out.
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