
  

  

Abstract—This paper concerns the problem of robust stability 
analysis and control synthesis for a polytopic system with 
time-varying delays via parameter-dependent Lyapunov 
functions. By a relaxation approach with slack matrices and a 
descriptor model transformation, a new robust delay dependent 
stability criterion is expressed as a set of linear matrix 
inequalities (LMIs) with less computational burden. This 
criterion can be employed for robust controller synthesis. The 
obtained stabilizability criterion is applied to design a flight 
controller for aircraft dynamic systems with multiple operating 
points. The simulation results illustrate the effectiveness of the 
proposed approach. 

I. INTRODUCTION 
URING the past years, the robust stability analysis of 
linear systems subject to time-invariant uncertainties has 

attracted considerable attention in robust control literature. 
For convex polytopic uncertainty the Edge theorem and 
related works provide stability conditions. Undoubtedly, the 
Lyapunov theory is one of the main approaches to deal with 
such systems. However, the quadratic stability, which uses a 
single or parameter-independent Lyapunov function for 
testing the stability over the whole uncertain domain, may lead 
to conservative results in the case where the uncertain 
parameters are time-invariant. Motivated by this fact, 
Lyapunov functions depending on the uncertain parameters 
have been proposed to reduce quadratic stability conservatism. 
Sufficient LMI conditions for the existence of an affine 
parameter-dependent Lyapunov function have been 
introduced in [1] for affine parameter dependence as well as in 
[2-4] for polytopic uncertainty. In [2], sufficient conditions for 
the robust stability of a polytopic system are proposed based 
on a set of constraints which make the derivative of a 
Lyapunov function a convex function with respect to the 
uncertain vector. The auxiliary constraints, however, may 
produce conservativeness. In [3], by replacing the unity 
matrix with a positive definite matrix a less conservative result 
is presented as the modification of that of [2]. But 
unfortunately, the modified constraints give rise to 
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conservativeness likewise. Besides, the results of [1-3] are not 
applicable for robust controller synthesis, which means that 
for each vertex there is a product between the vertex matrix 
and corresponding positive definite matrix and thus the 
control gain can not be obtained. By introducing a slack 
variable, [4] recently established a new and less conservative 
condition, in terms of LMIs, for robust stability of linear 
systems with parametric uncertainties. Beside the reduced 
conservatism, the conditions do not involve any product of the 
matrices in the parameter dependent Lyapunov function and 
the system matrices. As such, this robust stability condition 
can be adapted for controller synthesis. 

Time-delay is a source of performance degradation and 
instability in many cases. Therefore, the stability problem of 
time-delay systems is of theoretical and practical importance. 
Several results on robust control of time-delay systems subject 
to polytopic uncertainties have been reported in [5]-[9]. In [5], 
the authors examine the problems of robust stabilization and 
H∞ control for uncertainty systems with a constant time delay. 
The obtained results can be easily extended to polytopic 
systems. Although simulation examples are presented to 
demonstrate the potentials of the proposed methods, the result 
derived remains conservative. In [6]-[8], the problems of 
robust stability and robust stabilization for linear systems with 
a constant time-delay and subject to convex polytopic 
uncertainty are considered based on parameter-dependent 
Lyapunov functionals. However, the proposed criterion 
depends on extra and positive scalar parameters, which 
increases computational burden and produces 
conservativeness. In [9], a sufficient condition is proposed for 
the stability of polytopic systems, which ensures a larger 
upper bound for time-varying delays affecting the state vector. 
But unfortunately, a nonlinear matrix inequality is obtained 
when this condition is employed for controller synthesis. 
Consequently, extra scalar parameters that must be positive 
are introduced to secure a stabilizability condition in terms of 
LMIs, which causes conservativeness likewise. Recently, a 
descriptor system approach was proposed for time-delayed 
systems. It reduced significantly the over-design compared to 
the traditional methods and fewer terms needed to be bounded 
in the derivation[10]-[11]. This approach was also applicable for 
polytopic systems. 

So, in this paper, the problems of robust stability analysis 
and state feedback synthesis for linear systems with polytopic 
type of uncertainties and time-varying delays are investigated 
by means of parameter-dependent Lyapunov functions. With 
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the introduction of a slack variable, a descriptor system 
approach is adopted to obtain a new robust delay-dependent 
stability criterion in terms of LMIs. It is shown that this 
criterion includes the delay-dependent/rate-independent and 
delay-independent/rate-dependent criteria as special cases and 
reduces the computational burden involved in solving LMIs. 
In the derivative of the Lyapunov functional, with the 

introduction of the augmented vector 
TT T( ) ( ) ( )t x t x tξ ⎡ ⎤⎣ ⎦ , 

2 T
2( ) ( ) ( )h x t P x tλ  is formulated as T

2
2

0 0
( ) ( )

0 ( )
t t

h P
ξ ξ

λ
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

which avoids replacing ( )x t  in the term 2 T
2( ) ( ) ( )h x t P x tλ  

with the state equation. In consequence, the Lyapunov matrix 
2P , which handles time delay, is not involved in any product 

terms with the system matrices A  and dA . Then the criterion 
can be readily extended to provide a criterion for robust 
stabilization via state feedback. Furthermore, the results are 
applied to the longitudinal dynamics in the flight envelope 
containing different operating points. Finally, the 
performance of the obtained controller is presented based on 
simulation results.  

II. ROBUST STABILITY 
Consider the following system with a time-varying delay 

( ) ( ) ( ) ( ) ( ( ))
( ) ( ), [ ,0]

dx t A x t A x t t
x t t t h

λ λ τ
φ

= + −
= ∈ −

,                (1) 

where ( ) nx t R∈  is the state vector and the initial vector φ  is 

a continuously differentiable function from [ ,0]h−  to nR . 
We assume that ( )tτ  is a differentiable function, satisfying 
for all 0t ≥  

0 ( ) , ( ) 1t h t dτ τ≤ ≤ ≤ < .                   (2a,b) 
Suppose that the system matrices ( )A λ  and ( )dA λ  are not 
precisely known, but belong to a polytopic uncertainties 
domain 1Ω . In this case, system matrices ( ( ), ( ))dA Aλ λ  in 
the uncertainties domain 1Ω  can be written as a convex 
combination of the polytope vertices ( , )i diA A , 1, ,i N= , 
that is, 

1
1

( ( ), ( )) ( , )
N

d i i di
i

A A A Aλ λ λ
=

= ∈ Ω∑ ,                (3) 

where T
1[ , , ] N

N Rλ λ λ ∈  denotes a vector of uncertain 
and time-invariant real parameters satisfying  

1
1, 0

N

i i
i

λ λ
=

= ≥∑ .                              (4) 

For the convenience of proof, we first introduce the 
following inequality which will be used in the proof of our 
results. 
Lemma 1 [12]. For any constant matrix 0P >  and 
differentiable vector function ( )x t  with appropriate 
dimensions, we have  

T

( ) ( )

[ ( ) ] [ ( ) ]
t t

t t t t

x s ds P x s ds
τ τ− −
∫ ∫                                           

T T

( )

( ) ( ) ( ) ( ) ( )
t t

t t t h

t x s P x s ds h x s P x s ds
τ

τ
− −

≤ ⋅ ≤ ⋅∫ ∫ .      (5) 

We represent system (1) in the equivalent descriptor form 
( ) ( )
( ) ( ) ( ) ( ) ( ( ))d

x t t
t A x t A x t t

η
η λ λ τ

=
= + −

.                (6) 

Now, the following theorem presents a new 
delay-dependent and rate-dependent robust stability result. 
Theorem 1. System (1) with parameter uncertainty (3) and 
time-varying delay ( )tτ satisfying (2) is robustly 
asymptotically stable if there exist symmetric positive definite 
matrices 0iP , 1iP  2iP  and a matrix 3P  such that 

 

T T T
11 0 3 3 3 2

T 2 T
3 3 2 3

1 2

* 0
* *

i i di i

i di

i i

P P A P P A P
P P h P P A

dP P

⎡ ⎤Δ − + +
⎢ ⎥− − + <⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 

1, ,i N=                                                             (7) 

where T T
11 3 3 1 2i i i iP A A P P PΔ = + + − , 1d d= − . 

Proof: Define the following Lyapunov–Krasovskii functional 

T T
0 1

( )

( , ) ( ) ( ) ( ) ( ) ( ) ( )
t

t t

V t x t P x t x s P x s ds
τ

λ λ λ
−

= + ∫  

  T
2( ( )) ( ) ( ) ( )

t

t h

h s t h x s P x s dsλ
−

+ ⋅ − −∫ ,        (8) 

where 

0 0
1

( )
N

i i
i

P Pλ λ
=

=∑ , 1 1
1

( )
N

i i
i

P Pλ λ
=

=∑ , 2 2
1

( )
N

i i
i

P Pλ λ
=

=∑ , (9) 

and 0 0iP > , 1 0iP > , 2 0iP >  are matrices to be determined. 
Then, along the solution of system (1), the time derivative of 

( , )V t λ  is given by 
T T

0 0( , ) ( ) ( ) ( ) ( ) ( ) ( )V t x t P x t x t P x tλ λ λ= +  
T

1(1 ( )) ( ( )) ( ) ( ( ))t x t t P x t tτ τ λ τ− − − −  

                    T 2 T
1 2( ) ( ) ( ) ( ) ( ) ( )x t P x t h x t P x tλ λ+ +  

     T
2( ) ( ) ( )

t

t h

h x s P x s dsλ
−

− ∫ .                      (10) 

From (10), lemma 1 and Leibniz–Newton formula, we have  
T T

0 0( , ) ( ) ( ) ( ) ( ) ( ) ( )V t x t P x t x t P x tλ λ λ≤ +  
T

1(1 ) ( ( )) ( ) ( ( ))d x t t P x t tτ λ τ− − − −  
T 2 T

1 2( ) ( ) ( ) ( ) ( ) ( )x t P x t h x t P x tλ λ+ +  

T
2

( ) ( )

[ ( ) ] ( ) [ ( ) ]
t t

t t t t

x s ds P x s ds
τ τ

λ
− −

− ∫ ∫                              

T T
0 3

T
3

( ) ( )( )
( ) 00

x t x tP P
t P

λ
η

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

 

T
0

3 3

( ) 0( ) ( )
0 ( )

Px t x t
P P t

λ
η

⎡ ⎤⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦
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T T
1 2 3

T
3

( ) ( )( ) ( )
( ) 00

x t x tP P P
t P

λ λ
η

⎡ ⎤−⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

 

T
1 2( ( ))( ( ) ( ))x t t dP Pτ λ λ− − +                                 

T

2
2

0 0( )
( ( ))

0 ( )( )
x t

x t t
h Pt

τ
λη

⎡ ⎤⎡ ⎤
× − + ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
                       

T
2( ) ( ) ( )

( ( ))
( ) ( ) 0

x t x t P
x t t

t t
λ

τ
η η
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

× + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                     

[ ]T
2

( )
( ( )) ( ) 0

( )
x t

x t t P
t

τ λ
η
⎡ ⎤

+ − ⎢ ⎥
⎣ ⎦

.                     (11) 

Note that one can obtain  

( ) 1 0 ( )
0 0 0 ( )

x t x t
tη

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
,                      (12) 

 
( ) 0 1 ( )

( ) ( ) ( ) ( ) 1 ( )
t x t

t A x t A t
η

η λ λ η
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
.         (13) 

Substituting (6) into (11) and from (12) and (13), we obtain 

T
T 0 3

T
3

( )( )
( , ) ( )

( ) ( ) ( )0
tP P

V t t
t A x tP

ηλλ ξ
η λ

⎡ ⎤ ⎡ ⎤≤ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦⎣ ⎦
 

T
T 0 3

T
3

0( )
( )

( ) ( ( ))0 d

P P
t

A x t tP
λξ

λ τ
⎡ ⎤ ⎡ ⎤

+ ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦
 

T
0

3 3

( ) 0( )
( )

( ) ( ) ( )
Pt

t
P Pt A x t

λη
ξ

η λ
⎡ ⎤⎡ ⎤

+ ⎢ ⎥⎢ ⎥− +⎣ ⎦ ⎣ ⎦
 

T
0

3 3

0 ( ) 0
( )

( ) ( ( ))d

P
t

A x t t P P
λ

ξ
λ τ

⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

1 2T ( ) ( ) 0
( ) ( )

0 0
P P

t t
λ λ

ξ ξ
−⎡ ⎤

+ ⎢ ⎥
⎣ ⎦

 

T
1 2( ( ))( ( ) ( ))x t t dP Pτ λ λ− − +  

T
2

2

0 0
( ( )) ( ) ( )

0 ( )
x t t t t

h P
τ ξ ξ

λ
⎡ ⎤

× − + ⎢ ⎥
⎣ ⎦

 

2T ( )
( ) ( ( ))

0
P

t x t t
λ

ξ τ⎡ ⎤
+ −⎢ ⎥

⎣ ⎦
 

[ ]T
2( ( )) ( ) 0 ( )x t t P tτ λ ξ+ −  

T T
T 3 0 3

T T
3 3

( ) ( )
( ) ( )

( )
P A P P

t t
P A P

λ λξ ξ
λ

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

 

T
T 3

T
3

( )
( ) ( ( ))

( )
d

d

P A
t x t t

P A
λξ τ
λ

⎡ ⎤
+ −⎢ ⎥

⎣ ⎦
 

T T
T 3 3

0 3 3

( ) ( )
( ) ( )

( )
A P A P

t t
P P P

λ λξ ξ
λ

⎡ ⎤
+ ⎢ ⎥− −⎣ ⎦

 

TT
T 3

T
3

( )
( ( )) ( )

( )
d

d

P A
x t t t

P A
λτ ξ
λ

⎡ ⎤
+ − ⎢ ⎥

⎣ ⎦
 

1 2T
2

2

( ) ( ) 0
( ) ( )

0 ( )
P P

t t
h P

λ λ
ξ ξ

λ
−⎡ ⎤

+ ⎢ ⎥
⎣ ⎦

             

T
1 2( ( ))( ( ) ( ))x t t dP Pτ λ λ− − +  

2T ( )
( ( )) ( ) ( ( ))

0
P

x t t t x t t
λ

τ ξ τ⎡ ⎤
× − + −⎢ ⎥

⎣ ⎦
              

[ ]T
2( ( )) ( ) 0 ( )x t t P tτ λ ξ+ −                             

T( ) ( )
( )

( ( )) ( ( ))
t t

x t t x t t
ξ ξ

λ
τ τ

⎡ ⎤ ⎡ ⎤
= Ξ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

,               (14) 

where  
TT T( ) ( ) ( )t x t tξ η⎡ ⎤⎣ ⎦ , 

T
3 2

T
3

1 2

( ) ( )
( )

( ) ( )
* ( ) ( )

d

d

P A P
P A

dP P

λ λλ
λ λ

λ λ

⎡ ⎤⎡ ⎤+
Γ⎢ ⎥⎢ ⎥Ξ = ⎣ ⎦⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 

T T
T T3 3

0 3 3
1 2

T 2
3 3 2

( ) ( )
( ) ( )

( ) ( ) ( )
* ( )

P A A P
P P A P

P P
P P h P

λ λ
λ λ

λ λ λ
λ

⎡ ⎤+
− +⎢ ⎥Γ = + −⎢ ⎥

⎢ ⎥− − +⎣ ⎦

.  (15) 

According to (7) and (15), we have 
T

3 2
T

3
1

1 2

( ) 0

*

di iN
i

i di
i

i i

P A P
P A

dP P

λ λ
=

⎡ ⎤⎡ ⎤+
Γ⎢ ⎥⎢ ⎥Ξ = <⎣ ⎦⎢ ⎥
⎢ ⎥− −⎣ ⎦

∑ ,            (16) 

where  
T T

T T3 i 3
0 3 i 3

1 2
T 2

3 3 2*

i
i

i i i

i

P A A P
P P A P

P P
P P h P

⎡ ⎤+
− +⎢ ⎥Γ = + −⎢ ⎥

⎢ ⎥− − +⎣ ⎦

.           (17) 

From (14) and (16), we get ( , ) 0V t λ < . Then, according to 
the Lyapunov theory, system (1) with parameter uncertainty (3) 
and time-varying delay ( )tτ satisfying (2) is robustly 
asymptotically stable for all uncertain parameter λ . This 
proof is completed. 

Remark 1. In Theorem 1, with the introduction of the slack 
variable 3P  and the corresponding augmented vector 

TT T( ) ( ) ( )t x t tξ η⎡ ⎤⎣ ⎦ , the delay-dependent stability 

criterion (7) does not involve the product between the 
Lyapunov matrix 0P  and the system dynamic matrices A  and 

dA . Hence, for stability criterion (7), 0iP  are not required to 
be the same, but the slack variables 3P  is. So, it is expected to 
lead to a less conservative stability condition, as there are no 
other constraints imposed on 3P . Besides, the augmented 

vector can be used to formulate 2 T
2( ) ( ) ( )h x t P x tλ  as 

T
2

2

0 0
( ) ( )

0 ( )
t t

h P
ξ ξ

λ
⎡ ⎤
⎢ ⎥
⎣ ⎦

, which avoids replacing ( )x t  in the 

term 2 T
2( ) ( ) ( )h x t P x tλ  with the state equation and so 

eliminates the product between the Lyapunov matrix 2P  and 
the system matrices A  and dA . 

Remark 2. A stability criterion was also given in Theorem 1 
of [9]. This criterion, however, requires more matrix variables. 
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Consequently, the dimension of LMI (12a) in [9] becomes 
higher than that of (7) in this paper (the corresponding 
dimensions of (12a), (7) are 7n  and 3n , respectively). The 
computational burden is increased accordingly, which can be 
verified through the simulation analysis. 

It is worth mentioning that with the introduction of another 
slack variable 4P , Theorem 1 can be extended to a stability 
condition in a more general case. That is, by replacing the 

transformation matrix 
T

0 3
T

3

( )
0

P P
P

λ⎡ ⎤
⎢ ⎥
⎣ ⎦

 with 
T

0 3
T

4

( )
0

P P
P

λ⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

Theorem 1 will become in the following form.  
Corollary 1: System (1) with parameter uncertainty (3) and 
time-varying delay ( )tτ satisfying (2) is robustly 
asymptotically stable if there exist symmetric positive definite 
matrices 0iP , 1iP  2iP  and matrices 3P , 4P   such that 

T T T
11 0 3 4 3 2

T 2 T
4 4 2 4

1 2

* 0
* *

i i di i

i di

i i

P P A P P A P
P P h P P A

dP P

⎡ ⎤Δ − + +
⎢ ⎥− − + <⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 1, ,i N= , 

where T T
11 3 3 1 2i i i iP A A P P PΔ = + + − , 1d d= − . 

However, this stability condition is not applicable for the 
design of robust controller. The reason is that matrices by 
which the system matrix A  is multiplied are not the same one 
such that a single and fixed gain matrix can not be gotten. 

By following similar lines as in the proof of Theorem 1, we 
can obtain the following delay-dependent/rate-independent 
robust stability condition, as well as a delay-independent 
robust stability condition. 
Corollary 2: Polytopic system (1) with ( )tτ satisfying (2a) is 
robustly asymptotically stable if there exist symmetric 
positive definite matrices 0iP , 2iP  and a matrix 3P  such that 

T T T
11 0 3 3 3 2

T 2 T
3 3 2 3

2

* 0
* *

i i di i

i di

i

P P A P P A P
P P h P P A

P

⎡ ⎤Δ − + +
⎢ ⎥− − + <⎢ ⎥
⎢ ⎥−⎣ ⎦

, 1, ,i N= , 

where T T
11 3 3 2i i iP A A P PΔ = + − . 

Corollary 3:  Polytopic system (1) with ( )tτ satisfying (2b) is 
robustly asymptotically stable if there exist symmetric 
positive definite matrices 0iP , 1iP  and a matrix 3P  such that 

T T T
11 0 3 3 3

T T
3 3 3

1

* 0
* *

i i di

di

i

P P A P P A
P P P A

dP

⎡ ⎤Δ − +
⎢ ⎥− − <⎢ ⎥
⎢ ⎥−⎣ ⎦

, 1, ,i N= , 

where T T
11 3 3 1i i iP A A P PΔ = + + , 1d d= − . 

III. STABILIZATION 
In this section, we apply the results of section 2 to a robust 

control problem. Consider the uncertain system described by 
( ) ( ) ( ) ( ) ( ( )) ( ) ( )
( ) ( ), [ ,0]

dx t A x t A x t t B u t
x t t t h

λ λ τ λ
φ

= + − +
= ∈ −

 ,    (18) 

where ( )x t  and ( )tφ  are defined in the previous section, 

( ) mu t R∈  is the control input, ( ( ), ( ), ( ))dA A Bλ λ λ  satisfies 

2
1

( ( ), ( ), ( )) ( , , )
N

d i i di i
i

A A B A A Bλ λ λ λ
=

= ∈ Ω∑ .      (19) 

Consider system (18) with the state feedback control 
( ) ( )u t Kx t= .                               (20) 

The closed-loop system is given by 
( ) ( ( ) ( ) ) ( ) ( ) ( ( ))dx t A B K x t A x t tλ λ λ τ= + + − .     (21) 

Applying Theorem 1, the robust controller design method 
for system (21) is presented in the next theorem. 
Theorem 2: The closed-loop system (21) with delay ( )tτ  is 
robustly stable if there exist symmetric positive definite 
matrices 0iX , 1iX  2iX  and matrices 3X , Y  such that 

T T T T
11 0 3 3 3 2

T 2
3 3 2 3

1 2

* 0
* *

i i i di i

i di

i i

X X X A Y B A X X
X X h X A X

dX X

⎡ ⎤Δ − + + +
⎢ ⎥− − + <⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 

1, ,i N= ,                                                                (22) 
where T T T T

11 3 3 1 2i i i i i iA X X A B Y Y B X XΔ = + + + + − . The 

state feedback gain is given by 1
3K YX −= . 

Proof: Defining T
0 3 0 3 0i iP P X P= > , T

1 3 1 3 0i iP P X P= > , 
T

2 3 2 3 0i iP P X P= > , 1
3 3P X −= , 3Y KX= multiplying (22) by 

{ }T T T
3 3 3diag , ,P P P and { }3 3 3diag , ,P P P , on the left and the 

right, respectively, we obtain 
T T T

11 0 3 3 3 2
T 2 T

3 3 2 3

1 2

* 0
* *

i cli di i

i di

i i

P P A P P A P
P P h P P A

dP P

⎡ ⎤Π − + +
⎢ ⎥− − + <⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 1, ,i N= ,  (23) 

where T T
11 3 3 1 2cli cli i iP A A P P PΠ = + + − , cli i iA A B K= + . For 

the closed-loop system (21), application of Theorem 1 
completes the proof. 

Remark 3. A relevant result was also given in Theorem 2 of 
[9]. With the introduction of extra scalar parameters α  and ε , 
a stabilizability criterion is derived in terms of LMIs. This 
criterion depends upon the α  and ε  that must be positive. 
Thus, this treatment, which estimates the α  and ε  in 
advance to secure feasible solutions, causes conservativeness.  

IV. SIMULATION RESULTS 
For comparison purposes, the performance of the proposed 

method is compared with those of other methods. 

A. Stability 
Consider system (1) with the following matrices borrowed 

from [6] 

1

0.2 0
0 0.09

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

2 1
0 2

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

1.9 0
0 1

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

1

0.1 0
0.1 0.1dA

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 2

0 1
1 0dA
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 3

0.9 0
1 1.1dA

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

. 
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TABLE I 
DELAY BOUNDS BY DIFFERENT APPROACHES 

d  0 0.1 0.5 0.9 Any d
By [5] 0.0853 - - - - 

By [6] 0.4149 - - - - 

By [8] 0.6142 - - - - 

By [9] 4.2423 3.3555 1.8088 0.9670 0.7963

By ours 4.2423 3.3555 1.8088 0.9670 0.7963

TABLE II 
COMPUTATIONAL BURDEN BY DIFFERENT APPROACHES 

 d  0 0.05 0.1 0.5 0.9 

No. of By [9] 46 48 46 35 25 

iteration By ours 29 29 28 24 17 

Average By [9] 49.6
s 

51.1
s 

51.8
s 

41.6
s 

34.2
s 

CPU time By ours 4.82
s 5s 4.83

s 
4.66

s 
4.61

s 

Several previous stability conditions have been applied to 
this system. For constant delay, the upper bound h  of ( )tτ  
has been found to be 0.0853 by [5], 0.4149 by [6], 0.6142 by 
[8], 4.2423 by [9]. According to Theorem 1, it is found that the 
system is robustly stable for 4.0301h = , which shows that 
Theorem 1 yields less conservative stability criterion than [5], 
[6] and [8]. According to Corollary 1, the upper bound h  is 
4.2423, which means that Corollary 1 yields better results than 
those obtained in [5], [6] and [8] and the same with that of [9]. 
To provide relatively complete information, we calculate the 
upper bound h  for different time-varying cases, listed in 
Table 1. 

Besides, the average CPU time and numbers of iterations by 
[9] and Corollary 1 are presented in Table 2 in order to 
compare computational burden involved in solving LMIs. We 
carry out all LMI computations by Matlab LMI Control 
Toolbox on a PC (PentiumIII 866 MHz). It can be seen that 
our method achieves exactly the same upper bound of delay 
with less computational effort. 

B. Application to flight control 
An example of the robust control for a linearized F-18 

aircraft is given to illustrate the effectiveness of our approach 
The state equations of longitudinal motion of the aircraft are 
described by 

' '

' '

( ) ( )( ) ( ( ))
( ) ( )( ) ( ( ))

q

q

Z Zt t t
M Mq t q t t

α

α

ρ ρα α τ
ρ ρ τ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 
( ) ( ) ( )
( ) ( ) ( )

E PTV E

E PTV PTV

Z Z t
M M t

δ δ

δ δ

ρ ρ δ
ρ ρ δ

⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

            

( ) ( ) ( )
( ) ( ) ( )

q

q

Z Z t
M M q t

α

α

ρ ρ α
ρ ρ

⎡ ⎤ ⎡ ⎤+ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

,               (24) 

where ( )tα  and ( )q t  represent angle-of-attack (AOA) and 
pitch rate, respectively; Eδ  and PTVδ  represent symmetric 
elevator position and symmetric pitch thrust velocity nozzle 

position, respectively; ( , )M hρ =  denotes Mach and 
altitude; ( )tτ  represents a time-varying flight delay and 
satisfies ( ) 2 0.3sint tτ = + . From this information, it is 
clearly known that h  and d  are 2.3 and 0.3, respectively.  

Denoting [ ]T( ) ( ) ( )x t t q tα= , [ ]T( ) ( ) ( )E PTVu t t tδ δ= , 
we can rewrite the aircraft system as 

( ) ( ) ( ) ( ) ( ( )) ( ) ( )dx t A x t A x t t B u tλ λ τ λ= + − + ,     (25) 
where ( )A λ , ( )dA λ  and ( )B λ  are the system matrices 
defined in (19) and 3N = . For each operating point, the 
values of the system matrix parameters, which are obtained by 
trimming and linearizing a high-fidelity, nonlinear simulation 
model at level flight for different flight conditions, are given 
in the Appendix. 

By solving (22), the state feedback gain is given in the 
Appendix. The closed-loop dynamic responses are depicted in 
Fig. 1–2 with the initial flight state [ ]T(0) 2 1x = .   
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Fig. 1. The state trajectories by [9]. 
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Fig. 2. The state trajectories by our method 
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Fig. 3. The time-varying flight delay 
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The aircraft state trajectories by virtue of the methods 
proposed in [9] and this paper are shown in Fig. 1 and Fig. 2, 
respectively. From these figures, it is obvious that by our 
controller the pitch rate and AOA converge to equilibrium 
with less overshoots compared with the one designed in [9]. 
So the controller in this paper can overcome the adverse effect 
caused by time-varying flight delay which is given in Fig. 3. 

V. CONCLUSION 
This paper has presented a control strategy using a 

descriptor system approach to deal with robust stability 
analysis and control synthesis for a time delay system. The 
parameters of the system are not exactly given but known to 
reside in a given polytope. Based on parameter-dependent 
Lyapunov functions, an efficient delay-dependent stability 
criterion is derived via LMI approach. Furthermore, the 
simulation analysis demonstrates that with less computational 
effort this criterion achieves exactly the same upper bound of 
delay with that of [9]. By applying the stability criterion to the 
system with state feedback, a stabilization condition follows 
immediately. A robust flight control problem is solved which 
demonstrates the applicability of the stabilization condition. 

APPENDIX 
For each operating point, system matrices of the aircraft are 

1

1.1750 0.9871
8.4580 0.8776

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 1

0.3525 0.2961
2.5374 0.2633dA

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 

2

2.3280 0.9831
30.440 1.493

A
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 2

0.6984 0.2949
9.1320 0.4479dA

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 

3

2.4520 0.9856
38.610 1.340

A
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 3

0.7356 0.29570
11.583 0.4020dA

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 

1

0.194 0.0359
19.29 3.803

B
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 2

0.3012 0.0587
38.430 7.8150

B
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 

3

0.2757 0.0523
37.360 7.2470

B
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
. 

The state feedback gain and corresponding matrices are 

01

15.5900 -37.5352
-37.5352 299.4617

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 02

17.6657 -23.7534
-23.7534 430.2555

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

03

17.55030 -8.39650
-8.39650 655.5171

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 11

20.7566 -41.4734
-41.4734 242.3862

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

12

27.1775 -13.4730
-13.4730 440.0925

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 13

29.3382 11.4506
11.4506 569.1790

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

21

0.30070 -0.38460
-0.38460 7.90770

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 22

0.28140 -0.56970
-0.5697 3.479200

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

23

0.23430 -0.50360
-0.50360 2.70910

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 3

2.55870 9.54630
-13.2489 49.8373

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

-9.1289 121.8597
33.4714 -585.7444

Y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,
4.5652 1.5707
23.9859 7.1586

K
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
. 
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