

Abstract—As most mobile robots are powered by

batteries, their energy and operation times are limited.

Therefore, how to minimize energy consumption and keep

mobile robots to stay alive becomes an important problem.

In this paper, by applying a dynamic energy-evaluation

scheme, in which we consider if a robot has enough energy

to go to next location, finish the task and return to the

docking station in the path planning, we propose two

staying-alive and energy-efficient path planning

approaches based on the greedy TSP and Tabu-search

methods, respectively. The experimental results show that

our Tabu-search-based approach is the best and can

provide an effective path planning by which a robot can

be guaranteed to stay alive and finish all tasks with the

minimum energy.

I. INTRODUCTION

OBILE robots can be used in many missions such as

elder care, shopping navigation, carpet cleaning, lawn moving

and rescue assistance after disasters [1][2]. As most mobile

robots are powered by batteries, their energy and operation

times are limited. For example, the humanoid robot from

Honda can only walk for approximately 30 minutes with its

rechargeable battery [14]. Therefore, how to minimize energy

consumption and keep mobile robots to stay alive becomes an

important problem. To stay alive, we need to guarantee that if

a robot does not have enough energy, he should be able to

return to a docking station for battery changing or recharging,

which needs to be done in an energy-efficient way for energy

saving. In this paper, we focus on solving the staying-alive and

energy-efficient path planning problem: given a robot and

various tasks in different locations, how to find a path

planning with the minimum energy to finish all tasks and stay

alive.

Energy-efficient path planning has been extensively studied

from the previous work. In [9], Katoh et al propose an

energy-efficient motion planning method for space

manipulator by controlling the motion of the space

manipulator to be elliptic. In [10] [11], Mei et al analyze

power consumption of a robot at different speeds and propose

* The corresponding author.

an effective energy-aware motion scheme. Barili et al [12]

develop an energy-saving scheme by controlling the speeds

and avoiding unnecessary stops for mobile robots. Chong et al

[8] propose minimum-energy velocity-trajectory-control

scheme considering practical energy consumption dissipated

in motors. In [15], Jia et al propose a cost-efficient motion

planning algorithm by integrating grid and topological

information for robot exploration. In all of the above work,

however, staying alive is not considered. As we show later, in

a path planning for mobile robots powered by batteries, if

returning to a docking station for battery changing or

recharging is not considered, a robot may exhaust all of its

energy and stop in the middle of the path.

To solve the staying-alive problem for mobile robots,

several methods have been proposed [5-7]. Seungjun Oh et al

[7] implement the auto recharging device on a mobile robot.

However, in these methods, path planning is either not

considered or handled with a static manner. As we show in

Section 2, a static energy lower bound method may not work

very well for energy saving. In [18-19], Zebrowski et al

propose an energy delivery approach called a tanker approach.

In their approach, a tanker robot serving as “mother” robot to

traverse and distribute energy cells to “worker” robots if

demanded. In [20], Floreano et al propose an evolution of a

discrete time recurrent neural network approach that allows

the robot to choose trajectory as function of location and

remaining energy. Our work is a good complement for the

above methods by providing staying-alive and

energy-efficient path planning so robots or tanker robots can

utilize the routes generated to finish their tasks with the

minimum energy.

In this paper, we propose two approaches to solve the

staying-alive and energy-efficient path planning problem. To

guarantee that a robot can always return to the docking station

for battery changing or recharging, we apply a dynamic

energy-evaluation scheme, in which we consider if a robot has

enough energy to go to next location, finish the task and return

to the docking station in the path planning. Based on this

scheme, we propose two approaches for energy minimization.

As the problem is a variation of the traveling salesman

problem (TSP), a well-known NP-complete problem, we first

propose an approach based on a greedy TSP method [22].

Then we propose a better approach based on the Tabu-search

Staying-Alive and Energy-Efficient Path Planning for Mobile Robots

Tianmiao Wang
1
, Bin Wang

1
, Hongxing Wei

1
, Yunan Cao

1
, Meng Wang

2
, Zili Shao

2*

1The Robot Research Institute 2Department of Computing

Beihang University The Hong Kong Polytechnic University

Beijing 100083, China Hung Hom, Kowloon, Hong Kong

{itm, wbin, whx}@me.buaa.edu.cn cszlshao@comp.polyu.edu.hk

M

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeB05.4

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 868

method [17]. We conduct experiments based on a simulation

environment. The experimental results show that our

Tabu-search-based approach can provide an effective path

planning by which a robot can be guaranteed to stay alive and

finish all tasks with the minimum energy.

The rest of the paper is organized as follows. Motivational

examples are given in Section II. In Section III, we introduce

the basic concepts. In Section IV, we provide our approaches.

The experimental results are provided in Section V, and the

conclusion is shown in Section VI.

II. MOTIVATING EXAMPLES

In this section, we motivate the staying-alive and

energy-efficient path planning problem by showing the

different path planning with different energy consumption

from different method.

Given an environment shown in figure 1 in which there are

eleven tasks in (A to K) locations, each tasks with a value

which denotes energy require for a robot doing the task. The

robot needs to traverse all tasks starting from and back to the

docking station. The distance between tasks can be obtained

by Dijistra algorithm [21]. We assume that robot consumes 1

unit of energy on 1 unit distance, and robot has 1 thousand

units of energy after recharged. These assumptions are only

for demonstration purpose. Our technique is general enough

to deal general energy models as discussed in later sections.

Figures 1, 2, 3 show the different routes with different path

planning methods.

 In Figure 1, the route is obtained based on the TSP greedy

approach [22], in which the robot traverses all tasks by

picking and going to a task that is the closest to him. When

robot finished task at I, energy left is 26.20 units, and robot

energy exhausted after arrived at J.

This problem can not be solved very well with a static

manner. For example, using the method with a static

energy-evaluation scheme [7], suppose that a robot is required

to return to the docking station if his energy level is reach to a

threshold such as 10% of robot battery capacity. As figure 2

shows the robot reaches to H’ and find that his energy level

reaches to the threshold. So he returns to the docking station,

and then continues to finish all tasks after battery changing or

recharging. As we can see, H’ is far from the docking station,

the routes from H’ to the docking station and from the docking

station to I is very long, so more energy is consumed.

Figure 3 shows the route obtained by our method based on

the dynamic energy-evaluation scheme. In our method, we

combine the path planning and staying alive together. When

we do path planning, we will consider if the robot has enough

energy to go to next location, finish the task and return to the

docking station. Therefore, at H, the robot will return to the

docking station and then continue. In this way, the robot can

finish all tasks with the minimum energy and staying alive.

From these examples, we can see that neither

energy-efficient path planning methods without considering

staying alive nor static energy lower bound methods can solve

Figure.1 Path planning without the consideration of staying alive, robot

exhausts when doing task in location J.

Figure.2 Path planning using static energy-evaluation scheme.

Figure.3 Path planning using dynamic energy-evaluation scheme.

this problem very well. Therefore, we propose a dynamic

energy-evaluation method to solve this problem.

III. BASIC CONCEPTS AND PROBLEM

In this section, we introduce the basic concepts and

formally define the problem in Section III-A and Section III-B,

respectively.

A. Graph Model

We use a node-weighted edge-weighted directed graph to

model the staying-alive and energy-efficient path planning

problem.

Let G= (V, A, W, E) be a directed graph where V= {v0, v1,…,

vn} is the vertex set, A={a(vi Æ vj):i ≠ j} is the edge set, W=

{ ci,j : vi Æ vj ∈ A} is the weight of each edge, E={Ev1 ,…, Evn}

is the energy cost for finishing the task. In the node set V, v0

denotes the docking station and vi ∈ {v1,…, vn} represents the

location where Task i occurs in the environment. In the set of

869

W, ci,j is a positive number to represent the energy cost when

the robot moves from vi to vj.

B. Problem Definition

The staying-alive and energy-efficient path planning

problem for mobile robots is formally defined as follows:

1) The robot needs to traverse all task nodes {v1… vn}

starting from and back to v0 (the docking station);

2) Each node in {v1… vn} needs to be visited once, and the

corresponding task is finished after the node has been visited;

3) When the robot returns back to the docking station, the

remaining energy must be greater than Edocking which is the

energy required to finish operations for battery changing or

recharging [5-6].

C. The Tabu-Search Method

The defined problem is a variation of the traveling salesman

problem, a well-known NP-complete problem [22]. In

particular, our problem is close to the VRP (Vehicle Routing

Problem) problem what can be solved by the Tabu-search

method [14, 17, 18]. The Tabu-search method is a generic

method, in this paper, we define our tabu candidate selection

strategies, the objective function with penalty factor for

staying-alive and tabu properties to solve our problem.

IV. STAYING-ALIVE AND ENERGY-EFFICIENT PATH

PLANNING

In this section, we propose our dynamic-energy-evaluation

–based method to solve the staying-alive and energy-efficient

path planning problem. We first introduce our scheme in

Section IV-A. Then we propose two algorithms for energy

optimization based on this scheme in Sections IV-B and IV-C,

respectively.

A. Dynamic Energy-Evaluation Scheme

As shown in Section II, the scheme of fixing an energy

lower bound for robot to return cannot achieve big energy

saving. Thus, we propose a dynamic energy-evaluation

scheme to solve this problem. Our basic idea is to dynamically

evaluate whether a robot needs to return back to the docking

station before it finishes the current task or not. The lower

bound energy is calculated as follows,

1 0 (,) (,)i i i ilower bound v v v v v dockingE E E E E
−

= + + + (1)

in which, E(vi-1,vi) is the energy requirement for going to the

task position vi from current position vi-1 (for i�1); Evi is the

energy cost for finishing the task at location vi.; E(vi-1,v0) is the

energy requirement for returning to the docking station v0

from task position vi; Edocking is the energy required for battery

changing or recharging in the docking station.

If the current energy of the robot is greater than the lower

bound, the robot can finish the next job and return to the

docking station. Otherwise, the robot should go back to the

docking station for battery changing and recharging.

B. The TSP-Greedy-Based Algorithm (GTSP)

As our problem is a variation of the TSP problem, thus, we

Algorithm 1. Algorithm GTSP_Generation

Input: A graph G= (V, A, W, E) (defined in Section III-A).

Output: Staying alive path PGTSP.

1: Generate a greedy based path without energy consider-

ation according to [22].

2: Calculate the energy need of adjacent vertexes.

3: Route from docking station v0 with the dynamic energy-

evaluation scheme.

propose an algorithm that combines the TSP greedy algorithm

[22] and our dynamic energy-evaluation scheme. The GTSP

algorithm is shown in Algorithm 1.

In GTSP, we first obtain a path planning based on the TSP

greedy algorithm. And then we evaluate the path by

calculating the lower bound energy, Elower bound. Starting from

v0 (the docking station), for each node in the path, if the

energy that the robot has is greater than Elower bound , then the

robot goes ahead to the next node; otherwise, the robot goes

back to the docking station and continues the unfinished tasks

after battery changing or recharging.

C. The Tabu-Search-Based Algorithm (TS)

In this section, we first propose an algorithm that is based

on the TS method. Then we introduce the details of its two key

functions in Section IV-C-1 and Section IV-C-2, respectively.

The TS algorithm is shown in Algorithm 2.

The following notation is used in the presentation. Based on

our initial solution, we get r sub routes. The energy

consumption for routing the path is written as follows:

1

(,)

()
i j r

ij

r v v R

E P c
∈

=¦ ¦ (2)

The objective function, E2(P), is defined as follows,

2 1 (,) ()() ()
i j r i rv v R v R docking capicity

r

E P E P E E E Eα
+

∈ ∈
ª º= + ⋅ + + −¬ ¼¦ (3)

in which,
(,)i j rv v R

E
∈

is the energy requirement for the route r;

()i rv RE
∈

 is the energy requirement for finishing the tasks in

each sub route r; [x]+=max(0,x) and . is a penalty coefficient.

From Equ (3), we can see that if the robot has enough

energy to traverse the path and return to the docking station,

then
(,) ()i j r i rv v R v R docking capicityE E E E

+

∈ ∈
ª º+ + −¬ ¼ equals

zero. Otherwise, it implies that the robot does not have enough

energy to fulfill the path; thus, a positive value is added to

E1(P) to denote the penalty.

Based on this objective function, our Tabu-Search-Based

algorithm is shown in Algorithm 2.

Algorithm 2. Algorithm TS-STSP

Input: A graph G= (V, A, W, E). (defined in Section III-A)

Output: Tabu-search based staying alive path PTS,

Energy consumption on path PTS: E1(PTS).

/*Step 1: Generate the sequential-based initial solution */

1: Call function STSP_Generation (G) to generate the

staying alive path PSTSP in sequential order of angle.

/*Step 2: Tabu-search optimization */

870

2: Call function TS_Optimization (G, PINITIAL) to optimize

initial solution.

The Tabu-Search-Based algorithm consists of 2 steps. The

first phase is to call function STSP_Generation () to obtain a

good initial solution. The second phase is to call function

TS_Optimization () to perform tabu-search optimization.

STSP_Generation () and TS_Optimization () are shown in

Algorithm 3 and Algorithm 4, respectively, which are

presented below.

1) Initial Solution Generation

Initial solution selection can influence the performance and

convergence rate of tabu search [18]. We have two initial

solutions for tabu search; one is for improved greedy based

method (GTSP), the other is a sequential method (STSP)

which we will introduce in this section.

The sequential staying-alive method is shown in Algorithm

3 with the following steps:

Step 1 Let the docking station be the origin. All tasks are

labeled according to the angle. For example, as shown in

Figure 4, v1 is first task from the horizon line with angle θ.

Step 2 Calculate the energy consumption between two

adjacent vertexes with the sequence obtained in Step 1.

Algorithm 3. Algorithm STSP_Generation

Input: A graph G= (V, A, W, E).

Output: Staying alive path PSTSP.

1: Label vertex set {v1,…, vn}according to the angle.

2: Calculate the energy need of adjacent vertexes in Step 1.

3: Find two vertexes (vi, vi+1) that form the maximum angle.

4: Route from the vi and vi+1 respectively, with the dynamic

energy-evaluation scheme.

5: Compare the energy consumption of two routes and pick

up the less energy consumption one as PSTSP.

Step 3 Find two vertexes (vi, vi+1) which form the maximum

angle in the plane. As shown in figure 5, nodes (v1, v2) have the

maximum angle.

Step 4 The route follows the vertex sequence clockwise (vi,

vi-1,…, v1, vn, vn-1,…, vi+1) and anticlockwise (vi+1, vi+2,…,vn, v1,

v2,…, vi), respectively, with the dynamic energy-evaluation

scheme. As shown in figure 5, route the vertex sequence

clockwise {v1, v12,…, v3, v2} and anticlockwise {v2, v3,…, v11, v12,

v1}, respectively.

Step 5 Compare the energy for two routes, and pick up the

route with less energy.

Figure.4 Labels of task locations according to the angle in anticlockwise

Figure.5 Adjacent nodes (v1, v2) have the maximum angle.

2) Tabu Search Optimization

In this section, we propose a Tabu-search optimization

method based on the initial solutions we obtained from the

above steps. The algorithm is shown in Algorithm 4.

Algorithm 4. Algorithm TS_Optimization

Input: A graph G= (V, A, W, E) and initial staying alive path

PINITIAL.

Output: Tabu-search based staying alive path PTS, energy

consumption on the path E1(PTS).

0: Take PINITIAL as the input solution, set iter to 1.

1: while iter is less than MAX_ITERATION_NUM

2: Generate the candidates according to input solution.

3: Calculate the objective function in Equ (3) for candidates.

4: /* Aspiration criterion */

5: if the best candidate better than the best solution so far.

6: Select the candidate as next input solution.

7: else

8: Select the best candidate which is not tabooed in the

 tabu list as next input solution.

9: end if

10: Update tabu list

11: /* Stop criterion: break from circulation */

12: if iter is larger than MAX_ITERATION_NUM and

the change of ten latest best so far solution is less than

 0.1%

13: break

14: end if

15: end while

Our Tabu-search optimization algorithm consists of

following steps:

Step 1. (Candidates generation) Generate the candidates

according to input solution. Candidates consist of the

solutions obtained by performing all possible moves

according to input solution. The swapping and insertion are

used as moving strategy, and swapping is shown in figure 6.

The swapping strategy is implemented on the tasks. We

prohibit the swapping between a task and the docking station

that is part of insertion strategy. The insertion strategy is

implemented on the locations of tasks between inner and inter

sub routes as well.

871

(a) (b)

Figure.6 Swapping strategy is used to generate the neighbor space for tabu

search.

Step 2. (Objective function calculation) Calculate the

objective function in Equ (3) for candidates generated in the

former step. Sort candidates with the ascending order based

on the values are obtained from the objective function.

Step 3. (Aspiration criterion) If the best candidate can

achieve a better solution, then we update the best solution no

matter whether the candidate is tabooed. And then we select

the solution as the next input. Otherwise, we select the best

candidate which is not tabooed in the tabu list as the next input

solution.

Step 4. (Update tabu list) Record the executed move as tabu

moves in the tabu list with tabu length, and we reduce 1 tabu

length of tasks tabooed before. When it becomes zero, the

tabooed move can take place freely.

Step 5 (Stop criterion) Check the stop criterion. If the

variation of the objective function for scheme “best so far” is

less than a given value in several times, then we stop the

search. Otherwise, the algorithm returns to Step 2 and

continues the tabu search procedure. As shown in figure 7, we

achieve significant improvement on the optimal solution

according to the initial solution. The scheme “best solution so

far” holds the optimal solution in the input solutions, and

terminates the tabu-search when it satisfies the stop criterion.

Figure 8 is the best solution according to our tabu-search

method. For this example, our algorithm achieves 19%

improvement as compared with the initial STSP solution.

Figure.7 Tabu-search processes in finding the optimal solution, the search

process stopped when the change of ten successive best so far solution is less

than 0.1%.

Figure.8 Tabu-search result.

V. SIMULATIONS AND RESULTS

In this section, we report the experimental results. We

implement our algorithms in matlab, and test them on a

Pentium PC (2.4GHz) with Windows XP and 1.5GB RAM.

The results show that our algorithms achieve significant

energy saving.

In the experiments, we construct benchmark programs with

general consideration before subsequent experiment on

mobile robot. We assume the maximum energy that a robot

can have is 1000 energy units, and the robot consumes one

unit of energy for traveling 1 unit distance. The energy of each

task is randomly generated, and the value is in the range of

50~150 units.

In our experiments, we generate 8 groups of tasks (the

number of tasks varies from 5 to 40) in 200*100 units’ area.

The energy required for finishing battery changing or

recharging at the docking station is 50 units.

We compare the energy consumption of four algorithms,

the TSP-Greedy-Based algorithm (GTSP), the sequential

staying-alive method (STSP), the Tabu-Search-Based

algorithm with the initial solution from GTSP (TS-GTSP) and

the Tabu-Search-based algorithm with the initial solution

from the sequential staying-alive method (TS-STSP). The

experimental results are shown in Figure 9 and Table 1.

From the results, we can see that the quality of the tabu

search method is good. For the instances with 10 tasks

TS-STSP achieves 19.18% reduction as compared with GTSP

method. For instances with 40 tasks TS-STSP contributes to

16.25% reduction. On average, our TS- GTSP and TS-STSP

algorithms achieve 14.10% and 15.45% reduction on the

energy consumption, respectively.

When the number of tasks is small, the results are almost the

same among the four algorithms. The reason is that the path

planning is relatively simple, and usually the robot has enough

energy to directly go back to the docking station. With the

increasing task number, we can see TS-STSP becomes better

with its ability to deal with the complicated cases.

For the number of tasks equals to 30 and 35, we find that

STSP consumes more energy than GTSP method. TS-STSP is

more energy efficient than TS-GTSP. The reason is that

sequential based path planning method consumes much

energy in the inner of the sub route, seen in figure 6. Thus,

using tabu-search method, energy can be greatly reduced.

872

Figure.9 Energy comparison for four algorithms.

Nub

of

Tasks

GTSP TS-GTSP TS-GTSP

Reduction

(%)

TS-STSP TS-STSP

Reduction

(%)

5 186.16 186.16 0 183.69 1.33
10 427.03 326.74 23.48 345.11 19.18
15 508.10 363.92 28.38 364.28 28.30
20 526.06 463.55 11.88 455.62 13.39
25 581.23 463.42 20.27 479.95 17.43
30 624.12 575.44 7.79 551.55 11.63
35 633.39 573.07 9.52 531.63 16.07
40 774.99 685.63 11.53 649.04 16.25

Table.1 Energy consumption comparison of TS-GTSP with GTSP

and TS-STSP with GTSP

VI. CONCLUSION

To minimize energy consumption and keep mobile robots

to stay alive becomes an important problem as most mobile

robots are powered by batteries. In this paper, we proposed a

dynamic energy-evaluation scheme to solve this problem.

Combining our dynamic scheme with path planning, we

proposed two staying-alive and energy-efficient path planning

approaches based on the greedy TSP and Tabu-search

methods, respectively. The experimental results show that our

Tabu-search-based approach can provide an effective path

planning and achieve significant energy saving.

VII. ACKNOWLEDGMENT

The work described in this paper is partially supported by

the grants from the Research Grants Council of the Hong

Kong Special Administrative Region, China (PolyU A-PH13,

PolyU A-PA5X, PolyU A-PH41, and PolyU BQ06B), the

National Nature Science Foundation of China (60525314), the

973 Program of China (2002CB312204-04) and the 863

Program of China (2007AA041701).

REFERENCES

[1] A. Davids. “Urban Search and Rescue Robots: From Tragedy to

Technology,” IEEE Intelligent Systems, vol.17, pp. 81-83, March

2002.

[2] A. Drenner, I. Burt, T. Dahlin. “Mobility Enhancements to the Scout

Robot Platform,” In International Conference on Robotics and

Automation, pp. 1069-1074, 2002.

[3] G.B. Danhig, J.H. Ramser, “The wck dispatching problem,”

Monagemenf Sdence, vol. 6, no. SO, 1959.

[4] M.Saha, G.Sánchez-Ante, “Planning multi-goal tours for robot arms,”

International Conference on Robotics and Automation, pp. 3797-3803,

2003.

[5] Y Hada, S.Yuta, “Robust navigation and battery re-charging system

for long term activity of autonomous mobile robot,” Intemational

Conference on Advanced Robotics, pp. 297-302, 1999.

[6] M.C. Silverman, D. Nies, B. Jung, and G.S. Sukhatme, “Staying alive:

a docking station for autonomous robot recharging,” IEEE

International Conference on Robotics and Automation, vol.1, pp.

1050-1055, 2002.

[7] S.Oh, A.Zelinsky and K.Taylor, “Autonomous Battery Recharging for

Indoor Mobile Robots”, Proceedings of Australian Conference on

Robotics and Automation, 2000.

[8] Chong Hui Kim, Byung Kook Kim, “Energy-Saving 3-Step Velocity

Control Algorithm for Battery-Powered Wheeled Mobile Robots,”

IEEE International Conference on Robotics and Automation, 2005

[9] R. Katoh, O. Ichiyama, T. Yamamoto, and F. Ohkawa. “A Realtime

Path Planning of Space Manipulator Saving Consumed Energy,” In

International Conference on Industrial Electronics, Control and

Instrumentation, pp. 1064-1067, 1994.

[10] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. S. G. Lee, “Energy-Efficient

Motion Planning for Mobile Robots,” International Conference on

Robotics and Automation, pp. 4344-4349, 2004.

[11] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. S. G. Lee, “A case study of mobile

robot’s energy consumption and conservation techniques,”

International Conference on Advanced Robotics, pp. 492-497, 2005.

[12] A. Barili, M. Ceresa, and C. Parisi, “Energy-Saving Motion Control

for An Autonomous Mobile Robot,” In International Symposium on

Industrial Electronics, pp. 674-676, 1995.

[13] J. Hurink and S. Knust, “A tabu search algorithm for scheduling a

single robot in a job-shop environment,” Discrete Applied

Mathematics, vol. 119, pp.181-203, 2002.

[14] R.Aylett, “Robots: Bringing Intelligent Machines to Life?” Barron’s

Educational Series, New York, 2002.

[15] M. Jia, G. Zhou, and Z. Chen. “An Efficient Strategy Integrating Grid

and Topological Information For Robot Exploration,” IEEE

Conference on Robotics, Automation and Mechatronics, pp. 667-672,

2004.

[16] F, Glover, Tabu Search, Part I and II, ORSA Journal on Computing

vol.1, pp. 190-206, ORSA Journal on Computing, vol.2, pp. 4-32,

1990.

[17] M. Gendreau, A. Hertz and G. Laporte, “A tabu search heuristic for the

vehicle routing problem,” Management Science, vol. 40 (10): pp.

1276-1289, 1994.

[18] P.Zebrowski, R.T. Vaughan, “Recharging Robot Teams: A Tanker

Approach,” International Conference on Advanced Robotics, 2005.

[19] P.Zebrowski, Y.Litus, R.T. Vaughan, “Energy Efficient Robot

Rendezvous,” Canadian Conference on Computer and Robot Vision ,

pp.139-148, 2007.

[20] Floreano, D. and Mondada, F. “Evolution of homing navigation in a

real mobile robot,” IEEE Transactions on Systems, Man, and

Cybernetics-Part B, 26:396--407, 1996.

[21] E. W. Dijkstra, “A note on two problems in connexion with graphs,”

Numerische Mathematik, vol.1, pp. 269-271, 1959

[22] T.H. Cormen, C.E. Leiserson, Introduction to Algorithms, The MIT

Press; 2nd edition, 2001.

873

