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Abstract— Main task in driving safety is the un-

derstanding and prevention of risky situations. While

looking closer at the accidents data analysis, it appears

that vehicle loss of control represents a huge part of

car accidents. Preventing such kind of accidents, using

assistance systems needs several type of information

about vehicle state and vehicle-road interaction phenom-

enon. Longitudinal velocity, acceleration and yaw rate

are easily measured using low cost sensors that are

actually mounted in standard on a large part of recent

vehicles. However, other parameters, which have a major

impact on vehicle dynamics, are more difficult to measure

using vehicle industry technology sensors. These are for

example the used friction coefficient and the sideslip

angle. Using an appropriate vehicle model and available

measurements, the vehicle state as well as the road/tire

interaction forces are reconstructed by implementing an

Extended Kalman Filter. Thereafter, we evaluate the

used friction coefficient and the sideslip angle estimates.

Simulation and estimation results are then compared to

real measurements collected by an equipped test vehicle

on Satory test track.

Keywords: Kalman Filtering, Vehicle Modeling, Tire/Road

Forces Estimation, Friction Model, Sideslip Angle Estimation.

I. INTRODUCTION

Analysis of the number of people killed due to car

accidents during these last decades, highlights a reduction in

spite of the increase in the road traffic. This is on one side

the result of successive transport policies, road infrastructure

improvement and on the other side the result of safer vehicles

and passive and active driving assistance systems. However,

the number of accidents still remain high and certain types

of accidents are more frequent and contribute to a large part

to the number of death. According to France statistics, run-

off-road accidents are generally more represented than other

accidents. This fact is also true for all developed countries.

Preventing this type of accidents requires several parameters

which help to evaluate the dangerousness of the driving

situation. A certain number of these parameters (lateral

acceleration, yaw rate, ...) are relatively easy to measure with

low cost sensors. They are actually implemented in most of

recent vehicles and used in driving assistance system such as

ESP (Electronic Stability Program). Howevers, others such

as the sideslip angle and the road friction are still difficult

to measure directly with cost effective sensors. The aim of

this paper is to answer the question on how can the friction

coefficient and the sideslip angle be deduced from the partly

knowledge of the vehicle state.

Several works have already been conducted in order to

estimate tire/road forces, sideslip angle and friction coeffi-

cient. In [1], Ray uses an Extended Kalman Filter (EKF) to

estimate the dynamic state and tire/road forces for a nine

degree of freedom (DOF) vehicle model. She identifies the

friction coefficient in [2]. The friction coefficient is also es-

timated by LIU and PENG [3] using a Luenberger Observer

for a 2 DOF vehicle model in order to evaluate the TTC

coefficient (Time To Collision). In 2006, Gerard [4] estimates

tire/road forces and friction coefficient using an EKF and

an Unscented Kalman Filter (UKF). The estimation of the

sideslip angle has been recently considered by Stephant using

a Sliding Mode Observer for a nonlinear bicycle model [5].

In this paper, an estimation methodology of the vehicle

state using an EKF is considered, The tire/road forces and

the mobilized friction coefficient are evaluated, thus an esti-

mation of the sideslip angle is proposed on the basis of the

state estimation. The model used for the observer synthesis

includes a nonlinear Dugoff tire forces model. The estimation

results are validated by real measurements collected with an

equipped vehicle prototype. In addition, the observer uses

as input the signals and measures available in standard on

vehicles equipped with driving assistance systems such as

ABS and ESP.

This paper is organized as follows: First, a four wheel

vehicle model is presented. This model is simple but is

suitable for the problem under consideration. Section 3 is

dedicated for the estimation method for the vehicle state

and the tire/road forces. Section 4 proposes an estimation

procedure for the friction coefficient while section 5 provides

it for the sideslip angle. Along all the section, the estimation

results are validated by comparison to real measurements

collected using an equipped prototype vehicle running on the

LIVIC test track in Satory in the city of Versailles, France.
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II. FOUR WHEEL VEHICLE MODEL

A. Model Developpment

In this paper, we use a four wheel vehicle model [10]

which is represented in the figure (1).

Fig. 1. Four wheels vehicle model

It is a simplified nonlinear vehicle model that considers

the tire/road forces. The dynamic motion of the vehicle is

modeled by three equations that represent respectively the

longitudinal and lateral translational motion and the yaw

rotational movement:

8

>

<

>

:

:
vx =

1
m

P

Fxi +
:

 vy
:
vy =

1
m

P

Fyi �
:

 vx
::

 = 1
Iz

P

Mzi

(1)

where vx is the longitudinal velocity, vy the lateral one,
:

 the yaw rate while Iz the moment of inertia. Fxi, Fyi and

Mzi are respectively the longitudinal and lateral tire/road

forces and the rotational moment around the vertical axis

(i = 1; 2; 3; 4 represents the four wheel of the vehicle).
In the system (1), a tire/road force model is required in

order. Several models exist in the litterature [6], [7], [8] and

[9]. In [10] a comparative study between Dugoff model [6]

and Pacejka [7] is presented. In [11] a comparaison is made

among Kiencke model [8], Ben Amar [9] and Pacejka [7].

The Dugoff model is selected for this study for two main

reasons: it needs a fewer number of parameters to evaluate

the tire/road forces, and the formulation remains close to the

linear formulation. The forces are given by:
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where �i and �i represent respectively the longitudinal

and lateral slip of each tire, Cxx and Cyy are respectively

longitudinal and lateral stiffness, and Fni is the normal force

applied on each tire. �i, �i and normal forces Fni are given

as follows:

(

�i =
Rwi�vpxi

max(Rwi;vpxi)

�i = �i � arctan(
vpyi
vpxi

)
(5)
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In equation (5) we use the longitudinal and lateral vehicle

velocities at the tire/road contact point, vpxi and vpyi for each

tire. These velocities are given using the following reference

change.

vpi = vg +
 ^ Pi (7)

where vg is the velocity vector at the center of gravity

(CG) of the vehicle, 
 is the rotational velocity vector

restricted in this case to the yaw motion along the z axis. Pi
represents the vector position of each tire with reference to

the center of gravity.
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B. Model Simulation

Before use of the vehicle model developed above in order

to estimate the tire/road forces and to evaluate the friction

coefficient as well as the sideslip angle, a simulation is run

in order to compare results obtained with model to real

measurements collected with an equipped prototype vehicle

running on the Satory test track of the Versailles city, France.

The following table summarizes the vehicle characteristics

and parameter’s numerical values.

m vehicle mass 1550 kg

� friction coefficient 0.8 -

lf distance from CG to front axel 1.0065 m

lr distance from CG to rear axel 1.4625 m

tf front axel length 1.5 m

tr rear axel length 1.5 m

g gravitational acceleration 9.81 m/s2

Iz moment of inertia 2200 kgm2

R tire radius 0.306 m

h height of the CG 0.5 m

Cxxi longitudinal stiffness of each tire 30000 N

Cyyi lateral stiffness of each tire 57000 N

From the system (1), we consider the longitudinal and

lateral velocity and the yaw rate as the components of the

state vector:

x =
�

vx vy r
�T

where r =
:

 (9)
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The model can be functionally described by the block

diagram given in figure (2), the input vector contains the

steering angle � and the four tires rotational velocity wij
measured respectively by a steering angle sensor and the

ABS sensors. Model output is the whole state vector and the

longitudinal and lateral forces.

Fig. 2. Simulation bloc diagram

C. Results and Validation

Using the block diagram of figure (2), the model is

simulated using the steering angle and the wheel speeds as

input. The selected driving profile covers sufficient transient

behavior and large lateral velocity values. The model state

vector output is compared to real measurements collected

with prototype vehicle. Figure (3) shows that the longitudinal

and lateral vehicle velocity as well as the yaw rate are similar

to the measurements, the simulation error is given in figure

(4).

Fig. 3. Dynamic State Simulation

This simulation study proves that the mathematical model

developed above gives a good description of the real dynam-

ical evolution of the vehicle. Thus, this model can be used

as a basis for the estimation of the dynamic state and the

evaluation of the friction coefficient and sideslip angle.

III. VEHICLE DYNAMIC STATE AND TIRE/ROAD

FORCES ESTIMATION

A. Extended Kalman Filter

The Extended Kalman Filter is dedicated to the estimation

of the state vector of nonlinear systems [12], [13] and [14].

In order to develop directly a discrete-time EKF, the dynamic

continous evolution of the vehicle (1) has to be discretize.

Fig. 4. Dynamic State Simulation Error

This discretization is performed by a forward Euler approxi-

mation. We get a nonlinear discrete-time system of the form:

�

xk+1 = f(xk) + g(xk; uk) + bk
yk = h(xk) + wk

(10)

where yk is composed of the longitudinal velocity vx and

the yaw rate r, bk is the dynamic noise vector and wk is

the measurement noise vector. Both are supposed to be non-

intercorrelated, stationary, white and Gaussian with known

covariances. The covariance of bk (resp. wk) is noted Q (resp

R).

Under these hypothesis, an EKF can be applied to the esti-

mation problem under consideration. It is worth mentioning

that using this hypothesis, the state vector and the output

vector are Gaussian even when they are conditioned on the

measurements from time step 1 to time step k: y1::yk. We

note x̂kjk = E fxk jy1:::yk g the mean of the state vector

conditioned on the measurements from time step 1 to time

step k and Pkjk = E
�

(xk � x̂kjk)(xk � x̂kjk)
T jy1:::yk

	

its

covariance. The variables x̂kjk and Pkjk are also, respectively

the estimate and estimation error covariance provided, at

each time step, by the EKF.

The EKF algorithm is recursive and operates in two steps:

a prediction step and an update step. The prediction step

consists in the propagation of both the state estimate and

the state estimation error covariance between two sampling

instants. The update step occurs at each sampling time, and

consists in correcting against the measurement, both the state

forecast and the prediction error covariance.

- Prediction step:

x̂kjk�1 = f(x̂k�1jk�1) + g(x̂k�1jk�1; uk�1)
Pkjk�1 = FkPk�1jk�1F

T +Q
(11)

where x̂kjk�1 is the forecast, Pkjk�1 is the prediction

error covariance and Fk =
@f(x)
@(x)

�

�

x=x̂k�1jk�1
is the dynamic

matrix resulting from the linearization of the state equation

around the estimate x̂k�1jk�1.
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- Update step:

Kk = Pkjk�1H
T
k (HkPkjk�1H

T
k +R)

�1

x̂kjk = x̂k�1jk�1 +Kk

�

yk � h(x̂k�1jk�1)
�

Pkjk = Pkjk�1 �KkHkPkjk�1

(12)

where Hk =
@f(x)
@(x)

�

�

x=x̂kjk�1
results from the linearization

of the output equation around the forecast.

- Filter initialization:

Care must be given to the filtering initialization i.e. to

the choice of x̂0j0 and P0j0. Though in the case of linear

Kalman filtering it may act on the convergence rate but not

on the convergence property itself, an EKF may diverge

depending on its initialization. It is thus recommended to

use the available a priori knowledge as much as possible.

B. Estimation

The estimation scheme is given by the block diagram in

figure (5). The following measurments are considered:

- Yaw rate, longitudinal and lateral accelerations measured

by an inertial sensor.

- Rotational velocity for each tire given from the ABS.

- Steering angle measured by an optical sensor.

Fig. 5. Estimation bloc diagram

To ensure that parameters are observed using the two

measurements set presented above, an observability study

can reveal that our system is observable. This observability

study is made by calculating the rank of the observability

matrix which is given by Lie derivative for nonlinear system:

Lfh(x) =
n
X

i=1

dh

dxi
fi(x) =

dh

dx
f(x) (13)

Where, iteratively:

Lkfh(x) = Lf (L
k�1
f h(x)) avec L0fh(x) = h(x) (14)

The observability matrix for nonlinear system is then given

by:

Ob =
�

dh dLfh dL2fh :::
�T

(15)

In figure (5) one can see the loop in which the estimation is

spread out. The inertial sensor data are used to calculate the

normal forces on each tire. Thereafter, all the measurements

are used as input for the EKF to estimate the state, the

tire/road forces and the sideslip angle at time sample k using

the estimated tire/road forces at time sample k � 1.

The dynamic state estimation results are given in figure

(6) where the longitudinal velocity and the yaw rate are

considered as input measurements while the lateral vehicle

velocity measurement is only used for comparison. Thus,

comparing with the test vehicle measurements, these results

show that the estimation of the lateral velocity performs very

well. The estimation error is given in figure (7).

Fig. 6. Dynamic State Estimation

Fig. 7. Dynamic State Estimation Error

Now one can ensure a good estimation of the dynamic

state and evaluate the longitudinal and lateral forces which

are given in figure (8) and (9) respectively.
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Fig. 8. Longitudinal Forces Estimation

Fig. 9. Lateral Forces Estimation

IV. USED FRICTION COEFFICIENT ESTIMATION

Several approaches can be used to model friction. Number

of them are based on detailed physical modeling while other

are based on characteristic functions. A good summary of

the main available models can be found in [15]. All the

models define the friction coefficient �, as the ratio between

the friction forces and the vertical force. Thus one can

have longitudinal and lateral friction coefficient referring to

longitudinal and lateral forces.

�x =
Fx

Fn
; �y =

Fy

Fn
(16)

Several works have already been conducted in order to

estimate the used friction coefficient [2], [3] and [4]. Each

time, one can consider different road conditions (wet, slip-

pery, dry,...) to limit the friction coefficient (for exemple: 0:8
for dry road). Using the equation (16) the friction coefficient

can be evaluated from the estimated longitudinal and lateral

forces. Figure (10) and (11) represent, respectively, the

estimation of the longitudinal and lateral friction coefficients.

Analysis of these figures, one can find that � is between 0 and

1 and it is less than 0:5, which represents that the estimated
friction coefficient is the used friction that must be normally

less than the available friction of the road (fixed at 0:8 for

dry road). This estimation is important to evaluate the ratio

of the used friction and then to know the remaining available

one.

Fig. 10. Longitudinal Friction Coefficient

Fig. 11. Lateral Friction Coefficient

V. SIDESLIP ANGLE ESTIMATION

Braking and control systems must be able to stabilize the

vehicle during cornering. When the vehicle is subjected to

transversal forces, the tire torsional flexibility produces an

aligning torque which modifies the original tire direction.

The difference between a tire’s longitudinal axis and tire

speed is characterized by an angle known as "tire sideslip

angle" �i. The angle between the vehicle’s longitudinal axis

and the direction of vehicle speed is known as "sideslip

angle" �. This is a significant signal in determining the

stability of the vehicle [16], and it is at the origin of the main

transversal force variable. Measuring sideslip angle, using the

"correvit" sensor, would represent a disproportionate cost in
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the context on car industry and it must therefore be observed

or estimated.

Given the estimated longitudinal and lateral vehicle ve-

locity, vx and vy , at the CG, the sideslip angle is defined

by:

� = arctan

�

vy

vx

�

(17)

Thus, figures (12) and (13) are the estimated sideslip angle

and the estimation error respectively. As it is clear in figure

(12) the estimated sideslip angle and the measured one are

well merged.

Fig. 12. Sideslip Angle Estimation

Fig. 13. Sideslip Angle Estimation Error

VI. CONCLUSION

This paper proposes a method to estimate the dynamic

states and the tire/road forces in order to evaluate the sideslip

angle and the mobilized friction coefficient that are among

the most important parameters that influence run-off-road

risk and vehicle stability. The setting of an estimator needs a

vehicle model. A four wheel vehicle model is chosen because

it is simple but sufficiently accurate for the considered

application. After model validation on measurement set, the

Extended Kalman Filter is used in order to estimate the

vehicle dynamic state and the tire/road forces. Thereafter,

we use the friction model to evaluate the friction coefficient

according to the estimated longitudinal and lateral forces.

The sideslip angle is also evaluated using the estimated

longitudinal and lateral vehicle velocity.

Simulations showed that the estimation errors achieved

by the Extended Kalman Filter are acceptable with a fast

convergence by using only two measurements of the dynamic

state vector: longitudinal velocity vx and the yaw rate r.

This estimator gives an idea on longitudinal and lateral

tire/road forces and the friction coefficient. The sideslip angle

is an important parameter to measure vehicle stability, this

parameter is usually measured by a specific sensor that it

is too expensive to be equipped on ordinary vehicle. Thus,

estimating this variable is made in this paper using estimated

dynamic state, and the estimation error is very small. So we

can replace the expansive sensor by a virtual estimator that

calculate the sideslip angle.

Future work will concern the estimation of other para-

meters known with a weak accuracy and are important for

the knowledge of vehicle risks, like those of the vehicle,

infrastructure and the behavior model of the driver. Several

approach can be used, a potential one consists in regarding

these parameters as additional states. However, it has to be

checked that the newly obtained system remains observable.
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