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Abstract—The paper is concerned with the D-dissipativity
of descriptor systems, that is disspativity with respect to a
region in the complex plane. The region can be a half plane
or a disc. It naturally covers continuous-time and discrete-time
descriptor systems as special cases. Necessary and sufficient
LMI conditions are provided to check the D-dissipativity. The
constraints associated to the proposed conditions are much
weaker than the existing ones.

I. Introduction

Singular systems also known as descriptor systems are
an important class of dynamic system models from both a
theoretical and practical point of view due to their capacity in
describing algebraic constraints between physical variables
[1], [2]. Among basic notions of state-space systems
generalized to descriptor systems, dissipativity, which
includes positive and bounded realness as special cases, is
one of the most important properties of dynamical systems
and plays a crucial role in various problems of analysis and
synthesis of control systems. In the literature, dissipativity
concept was initially introduced by Willems in his seminal
two-part papers [3] in terms of an inequality involving a
storage function and a supply rate. In many mechanical
and electrical engineering applications, dissipativity is
related to the notion of energy. Dissipative systems are
characterized by the following property: at any moment
of time, the amount of the energy the system can supply
to its environment can not exceed the amount of energy
that has been supplied to it [3]. This type of inequalities
have major advantages. The most distinguished advantage
in using dissipation inequalities is probably the fact that
the investigation of a possibly large number of differential
equations, given by the control system description, boils
down to a small number of algebraic inequalities. Hence, the
complexity of the analysis and the design tasks are usually
substantially reduced. Furthermore, dissipation inequalities
have immediate connections to stability, optimal control,
and robustness. The theory of dissipative systems, or in
other terms the Kalman-Popov-Yakuvobich (KYP) Lemma,
contains some basic tools, such as passivity theorem,
bounded real lemma [4].

For state-space systems, the KYP Lemma is one of the
most fundamental results in the field of dynamical systems
analysis, feedback control, and signal processing. Various
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properties of dynamical systems can be characterized by
a set of inequality constraints in the frequency domain.
The KYP Lemma establishes equivalence between such
frequency domain inequality (FDI) for a transfer function
and a linear matrix inequality (LMI) for its state space
realization [5], [6].

Viewing the importance of the theory of dissipativity
notion and the generality of singular systems models,
development of dissipativity analysis for descriptor systems
becomes an important branch of research in the control
community. For descriptor systems there are several
contributions related to dissipativity from which we quote
[7], [8], [9]. However, most of the existing results require
a certain assumption or restriction on the realization of
descriptor systems, while the KYP Lemma for state-
space systems is valid independently of the choice of the
realization. On the other hand, a new matrix inequality
condition has been proposed recently in [10], [11] that is
necessary and sufficient for dissipativity of a descriptor
system irrespective of the realization of the considered
descriptor system.

Even if the dissipativity is an important requirement, there
is no doubt that a level of performance is usually needed.
For this reason, it is important to define criteria that allow
to evaluate the performances especially the transient ones.
These performances are strongly influenced by the location
of the state matrix spectrum in the complex plane, in terms of
settling time, damping ratio. Hence it can be useful to check
if the closed-loop eigenvalues lie inside a region which must
be discerningly specified to guarantee satisfactory transient
behavior [12], [13]. Recently, the characterization of pole
clustering via LMI has been extended to descriptor systems
as in [14] for instance.

In the present paper, using the notion of disspativity
theory, we propose a matrix inequality condition that
is necessary and sufficient for dissipativity of descriptor
systems guaranteeing eigenvalue-clustering in a subregion
of a the complex plane, this is defined here as the D-
dissipativity.
The paper is organized as follows. Section 2 presents
some preliminaries. In section 3, necessary and sufficient
conditions for the D-dissipativity of descriptor systems are
established.

Notation: � and � stand, respectively, for complex and
real numbers sets. We denote by X� the transpose (conjugate
if in �nxn) of matrix X, by the Hermitian expression Sym {·}:
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Sym {X} = X + X�. Matrix inequalities are considered in
the sense of Löewner i.e. “< 0”(“≤ 0”) means negative
(semi-)definite and ”> 0” (“≥ 0”) positive (semi-)definite.
HPD stands for Hermitian Positive Definite. In is the identity
matrix of order n, 0 is a null matrix of suitable dimension.

II. Preliminaries

As a shorthand notation for descriptor system, we write
(E, A, B,C,D) where A, B, C and D are matrices with
appropriate dimensions. The matrix E may be singular, we
shall assume that rank(E) = r ≤ n. In particular a continuous
time system will be described by the set of equation ẋ(t) =
Ax(t) + Bw(t) and z(t) = Cx(t) + Dw(t) where x(·), w(·) and
z(·) stand respectively for the state, the input and the output
of the system.

A. Clustering region D
The general definition of EMI-region is given:
Definition 1: : Let R ∈ �2d×2d be a Hermitian matrix

defined by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
R = R� =

[
r2 r∗1
r1 r0

]
,

r2 ≥ 0.

The region is defined as the set

DR = {s ∈ � | f (s) =
[
s
1

]�
R
[
s
1

]
< 0} (1)

The set of regions includes, for instance, shifted and half
planes or discs.

We define also the frontier of the region as

∂DR = {s ∈ � |
[
s
1

]�
R
[
s
1

]
= 0}. (2)

B. Classical definitions

As defined in [1], [2], the system (E, A, B,C,D), with the
associated matrix pencil (sE − A), is said to be

• stable if det(sE − A) � 0, ∀s ∈ DR

• regular if det(sE − A) is not identically zero,
• impulse free if deg {det(sE − A)} = rank(E)

Provided (E, A) is regular there exist two non singular
matrices U and V such that [1]

Ē = UEV =
[
I 0
0 0

]
, Ā = UAV =

[
Ā11 Ā12

Ā21 Ā22

]

B̄ = UBV =
[
B̄1

B̄2

]
.

Let also E⊥ be defined as

E⊥ = V (I − UEV)U.

III. Dissipativity of descriptor systems

Let S = S T ∈ R(m+p)×(m+p) and consider the following
quadratic form of (w, z)

s(w, z) =
[
w
z

]�
S

[
ω
z

]

which defines a supply rate. where w and z are, respectively,
the input and the output of the system.

Definition 2: The descriptor system (E, A, B,C,D) is said
to be dissipative with respect to the supply rate s(·, ·) if the
matrix pencil (sE − A) is regular, the descriptor system has
no impulsive modes and for any T ≥ 0 and for w ∈ L2[0,T ]∫ t

0
S (w(t), z(t))dt ≤ 0 (3)

provided x(0) = 0, where x(·) is the state of the system.
The time-domain condition (3) is equivalent to the following
frequency-domain condition:[

G(iω)
I

]�
S

[
G(iω)

I

]
< 0 ∀ω ∈ R ∪ {∞} (4)

where G(iω) = C(iωE − A)−1B + D. By setting

M =
[
C D
0 I

]�
S

[
C D
0 I

]
(5)

the inequality (4) is written as[
(iωE − A)−1B

I

]�
M

[
(iωE − A)−1B

I

]
< 0 ∀ω ∈ R ∪ {∞}

(6)
where i is the complex number satisfying i2 = −1.
A. Analysis of D-dissipativity for descriptor systems

This contribution aims at developing a condition for D-
admissibility using dissipativity inequalities. We recall that
a version of the KYP lemma for descriptor systems is
given, for instance, in [10] but here we focus on equivalent
conditions in a subregion of the complex plan.

In this section, we will give a strict dissipative condition
for the system (E, A, B,C,D) which is stated in the following
theorem

Theorem 3: Suppose that the following assumptions hold
• det(sE − A) � 0 ∀s ∈ ∂D,
• lims→∞(sE − A)−1 exists.

Then the two conditions below are equivalent:
i) ∀s ∈ ∂DR we have[

(sE − A)−1B
I

]�
M

[
(sE − A)−1B

I

]
< 0 (7)

ii) there exist matrices X = X� ∈ �n×n, Y ∈ �n×n et W ∈
�n×m satisfying the inequality

M +
[
A B
In 0

]�
U(E, X,Y)

[
A B
In 0

]

+

[
A B
0 Im

]�
Sym

{(
J ⊗WE⊥

)} [ A B
0 Im

]
< 0 (8)

with

U(E, X,Y) =([
In 0
0 E�

]
(R ⊗ X)

[
In 0
0 E

])
+ Sym

{
J ⊗ YE⊥

}
(9)
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A similar condition to ii) is given in [15] from which the
regularity and the impulse freeness are obtained. However,
for simplicity, in the present note we did not work out
this aspect and these constraints are taken as afore-given
assumption in theorem 3.

Proof
The basic idea is to transform the considered region to the

left half of the complex plane or to the unit circle. In order
to derive a D-dissipativity condition we will distinguish two
cases

1) r2 = 0
2) r2 � 0

1) Case r2 = 0: In this case, matrix R can be written as:
[
0 r�1
r1 r0

]
=

[
r1I

r0
2 I

0 I

]� [
0 1
1 0

] [
r1I

r0
2 I

0 I

]
(10)

Hence, we transform s into σ as follows s =
1
r1

(
σ − r0

2

)
with σ belonging to the the frontier of the left half complex
plane then we have

[
(sE − A)−1B

Im

]
=

[ (
σE − (r1A + r0

2 E)
)−1

(r1B)
Im

]
. (11)

At this step, let us consider the two matrices

Σ =

[
I 0

−Ā−122 Ā21 I

]
and Γ =

[
I −Ā12Ā−122
0 I

]
,

that transform matrix Ē, Ā and B̄ respectively as

¯̄E = ΓĒΣ = Ē ¯̄A = ΓĀΣ =
[ ¯̄A11 0
0 Ā22

]

¯̄Y = ΓȲΓ� ¯̄B = ΓB̄ =
[ ¯̄B1
¯̄B2

]

with which equation (11) is transformed into

[
VΣ 0
0 Im

] ⎡⎢⎢⎢⎢⎢⎢⎢⎣
(σIr − (r1 ¯̄A11 +

r0
2 Ir))

−1r1 ¯̄B1

−Ā−122 ¯̄B2

Im

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (12)

which can be rewritten as
[
VΣ 0
0 Im

] [ I 0

0
[−Ā−122 ¯̄B2

I

] ] [σIr − (r1 ¯̄A11 +
r0
2 Ir)

−1r1 ¯̄B1

Im

]
.

(13)
Let Â1 = (r1 ¯̄A11 +

r0
2 Ir); B̂1 = r1 ¯̄B1, For more clarity we

define respectively two matrices M̃ and Θ as follows

M̃ =
[
VΣ 0
0 Im

]�
M

[
VΣ 0
0 Im

]
,

Θ =

⎡⎢⎢⎢⎢⎢⎢⎣
I 0
0 − ¯̄B2

0 I

⎤⎥⎥⎥⎥⎥⎥⎦
�

M̃

⎡⎢⎢⎢⎢⎢⎢⎣
I 0
0 − ¯̄B2

0 I

⎤⎥⎥⎥⎥⎥⎥⎦ .
Hence, inequality (7) is expressed as

[
(σI − Â1)−1B̂1

I

]�
Θ

[
(σI − Â1)−1B̂1

I

]
< 0. (14)

From the KYP-Lemma for conventional systems [4], the
above inequality holds if and only if there exists a Hermitian
matrix ¯̄X11 such as

Θ +

[
Â1 B̂1

I 0

]� [
0 ¯̄X11
¯̄X11 0

] [
Â1 B̂1

I 0

]
< 0.

Using [16, Fact 2.2.3] we get easily from above

M̃ +
[
Â 0 B̂
Ir 0 0

]� [
0 ¯̄X11
¯̄X11 0

] [
Â 0 B̂
Ir 0 0

]
(15)

+Sym

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎢⎣
¯̄X12 + r−11

¯̄Y12

r−11
¯̄Y22

r−11
¯̄W12

⎤⎥⎥⎥⎥⎥⎥⎥⎦ [ 0 r1Ā22 r1 ¯̄B2 ]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ < 0

which can be written alternatively as

M̃ + Sym

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎣

¯̄X11
¯̄X12

0 0
0 r−11

¯̄W12

⎤⎥⎥⎥⎥⎥⎥⎦
[
Â 0 B̂
0 r1Ā22 r1 ¯̄B2

]⎫⎪⎪⎪⎬⎪⎪⎪⎭ (16)

+Sym

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 r−11

¯̄Y12

0 r−11
¯̄Y22

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[
Â 0 B̂
0 r1Ā22 r1 ¯̄B2

]⎫⎪⎪⎪⎬⎪⎪⎪⎭ < 0

or as

M̃ +

[ ¯̄A ¯̄B
In 0

]� [
0 r∗1

¯̄E
� ¯̄X

r1 ¯̄X ¯̄E r0 ¯̄E
� ¯̄X ¯̄E

] [ ¯̄A ¯̄B
In 0

]

+

[ ¯̄A ¯̄B
In 0

]� ⎡⎢⎢⎢⎢⎢⎣ 0
(
¯̄Y ¯̄E
⊥)�

¯̄Y ¯̄E
⊥

0

⎤⎥⎥⎥⎥⎥⎦
[ ¯̄A ¯̄B
In 0

]

+

[ ¯̄A ¯̄B
0 Im

]� ⎡⎢⎢⎢⎢⎢⎣ 0
(
¯̄W ¯̄E

⊥)�
¯̄W ¯̄E

⊥
0

⎤⎥⎥⎥⎥⎥⎦
[ ¯̄A ¯̄B
0 Im

]
< 0

with ¯̄X =
[ ¯̄X11

¯̄X12
¯̄X21

¯̄X22

]
, ¯̄Y =

[ ¯̄Y11
¯̄Y12

¯̄Y21
¯̄Y22

]
, and

¯̄W = [ ¯̄W11
¯̄W12 ].

2) Case r2 � 0: In this case we have

σ =
1
α

(
s +

r∗1
r2

)

with α =
r∗1r1
r22
− r0
r2
.

In a similar way as in the previous case, we have :⎡⎢⎢⎢⎢⎢⎢⎣
Ir 0
0 −Ā−122 ¯̄B2

0 Im

⎤⎥⎥⎥⎥⎥⎥⎦
� (
βM̃ +

[
Â 0 B̂
I 0 0

]�

[ ¯̄X11 0
0 − ¯̄X11

] [
Â 0 B̂
I 0 0

]) ⎡⎢⎢⎢⎢⎢⎢⎣
Ir 0
0 −Ā−122 ¯̄B2

0 Im

⎤⎥⎥⎥⎥⎥⎥⎦ < 0.

with β =
(
r2α2

)−1
.

In order to get similar result as in the case r2 = 0 we have
to add some null terms as follows

⎡⎢⎢⎢⎢⎢⎢⎣
Ir 0
0 −Ā−122 ¯̄B2

0 Im

⎤⎥⎥⎥⎥⎥⎥⎦
� (
βM̃ +

[
Â 0 B̂
I 0 0

]� [ ¯̄X11 0
0 − ¯̄X11

]

[
Â 0 B̂
I 0 0

]
+ Sym

{([
Â 0 B̂
I 0 0

]� [ ¯̄X12

0

]}

+

⎡⎢⎢⎢⎢⎢⎢⎣
αβ ¯̄Y12

αβ ¯̄Y22

αβ ¯̄W12

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ [ 0 α−1I α−1 ¯̄B2 ]

⎞⎟⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎣
Ir 0
0 −Ā−122 ¯̄B2

0 Im

⎤⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎦ < 0.
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Applying [16, Theorem 2.3.14] to the condition above we
get easily that

βM̃ +
[
Â 0 B̂
I 0 0

]� [ ¯̄X11 0
0 − ¯̄X11

] [
Â 0 B̂
I 0 0

]

+Sym

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝
[
Â 0 B̂
I 0 0

]� [ ¯̄X12

0

]
+

⎡⎢⎢⎢⎢⎢⎢⎣
αβ ¯̄Y12

αβ ¯̄Y22

αβ ¯̄W12

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
α−1Ā�22
α−1 ¯̄B

�
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�⎫⎪⎪⎪⎬⎪⎪⎪⎭

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0

α−1Ā�22
α−1 ¯̄B

�
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ¯̄X22

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0

α−1Ā�22
α−1 ¯̄B

�
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

< 0.

The condition above can also be written as

βM̃ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Â 0 B̂
I 0 0
0 α−1Ā22 α−1 ¯̄B2

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

¯̄X11 0 ¯̄X12 0
0 − ¯̄X11 0 0
¯̄X
�
12 0 ¯̄X22 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Â 0 B̂
I 0 0
0 α−1Ā22 α−1 ¯̄B2

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+Sym

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎣
0 αβ ¯̄Y12

0 αβ ¯̄Y22

0 αβ ¯̄W12

⎤⎥⎥⎥⎥⎥⎥⎦
[
Â 0 B̂
0 α−1Ā22 α−1 ¯̄B2

]⎫⎪⎪⎪⎬⎪⎪⎪⎭ < 0.

Here, notice that performing permutations on rows and
columns, the condition above can be transformed into

[
α−1

(
¯̄A +

r�1
r2

¯̄E
)
α−1 ¯̄B

I 0

]� [ ¯̄X 0
0 − ¯̄E

� ¯̄X ¯̄E

]
[
α−1

(
¯̄A +

r�1
r2

¯̄E
)
α−1 ¯̄B

I 0

]

=

[ ¯̄A ¯̄B
I 0

]� [
α−1I α−1 r

�
1
r2

¯̄E
0 I

]� [ ¯̄X 0
0 − ¯̄E

� ¯̄X ¯̄E

]
[
α−1I α−1 r

�
1
r2

¯̄E
0 I

] [ ¯̄A ¯̄B
I 0

]

=
(
r2α

2
)−1 [ ¯̄A ¯̄B

I 0

]� [
r2 ¯̄X r�1

¯̄X ¯̄E

r1 ¯̄E
� ¯̄X r0 ¯̄E

� ¯̄X ¯̄E

] [ ¯̄A ¯̄B
I 0

]

with ¯̄X defined as for case 1.
Note also that

Sym

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎣
0 0
0 0
0 αβ ¯̄W12

⎤⎥⎥⎥⎥⎥⎥⎦
[
Â 0 B̂
0 α−1Ā22 α−1 ¯̄B2

]⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣
Â 0 B̂
0 α−1Ā22 α−1 ¯̄B2

0 0 Im

⎤⎥⎥⎥⎥⎥⎥⎦
� ⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 αβ ¯̄W

�
12

0 αβ ¯̄W12 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
Â 0 B̂
0 α−1Ā22 α−1 ¯̄B2

0 0 Im

⎤⎥⎥⎥⎥⎥⎥⎦
= β

[ ¯̄A ¯̄B
0 Im

]� ⎡⎢⎢⎢⎢⎢⎣ 0
(
¯̄W ¯̄E

⊥)�
¯̄W ¯̄E

⊥
0

⎤⎥⎥⎥⎥⎥⎦
[ ¯̄A ¯̄B
0 Im

]

with ¯̄Wdefined as in case 1. Similarly

Sym

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎣
0 αβ ¯̄Y12

0 αβ ¯̄Y22

0 0

⎤⎥⎥⎥⎥⎥⎥⎦
[
Â 0 B̂
0 α−1Ā22 α−1 ¯̄B2

]⎫⎪⎪⎪⎬⎪⎪⎪⎭
= β

[ ¯̄A ¯̄B
In 0

]� ⎡⎢⎢⎢⎢⎢⎣ 0
(
¯̄Y ¯̄E
⊥)�

¯̄Y ¯̄E
⊥

0

⎤⎥⎥⎥⎥⎥⎦
[ ¯̄A ¯̄B
In 0

]

with ¯̄Y defined as in case 1.
Therefore combining the previous expressions we get

M̃ +
[ ¯̄A ¯̄B
I 0

]� [
r2 ¯̄X r�1

¯̄X ¯̄E

r1 ¯̄E
� ¯̄X r0 ¯̄E

� ¯̄X ¯̄E

] [ ¯̄A ¯̄B
I 0

]

+

[ ¯̄A ¯̄B
In 0

]� ⎡⎢⎢⎢⎢⎢⎣ 0
(
¯̄Y ¯̄E
⊥)�

¯̄Y ¯̄E
⊥

0

⎤⎥⎥⎥⎥⎥⎦
[ ¯̄A ¯̄B
In 0

]

+

[ ¯̄A ¯̄B
0 Im

]� ⎡⎢⎢⎢⎢⎢⎣ 0
(
¯̄W ¯̄E

⊥)�
¯̄W ¯̄E

⊥
0

⎤⎥⎥⎥⎥⎥⎦
[ ¯̄A ¯̄B
0 Im

]
< 0

which is similar to the result obtained in the case r2 = 0.
Hence, inequality (8) holds after congruent transforma-

tions and setting

� =

[
0 0
1 0

]
, X = U�Γ� ¯̄XΓU

Y = V−�Σ−� ¯̄YΣ−1V−1, W = ¯̄WΣ−1V−1

which completes the proof.

Remark 4: In the case E = In and consequentely E⊥ = 0,
the singular system reduces to the conventional state-space

model, then taking R =
[
0 1
1 0

]
, which corresponds to the

left half complex plane, equation (8) coincides with the
KYP Lemma for continuous-time system. Similarly taking

R =
[
1 0
0 −1

]
, which corresponds to the unit circle, equation

(8) coincides with the KYP Lemma for discrete-time
systems. From this point of view, Theorem 3 naturally
extends existing results on the dissipativity of state-space
systems to singular ones. In [6], a version of the KYP
lemma for descriptor systems is given with additional
frequency range constraints. In our opinion, these frequency
constraints allow the strict inequality to hold thanks to the
sign constraint on the associated matrix Q, [6, Theorem 3].
In the present version it is the introduction of the additional
matrices Y and W that allows to insure the strict inequality.

Remark 5: It is worth noting that in the particular case
of continuous-time system, condition (8) is similar to [10,
Inequality 4] where we have removed the algebraic constraint
on matrices W and X. Matrix X here is assumed to be
symmetric.

IV. Conclusion

In this paper, we have established new strict LMI condition
for checking the D-dissipativity for descriptor systems. The
considered regions denoted by D covers that of continuous-
time and discrete descriptor systems as special cases. The
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proposed result can be viewed as a strict inequality version
of the KYP lemma for descriptor systems with no frequency
range constraints.
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