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Abstract— Transfer function modeling is a standard technique
in classical Linear Time Invariant and Statistical Process Con-
trol. The work of Box and Jenkins was seminal in developing
methods for identifying parameters associated with classical
(r, s, k) transfer functions.

Discrete event systems are often used for modeling hybrid
control structures and high-level decision problems. Examples
include discrete time, discrete strategy repeated games. For
these games, a discrete transfer function in the form of an
accurate hidden Markov model of input-output relations could
be used to derive optimal response strategies.

In this paper, we develop an algorithm for creating prob-
abilistic Mealy machines that act as transfer function models
for discrete event dynamic systems (DEDS). Our models are
defined by three parameters, (l1, l2, k) just as the Box-Jenkins
transfer function models. Here l1 is the maximal input history
lengths to consider, l2 is the maximal output history lengths to
consider and k is the response lag. Using related results, We
show that our Mealy machine transfer functions are optimal in
the sense that they maximize the mutual information between
the current known state of the DEDS and the next observed
input/output pair1.

I. INTRODUCTION

Transfer function modeling is critical in minimum mean
square error (MMSE) control [1]. The work of Box and
Jenkins was seminal [2] and has been extended and enhanced
over the years by several authors.

Contrast this with the discrete event control literature.
Here, plant models are often developed by hand. This may
be reasonable in some cases but for real-world applications
controllers need to be synthesized for complex systems that
are not fully known a priori. In particular, it is difficult to be
certain that manually created models accurately reflect plant
dynamics. This is especially true when system transitions
follow probability distributions. If we could automatically
derive a plant model whose outputs are observed responses
to a known set of inputs, the resulting model of input-output
relationships would be a discrete event transfer function.
This transfer function could be used to synthesize a discrete
event controller that could optimize some objective function
defined in terms of the DEDS.

1This work was sponsored by the Office of Naval Research, Contract
N00014-06-C-0022. Portions of Dr. Griffin’s work were performed as a
Eugene P. Wigner Fellow and staff member at the Oak Ridge National
Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of
Energy under Contract DE-AC05-00OR22725.

In this paper, we show to extend Crutchfield and Shal-
izi’s CSSR algorithm [3]–[5] to identify an optimal Mealy
Machine representation, when three parameters are supplied:
l1, the maximal input history length; l2, the maximal output
history length; and k the delay.

The remainder of this paper is divided as follows: In
Section II we provide a formal notation for developing our
algorithm. In Section III we extend CSSR to derive Mealy
machine transfer functions. In Section IV we provide a
sample application of this work, by identifying an adversary’s
strategy in the repeated Prisoner’s Dilemma Game and
deriving an optimal control strategy.

II. MATHEMATICAL NOTATION

In this section we provide the notation and preliminaries
necessary for the proposed approach. Our notation is derived
from Box and Jenkins [2] and symbolic dynamical systems
[6] using time series expressed as a string of symbols.

A. Time Series of Symbols

Let A (the input alphabet) and A (the output alphabet)
be finite sets of symbols. A symbolized time series is
a sequence: x = . . . x(−2)x(−1)x(0)x(1)x(2) . . . , where
x(t) represents the symbol that occurred at discrete time t
in x. If x(t) is undefined, then we assume it is ε the empty
symbol. Following the work of Box and Jenkins, let B be
the backshift operator, so that (Bx)(t) = x(t− 1).

The set of all finite lengths strings of symbols from A and
the concatenation (+) operation form a monoid with unit ε.
We may therefore write: x =

∑∞
t=−∞ x(t).

Consider a finite sub-sequence t = 0 to t = s of x, this
may be written as: (1 + B + . . .Bs)x(s) = A(B)x(s). Let
A1(B) =

∑l1
j=1 Bj and A2(B) =

∑l2
j=1 Bj .

We assume the following system dynamics

x(t) =α (A1(B)x(t)) (1)

y(t) =γ(BkA1(B)x(t), A2(B)y(t)) (2)

where α and γ are random functions with range in A and
A respectively parametrized by recent observations subse-
quences of x and y. That is, the process dynamics are
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Markovian and we will derive probabilities:

Pr [x(t) = ai|A1(B)x(t)] (3)
Pr [y(t) = bj |A1(B)x(t), A2(B)y(t)] (4)

where A = {a1, . . . , an} and A = {b1, . . . , bm}.

B. Probabilistic Automata

A labeled transition system (LTS) is a tuple G =
〈Q,A, δ〉, where Q is a finite set of states, A is a finite
alphabet and δ ⊆ Q × A × Q is a transition relation. The
transition relation δ is deterministic when for all q ∈ Q
and for all x ∈ A there is at most one q′ ∈ Q such that
(q, x, q′) ∈ δ.

A probabilistic LTS is a pair 〈G, p〉 where G is an LTS
and p : δ → [0, 1] is a probability function such that∑

x∈A,q′∈Q p(q, σ, q
′) = 1 ∀q ∈ Q.

It is easy to see that if there is some initial probability
distribution π0 over Q, then the triple 〈G, p, π0〉 is a Markov
chain with transitions labels.

A polygenic Mealy machine is a tuple M = 〈Q,A,A, δ〉
where Q and A are as above and A is a second output
alphabet and δ ⊆ Q × A × A × Q is a transition relation
with input alphabet A and output alphabet A. Determinism
of the transition relation is defined just as it was for an LTS.
If we assign a probability function to the transition relation,
then we obtain a probabilistic Mealy machine. (Note for the
sake of brevity, we remove the term polygenic.)

III. INPUT/OUTPUT TRANSFER FUNCTION MODELING

We turn our attention to the problem of modeling a Mealy
machine given two observation sequences: x, the input and y,
the output. We will assume that the input signal is generated
randomly and not as a function of the observed output. If not,
we will be modeling the coupled dynamics of an existing
control system and we will not obtain a true representation
of the impact of a control signal on system output. This is
consistent with classical transfer function modeling.

Let w be a subsequence of x and let z be a subsequence
of y. By

(
w
z

)
we mean the pair of input/output sequences.

Assume that we know there is a lag of k time observation
symbols before an output is observed. Then, for example if
we began generating input symbols x(1)x(2) · · · , and the
lag is 2, then the output y(1) will occur as symbol x(3) is
generated. From now on, we assume that the two sequences
they are appropriately aligned, so that y(1) corresponds to
the input x(1), though y(1) appears at time k + 1.

We assume the following when modeling symbolic in-
put/output dynamics: (i) There is precisely one output symbol
for every input symbol, though the type of output may
vary as a function defined in Equation 2 and (ii) Both
input and output may be randomly determined. In fact,
input should be randomly determined to prevent pre-existing
control relationships from coloring the identified behavior.

Algorithm A will produce the symbolic transfer function;
it is similar to the CSSR algorithm presented by Crutchfield
and Shalizi [3]–[5], with one exception. We have modified
the algorithm to operate on an input and output symbol

stream to generate a probabilistic Mealy machine. The CSSR
algorithm generates only probabilistic finite state machines.

A. Computing the Distribution Functions

The following formulas can be used to compute faw|x,
f(aw

Az)|x,y, fqi|x and f̃qi|x,y found in the algorithm. Let
#(x,y) be the number of times the sequence x is observed
as a subsequence of y. Define: #̃(w,x, z,y) be the number
of times that w appears a substring of x and z appears as a
substring of y and they appear at the same times; i.e., w =
w(t)w(t+ 1) · · ·w(t+ n) and z = z(t)z(t+ 1) · · · z(t+ n).
In this case, since we defined x and y to be appropriately
indexed so that the lag was removed, then we have:

faw|x(a) = Pr (a|w,x) =
#(wa,x)
#(w,x)

f(aw
Az)|x,y

(
a

A

)
= Pr

((
a

A

)
|w, z,x,y

)
=

#̃(wa,x, zA,y)
#̃(w,x, z,y)

fqi|x(a) = Pr(a|qi,x) =

∑
(wz)∈qi

#(wa,x)∑
(wz)∈qi

#(w,x)

fqi|x,y

 
a

A

!
= Pr

  
a

A

!
|x,y

!
=

P
(wz)∈qi

#̃(wa,x, zA,y)P
(wz)∈qi

#̃(w,x, z,y)

Algorithm A: Mealey CSSR Algorithm

Input: Input sequence x; Output sequence y; Input Alphabet A;
Output Alphabet A; Integer l1; Integer l2; Integer k;
Initialization:

1) Define state q0 and add
`
ε
ε

´
to state q0. Set Q = {q0};

T = ∅; N := 1.
Splitting

1) Set

W =

( 
w

z

!
|∃q ∈ Q

  
w

z

!
∈ q ∧ 

w

z

!
6∈ T ∧ |w| < l1 ∧ |z| < l2

!)
Let N be the number of states.

2) For each
`
w
z

´
∈W , for each a ∈ A ∪ {ε} and

A ∈ A ∪ {ε}, if aw is a subsequence of x and, Az is a
subsequence of y then

a) Determine faw|x : A → [0, 1], the probability
distribution over the next input symbol.

b) Determine f(aw
Az)|x,y

: A→ [0, 1] using lag k.
c) Let fqi|x : A → [0, 1] be the unified state conditional

input probability distribution; that is, the probability
given the system is in state qi, that the next control
symbol will be a. Let f̃qi|x,y : A→ [0, 1] be the
unified state conditional probability output probability
distribution; that is, the probability given the system
is in state qi, that the next output symbol will be A.

d) For each i, compare fqi|x with fax|x and f̃qi|x,y with
f(aw

Az)|x,y
using an appropriate statistical test with

confidence level α. Add
`
aw
Az

´
to the state that has the

most similar probability distribution as measured by
the p-value of the test. If all tests reject the null

4066



hypothesis, then create a new state qN+1 and add`
aw
Az

´
to it. Set N := N + 1.

3) Add each element of W to T . If W 6= ∅, Goto 1.
Reconstruction

1) Let N0 = 0
2) Let N be the number of states.
3) Repeat while N 6= N0:

a) For each i ∈ 1, . . . , N : Set r := 0. Let M be the
number of elements in state qi. Choose an element`
w0
z0

´
from state qi. Create state pir and add w0 to it.

For all elements
`
wj
zj

´
(j > 0) in state qi:

i) For each a ∈ A and for each A ∈ A
`
wja
zjA

´
produces an element that is resident in another
state qs. Let δ(

`
wj
zj

´
,
`
a
A

´
) = qs.

ii) For l = 0, . . . , r, choose
`
w
z

´
from pir . if

δ(
`
wj
zj

´
,
`
a
A

´
) = δ(

`
w
z

´
,
`
a
A

´
) for all

`
a
A

´
∈ A× A,

then add
`
wj
zj

´
to pir . Otherwise, create a new

state pir+1 and add
`
wj
zj

´
to it. Set r := r + 1.

b) Set N0 = N
c) Let N be the number of states in the current model.

4) Recompute the state probabilities and assign transitions
using the δ function defined above.

B. Properties of Algorithm A

Proposition 1: The probabilistic Mealy machine returned
by Algorithm A is minimally stochastic. Further, the states
produced by Algorithm A are sufficient statistics for the
future symbols produces by the process.

Proof: Let x and y be the input and output symbol
streams as before. Then the string interleaving z = x × y
producing x(1)y(1)x(2)y(2) · · · is a string in the alphabet
A ∪ A. If the dynamics given in Equation 2 hold for this
system, then any probabilistic finite state machine derived
using the CSSR Algorithm with z will also uncover these
dynamics but will require an input length max{l1, l2} to do
so. Algorithm A applies the CSSR Algorithm [4], [5] to z in
a more efficient way, by ignoring non-existent correlations
such as the impact the outputs have on the succeeding inputs.
Since Algorithm A improves the efficiency of the CSSR
Algorithm [5] when the system dynamics are as given in
Equation 2, it follows from Corollary 1 and Theorem 4 of
[3] that the resulting Mealy machine is minimally stochastic
and that the states are sufficient statistics for both the inputs
and the outputs.

Remark 1.1: We do not prove it, but the computational
complexity of Algorithm A is similar to that of CSSR, since
it [Algorithm A] is a derivative algorithm. Hence it is linear
in the lengths of input and output, but exponential in the size
of the alphabets A and A.

IV. EXAMPLE

The Prisoner’s Dilemma Game is a well known symmetric
bimatrix game describing the behavior of two captured
criminals. There are two strategies for each player, Collude
(C) and Defect (D). [7] has an excellent overview. In the
repeated Prisoner’s Dilemma Game, two players repeat this
game in an attempt to maximize their long run pay-off.

In Tit-for-Two-Tats, a forgiving strategy is used to avoid
unending defection. If Player 1 plays C in round i, then
Player 2 will play C in round i+ 1. If Player 1 plays D in
round i and had previously played C in round i − 1, then
Player 2 still plays C in Round i + 1. Otherwise, Player 2
plays D.

If Player 2 is using a fixed strategy S such as Tit-for-Two-
Tats, it may be possible to game the strategy thus deriving
a better long run payoff for Player 1. We can use Algorithm
A to identify Player 2’s strategy assuming Player 1 begins
by playing a random strategy. The derived transfer function
could then be used to obtain an optimal game controller.

We used Algorithm A to derive a behavioral model when
Player 1 plays a random strategy and Player 2 plays Tit-for-
Two-Tats. The resulting model is shown in Figure 1. We used
25 games for modeling. Two history streams (the input and
output) were fed into the algorithm and we set l1 = 2, l2 = 0
and k = 1; these are the correct parameters for the Tit-for-
Two-Tats strategy. When we supplied incorrect parameters

1

c/C (p=0.4545)

2

d/C (p=0.5454)

c/C (p=0.3333)

3

d/C (p=0.6667)

c/D (p=0.5)

d/D (p=0.5)

Fig. 1. A Mealy machine derived using l1 = 2, l2 = 0 and k = 1.
(Note: In Step 2.d, we used the Kolmogorov-Smirnov test with p-value set
of 0.05.)

l1 = 3, l2 = 1 and k = 1, the correct Mealy machine was
still found. However, this was not the case when k was set
to 2. In this case, the lag is incorrect and the outputs are
not tied to the appropriate inputs. Clearly this indicates the
necessity of identifying the lag correctly.

V. FUTURE WORK

It is worth noting that we have not provided any way
of determining k, l1 or l2 from data. This is the subject of
ongoing research and will be critical for exploring non-trivial
control problems. We have already explored this problem for
the CSSR algorithm [8] since [5] does not specify a method
for determining the value of l1 used there. We hope to apply
some of the results we have obtained to this problem.
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