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Abstract— In this paper the application of a robust inverse
tracking method to the test bench control in order to achieve a
high tracking performance is presented. This controller consists
of a feedforward part which is the inverse realization of the
approximate model of the combustion engine test bench and
a robustifying feedback controller, which is for compensating
the approximation error or unknown input disturbances. The
robustifying controller is simply an extension of a central robust
stabilizing controller which usually is the solution of a Hamilton
Jacobi inequality. To this end, an iterative way to find a solution
of this partial differential equation is applied here. Finally, the
presented tracking controller for the combustion engine test
bench is compared to a standard decoupled control strategy in
a simulation environment.

I. INTRODUCTION

Robust tracking control strategy consisting of a feedfor-

ward control part and a feedback control have recently been

published (see [3]). In the present paper this theory will be

applied to the tracking control of a combustion engine test

bench. Combustion engine test benches are commonly used

to parameterize the engine control unit (ECU) of combustion

engines. To do so, real vehicle load patterns are simulated on

the engine test bench. Therefore, the trajectories measured

once in a real car have to be reconstructed on the test bench.

Hence, it is necessary to track given patterns of engine speed

and engine torque.

The problem of controlling combustion engine test

benches is by far not a new application. In [1] a robust

MIMO controller is applied to control the test bench. Another

strategy is used in [2] where adaptive methods are imple-

mented in order to deal with the often unknown behavior

of combustion engines. The main challenge of test bench

control is to achieve good tracking performance, even if

the test bench system, especially the combustion engine test

bench behavior, is not well known. In this paper we do a total

different approach. We assume a rough model of the system

and we develop an inverse controller for this rough model.

Model uncertainties are then considered by an additional

robustifying feedback controller. As it will be shown in

simulation this approach is quite powerful and results in a

very good performance.

The paper is organized as follows: in the next chapter we

shortly introduce the reader to the mathematical model of

the combustion engine test bench. Then the main theoretical

results of the paper about robust tracking (see [3]) will

be presented and repeated. In section IV the nonlinear
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Fig. 1. Engine test bench system

robust tracking controller is calculated. Finally, the controller

will be applied in simulation. Conclusions including future

aspects will complete the paper.

II. MATHEMATICAL MODEL OF A COMBUSTION ENGINE

TEST BENCH

A typical combustion engine test bench system is illus-

trated in Figure 1. The main parts of such a dynamical engine

test bench are the dynamometer, the connection shaft and the

combustion engine. Considering the torque of the combustion

engine and the air gap torque of the dynamometer as the

inputs to the mechanical part of the engine test bench system,

the model description can be reduced to a lumped engine

connected to the dynamometer inertia by a damped torsional

flexibility (see [6]). Hence, the model of the mechanical part

of the test bench system is

∆ϕ̇ = ωE − ωD (1a)

ω̇E = θE
−1 (TEdyn − c∆ϕ − d (ωE − ωD)) (1b)

ω̇D = θD
−1 (c∆ϕ + d (ωE − ωD) − TDSet) (1c)

where θE is the inertia of the combustion engine, θD the

inertia of the dynamometer, ωE and ωD are the engine and

the dynamometer speed, c is the spring constant and d the

damping constant. Finally, TEdyn and TDSet are the torque

of the combustion engine and the air gap torque of the

dynamometer respectively.

The most critical part of the system is the combustion en-

gine. Due to the complexity of the ECU (including switching,

dead zones, delays, scheduling) we will not concentrate on

a detailed combustion engine model, but on a very simple

system description containing some uncertainties which can

be generated with much less effort. In fact, this means that

the engine system behavior is approximated by a so called

extended Hammerstein system (see [5]), i.e.

ṪE = −
(

a0 + a1ωE + a2ω
2
E

)

TE (2a)

+m (ωE , TE , αacc)

TEdyn = TE (2b)
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where m (ωE , TE , αacc) is a static nonlinear map which is

continuous but not continuously differentiable.

The composite model of the engine test bench is the result

of the connection between the mechanical part of system (1)

and the engine model (2). With TE0, ∆ϕ0, ωE0, ωD0 and the

corresponding αacc0 defining the operating point and ∆TE ,

max (∆ϕ), ∆ωE and ∆ωD defining the maximum expected

distance from the operating point we get

ẋ1 = −
(

ã0 + ã1x3 + ã2x
2
3

)

x1 − ã3x3 − ã4x
2
3 + v (3a)

ẋ2 = β (x3 − x4) (3b)

ẋ3 = θE
−1

(

cβ−1x1 − cβ−1x2 − d (x3 − x4)
)

(3c)

ẋ4 = θD
−1

(

cβ−1x2 + d (x3 − x4) − T̃DSet

)

(3d)

where

x1 =
TE − TE0

∆TE

, x2 =
∆ϕ − ∆ϕ0

max (∆ϕ)

x3 =
ωE − ωE0

∆ωE

, x4 =
ωD − ωD0

∆ωD

are the scaled state variables and

v = m̂ (x3, x1, αacc) =
m (ωE , TE , αacc)

∆TE0

−
m (ωE0, TE0, αacc0)

∆TE0
|ωE→x3

TE→x1

T̃DSet =
TDset − TE0

∆ωE

are the scaled nonlinear static input map and the scaled dy-

namometer torque. Furthermore, ã0, ã1, ã2, ã3 and ã4 are the

scaled system parameters of the system and β = ∆ω
max(∆ϕ) .

Consider system (3) and notice that it possesses two control

inputs (v and T̃DSet), which are not the physical control

inputs of the test bench. The physical inputs are the ac-

celerator pedal and the dynamometer torque. Hence, the

nonlinear static map in the combustion engine path v =
m̂ (x3, x1, αacc) has to be locally inverted with respect to the

real input αacc which is done by an approximative inversion.

On this account the nonlinear static map is not exactly

compensated what yields an uncertainty. Additionally to this

uncertainty, the dynamical behavior of the accelerator pedal

actuator, consisting of a delay time and linear dynamics,

is not considered in the system description (3). However,

the error caused by the approximation and by neglecting

the accelerator pedal actuator affects the system in the

same direction as the input and, hence, it is possible to

add a multiplicative error model as shown in Figure 2.

Likewise it is possible to consider the neglected dynamics

of the dynamometer (see Figure 2). Furthermore, the system

possesses four outputs, since we assume that the full state is

measurable, hence y = x. The performance variable is

z = (h (x) u)
′

(4)

where h (x) will be discussed below.

Fig. 2. Error model of the system

III. PREMILIARIES AND THEORETICAL ASPECTS

A. Problem Statement

Consider a nonlinear uncertain system that has well a

defined relative degree:

ẋ = f (x) + g (x) (u + w) (5a)

y = hy (x) (5b)

z = hz (x) + d (x) u (5c)

where x ∈ Rn is the state, u ∈ Rm the control input,

y ∈ Rp the output variable and z ∈ Rp the performance

variable for a stabilizing optimal L2 or suboptimal H∞
controller (see section [4]) and w ∈ Rm is the disturbance

input. Note by this definition it is possible to consider input

disturbances caused e.g. by actuator uncertainties as well as

model uncertainties.

For system (5) we assume that x = 0 is an equilibrium

point, i.e. f(0) = 0, and that h2(0) = 0. Moreover, we

also assume that f(x) is a smooth vector field and that

g(x), hz(x) and hy(x) are smooth mappings. Without loss

of generality it is assumed that d(x)′hz(x) = 0. Finally,

assume that g(x) and d(x) has full column rank. In particular,

d(x)′d(x) = R(x) > 0, for each x.

For w = 0 we assume that there exists a feedforward

control law that guarantees perfect tracking y = ỹ for any

reference output ỹ as long as x̃ ∈ X ⊂ R (x̃ is the

corresponding desired state trajectory), ˙̃x exists, and the

initial state is well known. This feedforward control law,

called kff

(

˙̃x, x̃
)

, can be calculated using different methods

(see [7], [8], [11] and [9]). It is obvious that if w 6= 0
the feedforward control law fails and a tracking error will

occur. Hence, we want to solve a problem which is called

Robustifying the Feedforward Control (RFC) problem.

B. Definitions and Preliminaries

Definition 1 (RFC problem): Consider the nonlinear sys-

tem with matched disturbances (5) and the feedforward con-

trol law kff

(

˙̃x, x̃
)

. Find an additional feedback controller

kfb (x̃, x) such that the control law

u = kff

(

˙̃x, x̃
)

+ kfb (x̃, x) (6)

with

kfb (x̃, x)|
x=x̃

= 0

asymptotically stabilizes the closed loop system ∀x̃ ∈ X and

the state error

e = x − x̃ (7)
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is bounded in L2 as long as the input disturbance is bounded

in L2.

Remark 1: For validating the performance of the con-

troller that satisfies the RFC problem, we introduce an

additional performance variable ze = he (e) where he(e)
is the state error depending output map.

Definition 2 (Gradient difference field): The gradient dif-

ference field in x is defined as difference of the gradients of

a scalar function V (x) at two different points x and x + e

for x, e ∈ Rn.

Γx (e) = ∂V (x)
∂x

∣

∣

∣

x+e
− ∂V (x)

∂x

∣

∣

∣

x
(8)

Lemma 1: For any point x the gradient difference field

Γx (e) defines the gradient of a local scalar function Vx (e)
(scalar function of e which is locally varying with x.

Γx (e) = ∂Vx(e)
∂e

Lemma 2: If V (x) is a scalar convex function in the

convex set x ∈ C ⊆ X then the local scalar function Vx (e)
from Lemma 1 is convex, too. Furthermore with Vx (0) = 0
the function is greater than or equal to zero.

For the proof of these lemmas we want to refer to [3]

Remark 2: The local scalar function can be calculated

using the path independent line integral

Vx (e) =

e
∫

0

Γx (e) de. (9)

Setting Vx (0) = 0 ensures that the scalar function is

positive and if it is convex it is positive definite. Hence,

this function may be a candidate Lyapunov function.

Definition 3: The distribution of the error vector field

along a given trajectory caused by an imperfect feedforward

tracking law is called the feedforward tracking error vector

field and is defined as

lx̃, ˙̃x (e) = f (x̃ + e) + g (x̃ + e) kff

(

˙̃x, x̃
)

− ˙̃x
Definition 4: The maximum eigenvalue of the input

weighting matrix is defined as follows

λR = max
x∈X

λmax (R (x))

C. Solution of the RFC problem

Consider a system given by (5) and assume that a stabilizing

controller with guaranteed robustness bounds exists. As

shown in [12], [4] and also in [10] such a controller for

a given system (5) is

u = −R (x)
−1

g (x)
′ ∂V (x)

∂x

′
(10)

where V (x) is a control Lyapunov function which guar-

antees robustness and which may be the solution of the

Hamilton Jacobi Bellman (HJB) for the L2 optimal control

law or the Hamilton Jacobi Isaac for the suboptimal H∞
control law. For the latter approaches it has been shown that

robustness (see [13] for linear systems and [4] for nonlinear

systems) in terms of a maximum H∞ attenuation level from

the input disturbance w to the performance output variable

z can be guaranteed and calculated a priori.

D. Sufficient conditions for solving the RFC problem

Assume that there exists a stabilizing control law (10) which

is either an optimal L2 controller or a suboptimal H∞
controller. Thus there exists a solution - called V (x) - of the

HJB or of the HJI for which it should be assumed that V (x)
is strictly convex and its Hessian matrix does not vanish.

∂2V (x)
∂x2 > 0, ∀x ∈ X. (11)

Since V (x) is a convex function we can now apply Lemma

2 and the Remark 2 to define a local scalar positive definite

function Vx (e) by using the gradient difference field (see

Definition 2). The following theorem is then sufficient for

solving the RFC problem.

Theorem 1: If there exists a positive definite scalar func-

tion V (x) which obeys (11) such that the controller (10)

guarantees robustness and if there exist positive constants

k > 0, κ ≥ 1 and 0 < α < κ
/(

kλ̄R

)

such that the scalar

function Vx̃ (e) satisfies

m
α

∥

∥

∥

∂Vx̃(e)
∂x̃

∥

∥

∥

2
+ 1

α

∂Vx̃(e)
∂e

lx̃, ˙̃x (e) + 1
2he (e)

′
he (e)

−k
∂Vx̃(e)

∂e
g (x̃ + e) g (x̃ + e)

′ ∂Vx̃(e)
∂e

′
< 0 (12)

for all x ∈ X , for a proper but constraint error region

‖e‖ < E and for m ≥ max∀t

∥

∥ ˙̃x (t)
∥

∥

2
, then a robust tracking

controller which solves the RFC problem is defined by

kfb (x̃, x) = −R̃ (x)
−1

rx̃ (e) (13)

with

rx̃ (e) = g (x̃ + e)
′ ∂Vx̃(e)

∂e

′

R̃ (x) = R (x)/κ

Theorem 2: If there exists a solution for (12) with α =
κ
/(

2kλ̄R

)

then the controller (13) ensures an H∞ attenua-

tion level ‖Tze,w‖∞ ≤ γ, where

γ = λ̄R

√
2k

κ
(14)

For the proof it should be referred to [3].

IV. DESIGN OF A ROBUST TRACKING CONTROLLER

As shown in Figure 3 the following tracking controller

consists of a feedforward part which is an inverse controller

and a robustifying feedback part. The output of the inverse

controller is added to the output of the robust controller

and the sum is used for the approximated inversion of

the nonlinear static map. Since the inversion is only an

approximated inversion, the feedback controller has to be

sufficiently robust. In the following we will assume that the

Fig. 3. Structure of the robust tracking controller

state variables of the system are fully available.

Remark 3: It should be stressed that the engine torque,

which is a state of the system, is in practice not measurable.
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However, a thorough discussion on the technological and

theoretical problems underneath the torque computation or

estimation is out of the scope of the present paper.

A. Inverse control of the combustion engine test bench

For the system inversion the system (3) is brought into

control normal form. Therefore the outputs to be tracked

have to be defined. In this application the outputs of the

system are the engine torque (rescaled variable x1) and

the engine speed (rescaled variable x3). Using the regular

transformation matrix








z11

z21

z22

η









=









x1

x3
c

θEβ
(x1 − x2) −

d
θE

(x3 − x4)

x2









the system is transformed into the control normal form

ż11 = −
(

c̃0 + c̃1z22 + c̃2z
2
22

)

z11 − γ1z21 − γ2z
2
21 + v

ż21 = z22

ż22 = −
c

θEβ

(

c̃0 + c̃1z22 + c̃2z
2
22 +

d

θD

−
c

d

)

z11

−
c

θEβ

(

γ1z21 + γ2z
2
21

)

+
c

θEβ
v −

d

θEθD

TDSet

−

(

d2θD − cθEθD + d2θE

)

dθEθD

z22 +
c2

dθEβ
η

η̇ =
1

d
(c (z11 − η) − θEβz22)

The inverse realization can now be easily calculated. The

inputs of the inverse system are the desired engine torque,

the derivative of the desired engine torque, the engine speed

and the first and the second derivative of the engine speed.

Thus, a necessary condition for the reference trajectory of

the engine torque is that it is differentiable and a necessary

condition for the reference trajectory of the engine torque

is that it is twice differentiable. The output of the inverse

system is the control input, which yields perfect tracking

if the initial state is well known and the system is exactly

described by the mathematical model.

ṽ = ˙̄tE +
(

c̃0 + c̃1ω̄E + c̃2ω̄
2
E

)

t̄E + γ1ω̄E + γ2ω̄
2
E

T̃DSet =
cθD

βd
˙̄tE −

θEθD

d
¨̄ωE +

c

β

(

1 −
cθD

d2

)

t̄E

−

(

θE + θD −
cθEθD

d2

)

˙̄ωE +
c2θD

d2β
η̂

where t̄E is the desired normalized engine torque, ˙̄tE its

derivative, ω̄E is the desired normalized engine speed, ˙̄ωE

the first and ¨̄ωE the second derivative, and η̂ the state of the

inverse system (zero dynamics)

˙̂η =
c

d
η̂ −

c

d
t̄E −

cθEβ

d
˙̄ωE .

B. Reference system

A reference system is important if the reference trajectory

is not known a priori since for inverse control it is necessary

to know the derivatives of the desired trajectories. The refer-

ence system must imply the performance limits of the system

in order to desire feasible trajectories. Furthermore, the order

of the reference system depends on the relative degree of the

test bench system which is 3. For our application we choose

a linear and decoupled reference system which e.g. is

˙̃z11 = −ã1z̃11 + ã1r1

t̄E = z̃11

for the combustion engine torque and

˙̃z21 = z̃22

˙̃z22 = −ã2z̃21 − ã3z̃22 + ã2r2

ω̄E = z̃21

for the engine speed where ã1, ã2, ã3 define the dynamics

of the reference system taking into account the physical

performance limits of the system. For a detailed discussion

of a reference system including the performance limits the

reader is referred to [15]. r1 and r2 are the inputs of the

reference system.

The reference system defines the reference trajectory of the

first three states of the system in normal form. The reference

trajectory of the fourth state η̃ is calculated by the differential

equation

˙̃η =
c

d
η̃ −

c

d
z̃11 −

cθEβ

d
z̃22

Using the reference system the inverse control law yields

ṽ = −ã1z̃11 + ã1r1 +
(

c̃0 + c̃1z̃21 + c̃2z̃
2
21

)

z̃11

+γ1z̃21 + γ2z̃
2
21

T̃DSet =
cθD

βd
(−ã1z̃11 + ã1r1) +

c

β

(

1 −
cθD

d2

)

z̃11

−
θEθD

d
(−ã2z̃21 − ã3z̃22 + ã2r2)

−

(

θE + θD −
cθEθD

d2

)

z̃22 +
c2θD

d2β
η̃

The reference state trajectories are computed for the

system in normal form. Since the robustifying state feeback

controller is designed for the system (3) the reference state

has to be transformed into the state space of system (3).

C. Robust stabilizing controller

Recalling the error model as shown in Figure 2 before

searching for a robust stabilizing controller it is necessary

to fix the required H∞ attenuation level from w to z. From

the uncertainties it is possible to estimate the L2 gain from

the disturbance input w to the controller output u (note that

this defines one performance output (4)) which in worst

case is 1.85. This value is calculated by assuming a worst

case phase shift and a sufficient phase margin for the model

uncertainties. The resulting worst case phase shift is then

interpreted as worst case L2 gain. Thus, the H∞ attenuation

level from w to z is 1.85.

Note that with (4) the maps h(x) and d(x) are orthog-

onal and d (x)
′
d (x) = I2×2. Note also that for this first

consideration we assume an input disturbance which has no
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offset. For designing the robustifying feedback controller we

apply the γ recalibration strategy recently presented in [4].

Referring to Theorem 2 in [4] it is possible to recalibrate the

L2 gain according to

γ = max
x

‖d∞(x)‖

√

γo

2maxx ‖d(x)‖ − γo
(15)

The recalibrated H∞ attenuation level γ used for the

controller design and which still guarantees an attenuation

level of γo = 1.85 is 3.51 which corresponds to a robust

controller much closer to the optimal one. Hence, following

e.g. [10] we search for a positive definite solution V (x) of

∂V
∂x

f(x) + 1
2h(x)′h(x)

+ 1
2

∂V
∂x

g(x)
(

1
γ2 I − R(x)−1

)

g(x)′ ∂V
∂x

′
= 0 (16)

where the robust state feedback control law then is

u = −g (x)
′
(

∂V (x)
∂x

)′
.

To find a solution of (16) we now perform an iterative

procedure. In order to simplify the search for positive definite

scalar function, we restrict the possible state operating range

with ‖x‖∞ ≤ 1. For the considered application example

this restriction is admissible since the state variables are

restricted from the physical point of view, too. For solving

(16) we first define the structure (but not the parameters)

of a candidate Lyapunov function V (x) and a performance

matrix H (x) - with x′H (x)x = h (x)
′
h (x) - such that

(16) is solvable. Note that by a proper choice of V (x) and

H(x) the performance matrix has some degrees of freedom

which can be used for tuning the performance. However,

after calculating the parameters of the candidate Lyapunov

function and the missing parameters of the performance

matrix (some of them are design parameters), the perfor-

mance of the resulting controller has to be evaluated. If it is

not satisfactory, the same procedure has to be repeated by

defining a different candidate Lyapunov function. After some

iteration steps we found the following candidate Lyapunov

function (parameters need still to be found)

V (x1, x2, x3, x4) = k1x
2
1 + k2x

2
2 + k3x

2
3 + k4x

2
4

+ k5x2x4 + k6x
2
1x

2
3 + k7x1x

2
3(17)

for which the constants k1 to k7 are such that

V (x1, x2, x3, x4) > 0 ∀x inside the considered range

(‖x‖∞ ≤ 1). This solution of (16) can be found if we choose

a specific structure of the performance matrix such that

H (x) =









h2
1 0 h13(x) 0
0 h2

2 h23 0
h13(x) h23 h2

3 + h331
x3 + h33x

2
3 h34

0 0 h34 h2
4









where

h13(x) = h13 1 + h13 2x1 − h13 3x2 + h13 4x3 + h13 5x4

+h13 6x1x2 + h13 7x1x3 + h13 8x1x4 + h13 9x
2
1

+h13 10x
2
3 + h13 11x1x

2
3 + h13 12x

3
3 + h13 13x1x

3
3

By setting the tuning parameters h1, h2, h3, h4, h33 and

h13 13 it is then possible to compute the constants k1 to

k7, h13 1 to h13 12 and h23 by comparing the coefficients.

Note that in this case it is absolutely necessary to check

whether the performance matrix H(x) is positive definite

∀x inside the considered range (‖x‖∞ ≤ 1). With the tuning

parameters

h1 = 7, h2 = 0.25, h3 = h4 = 5, h33 = −3, h13 13 = 0.8

the remaining parameters of the performance matrix turn out

to be those given in Table I for γ = 3.51, the performance

matrix is positive definite and the performance is sufficiently.

k1 = 1.57 k2 = 0.0014 k3 = 0.56
k4 = 0.70 k5 = −0.009 k6 = 0.12

k7 = −0.32

TABLE I

PARAMETERS OF V (x1, x2, x3, x4)

D. Robustifying feedback control law

The robust stabilizing central controller is now extended

to be used for robustifying the feedforward control law. The

proposed controller, which solves the RFC problem, is given

by (13). For the actual problem the input weights are set to

R (x) = I2×2. The presented approach is possible if (17)

is strictly convex and the Hessian matrix of it is positive

definite. Furthermore, condition (12) in Theorem 1 has to be

satisfied.

Using the controller parameters in Table I the Hessian

matrix of the scalar function V (x1, x2, x3, x4) is positive

definite for all ‖x‖∞ < 1. Hence, it is a candidate to

calculate the gradient difference field Γx (e) which yields

Γx̃ (e) =









γ1 (e)
2k2e2 + k5e4

γ2 (e)
2k2e4 + k5e2









′

where

γ1 (e) = (2k6 (e1 + x̃1) + k7) e2
3 + (2k1 + 2k6x̃3) e1

+(4k6 (e1 + x̃1) x̃3 + 2k7x̃3) e3

γ2 (e) =
(

2k6 (e1 + x̃1)
2

+ 2k7 (e1 + x̃1) + 2k3

)

e3

+2k6x̃3e
2
1 + (4k6x̃1x̃3 + 2k7x̃3) e1

Note that in order to get a robust feedback control law

it is necessary to achieve a L2 gain from w to u that

is less than 1.85. Hence, the performance output for the

robustness analysis is equal to the controller output. With

he(e) = rx̃(e), λ̄R = 1 and with max
∀t

∥

∥ ˙̃x (t)
∥

∥

2
= 4 1

s
= m

it can numerically be shown that (12) is true for κ = 3,

α = 0.1 and k = 15. In that case Theorem 2 is valid and

the guaranteed robustness level is γ = 1.83.

According to this, the robustifying state feedback control

law is

vfb = −
(

2k1 + 4k6x̃3e3 + 2k6e
2
3 + 2k6x̃

2
3

)

e1

+(2k6x̃1 + k7) e2
3 + (4k6x̃1x̃3 + 2k7x̃3) e3

T̄DSet fb = −
1

θD

(2k4e4 + k5e5)
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V. SIMULATION RESULTS

The presented controller is now applied to the engine test

bench system and compared to the standard control approach.

The standard control approach consists of two decoupled PI

loops whose parameters are tuned by solving a numerical op-

timization problem. A precise simulation environment is used

in order to test the controller’s performance. Therefore, the

test bench model includes control input delays, measurement

noise, the combustion oscillations and not ideal actuators.

Furthermore, since the engine torque is not measurable, it has

to be observed. To this end a simple engine torque observer

as presented in [14] is implemented.

Figure 4 shows the engine speed signal and the simulated

real engine torque and the desired engine torque value for

both, the robust tracking controller and the standard control

approach. Figure 5 shows the inputs to the engine test

bench system for both. The main advantage of the robust

tracking controller is the feedforward control which allows

a very good tracking performance while the control inputs

is without measurement noise. This is very important for

test bench control because if the accelerator pedal varies

more than in a standard application, the engine will also

generate more exhausts and hence the tests become useless.

In the comparison of the controller we see that for the robust

tracking controller the performance is better and the noise in

the dynamometer torque is less.
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Fig. 4. Tracking results

VI. CONCLUSIONS

In this paper a recently presented method for robust

tracking of nonlinear systems has been applied to an engine

test bench system. For such systems tracking is an important

but also difficult task. The main problem thereby is that

the model is never known exactly. Nevertheless we showed

that an inverse control approach in combination with a

robustifying feedback controller solves the problem quite

well. The advantage of the presented controller is that once

having a central stabilizing controller and a control Lyapunov

function it is very easy to calculate the tracking controller.

Future work will be concentrated in considering a preview
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Fig. 5. Control inputs

in the feedback controller structure as well. Furthermore, the

controller will be tested in a real environment.

VII. ACKNOWLEDGEMENT

The support of LCM - Linz Center of Mechatronics is

gratefully acknowledged.

REFERENCES

[1] B. J. Bunker, M. A. Franchek, B. E. Thomason, ”Robust Multivariable
Control of an Engine-Dynamometer System”, IEEE Transactions on
Control Systems Technology, Vol. 5, No. 2, 1997

[2] D. Yanakiev , ”Adaptive Control of Diesel Engine-Dynamometer
Systems”, Proceedings of the 37th IEEE Conference on Decision &
Control o Tampa, Florida USA o December 1998

[3] E. Gruenbacher, L. del Re, ”Trobust Trajectory Tracking for a Class
of Uncertain Nonlinear Systems”, NOLCOS, Pretoria, 2007

[4] E. Gruenbacher, P. Colaneri, L. del Re, ”Guaranteed robustness
bounds for actuator-disturbance nonlinear control”,Proceedings of
ROCOND,Toulouse 2006

[5] E. Gruenbacher, ”Robust Inverse Control of a Class of Nonlinear
Systems”, VDI Nr. 1120, ISBN 978-3-18-512008-4,2007

[6] U. Kiencke, L. Nielsen, ”Automotive Control Systems - For Engine,
Driveline and Vehicle”, Springer, ISBN 3-540-66922-1, 2000

[7] L. R. Hunt, G. Meyer, ”Stable Inversion for Nonlinear Systems”,
Automatica, Vol. 33(8), pp. 1549-1554, 1997

[8] A. Isidori, ”Nonlinear Control Systems - third edition”, Springer
Verlag, ISBN 3-540-19916-0, 1995

[9] S. Devasia, D. Chen, B. Paden, ”Nonlinear Inversion-Based Output
Tracking”, IEEE Transactions on Automatic Control, Vol. 41(7), 1996

[10] Van der Schaft, A. J., ”L2 -gain analysis of nonlinear systems and
nonlinear state feedback H∞ control”, IEEE Trans. Automat. Control,
37, pp. 770-784, 1992.

[11] E. Gruenbacher, L. del Re, ”Output Tracking of Non Input Affine
Systems using Extended Hammerstein Models”, ACC 2005

[12] A. E. Bryson, Y. -C. Ho, ”Applied optimal control”. Wiley, NY, 1975.
[13] P.Bolzern, P.Colaneri. G.De Nicolao, U.Shaked, ”Guaranteed H*

bounds for Wiener filtering and prediction”, Int. J. Robust and Non-
linear Control, Vol. 12, pp. 41-46, 2002.

[14] E. Gruenbacher, L. del Re, ”Adaptive Mean Value Engine Torque Es-
timation on Engine Test Benches”, To be published at the proceedings
of 2007 CACS International Automatic Control Conference, National
Chung Hsing University, Taichung, Taiwan, 2007

[15] E. Gruenbacher, L. del Re, H. Kokal, M. Schmidt, M. Paulweber, ”On-
line Trajectory Shaping Strategy for Dynamical Engine Test Benches”,
CCA, Munich, 2006

2857


