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Abstract— In this paper we extend a robust tracking
method to more general uncertainties or matched dis-
turbances. Therefore the tracking method consisting of
an inverse control part and a feedback control part will
be repeated and extended in such a way that robustness
bounds can be guaranteed even in presence of constant
disturbances. Furthermore, besides robustness bounds we
will discuss performance bounds as well. Therefore we will
focus on the state penalty of the performance value in the
case of stabilizing stationary operating points in order to
simplify the tuning of the feedback controller. At the end,
a simulation result will verify the design procedure.

I. INTRODUCTION

Recently in [1] a novel approach for robust output

tracking has been presented. The main novelty of this

approach was that although there are model uncertainties

and disturbances, an inverse controller is applied in order

to achieve a good tracking performance. This of course

requires a robustifying feedback controller which guar-

antees robust stability (of the tracking error differential

equations) as it is discussed in [1]. The approach in

[1] is restricted to disturbances which are square inte-

grable. Hence, constant disturbances, which often occur

in practical life (actuator faults, sensor offsets,...), are

not considered so far. Furthermore, since the robustifying

feedback controller is calculated using a central robust

stabilizing controller, the performance of robustifying

feedback controller results from the central controller

as well. Hence, tuning the central controller includes

the tuning of the robustifying feedback controller. Thus,

it would be useful to estimate the performance of the

robustifying feedback controller a priori to consider it

already in the tuning phase of the stabilizing controller.

The purpose of this paper is to improve the controller

design and to deal with a more general class of matched

disturbances.

The inverse control part of the presented strategy is

quite standard and can be realized by the use of the

inverse control approach of [3], [4], [7] or [5]. For

designing a robustifying feedback controller a central

stabilizing controller that guarantees robustness in terms

of the L2 gain from the disturbance input to the per-

formance output (see e.g. [11] for linear systems) is

extended for solving the tracking problem. Instead, the
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tracking problem is solved by formulating a robust feed-

back control problem which guarantees robust stability

and robust performance.

The paper is organized as follows: in the next section

the main results of [1] are recalled, since these results

are the base of the following considerations. After this,

in section III, it is shown how the tracking controller can

be extended to a more general kind of matched distur-

bances. Furthermore, the state penalty will be explained

and a theorem for a guaranteed state penalty will be

given. Finally a simulation result shows the effectiveness

of the presented method. The paper will be completed

with the conclusions.

II. ROBUST TRACKING FOR A CLASS OF NONLINEAR

SYSTEMS

A. Problem Statement

Consider a nonlinear uncertain system that has a well

defined relative degree:

ẋ = f (x) + g (x) (u + w) (1a)

y = hy (x) (1b)

z = he (x) + d (x)u (1c)

where x ∈ Rn is the state, u ∈ Rm the control

input, y ∈ Rp the output variable and z ∈ Rp the

performance variable for a stabilizing optimal L2 or

suboptimal H∞ controller (see section [2]) and w ∈ Rm

is the disturbance input. Note that by this definition it

is possible to consider input disturbances caused e.g. by

actuator uncertainties as well as model uncertainties.

For system (1) we assume that x = 0 is an equilibrium

point, i.e. f(0) = 0, and that h2(0) = 0. Moreover, we

also assume that f(x) is a smooth vector field and that

g(x), he(x) and hy(x) are smooth mappings. Without

loss of generality it is assumed that d(x)′he(x) = 0.

Finally, assume that g(x) and d(x) has full column rank.

In particular, d(x)′d(x) = R(x) > 0, for each x.

For w = 0 we assume that there exists a feedforward

control law that guarantees perfect tracking y = ỹ for

any reference output ỹ as long as x̃ ∈ X ⊂ R (x̃ is

the corresponding desired state trajectory), ˙̃x exists, and

the initial state is well known. This feedforward control

law, called kff

(

˙̃x, x̃
)

, can be calculated using different

methods (see [3], [4], [7] and [5]). It is obvious that if

w 6= 0 the feedforward control law fails and a tracking

error will occur. Hence, we want to solve a problem
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which is called Robustifying the Feedforward Control

(RFC) problem.

B. Definitions and preliminaries

Definition 1 (RFC problem): Consider the nonlinear

system with matched disturbances (1) and the feedfor-

ward control law kff

(

˙̃x, x̃
)

. Find an additional feedback

controller kfb (x̃, x) such that the control law

u = kff

(

˙̃x, x̃
)

+ kfb (x̃, x) (2)

with

kfb (x̃, x)|
x=x̃

= 0

asymptotically stabilizes the closed loop system ∀x̃ ∈ X

and the state error

e = x − x̃ (3)

is bounded in L2 as long as the input disturbance is

bounded in L2.

Remark 1: For validating the performance of the con-

troller that satisfies the RFC problem, we introduce an

additional performance variable ze = he (e) where he(e)
is the state error depending output map.

Definition 2 (Gradient difference field): The gradient

difference field in x is defined as difference of the

gradients of a scalar function V (x) at two different

points x and x + e for x, e ∈ Rn.

Γx (e) = ∂V (x)
∂x

∣

∣

∣

x+e
− ∂V (x)

∂x

∣

∣

∣

x
(4)

Lemma 1: For any point x the gradient difference

field Γx (e) defines the gradient of a local scalar function

Vx (e) (scalar function of e which is locally varying with

x).

Γx (e) = ∂Vx(e)
∂e

Lemma 2: If V (x) is a scalar convex function in the

convex set x ∈ C ⊆ X then the local scalar function

Vx (e) from Lemma 1 is convex, too. Furthermore, with

Vx (0) = 0 the function is greater than or equal to zero.

For the proof of these lemmas we want to refer the

reader to [1]

Remark 2: The local scalar function can be calculated

using the path independent line integral

Vx (e) =

e
∫

0

Γx (e) de. (5)

Setting Vx (0) = 0 ensures that the scalar function is

positive and if it is convex it is positive definite. Hence

this function may be a candidate Lyapunov function.

Definition 3: The distribution of the error vector field

along a given trajectory caused by an imperfect feed-

forward tracking law is called the feedforward tracking

error vector field and is defined as

lx̃, ˙̃x (e) = f (x̃ + e) + g (x̃ + e) kff

(

˙̃x, x̃
)

− ˙̃x
Definition 4: The maximum eigenvalue of the input

weighting matrix is defined as follows

λR = max
x∈X

λmax (R (x))

C. Solution of the RFC problem

Consider a system given by (1) and assume that a

stabilizing controller with guaranteed robustness bounds

exists. As shown in [8], [2], [13] and in [6] such a

controller for a given system (1) is

u = −R (x)
−1

g (x)
′ ∂V (x)

∂x

′
(6)

where V (x) is a control Lyapunov function which

guarantees robustness and which may be the solution of

the Hamilton Jacobi Belmann (HJB) for the L2 optimal

control law or for the Hailton Jacobi ISsaak for the sub-

optimal H∞ control law. For the latter approaches it has

been shown that robustness (see [9] for linear systems

and [2] for nonlinear systems) in terms of a maximum

H∞ attenuation level from the input disturbance w to

the performance output variable z can be guaranteed and

calculated a priori.

D. Sufficient conditions for solving the RFC problem

Assume that there exists a stabilizing control law (6)

which is either an optimal L2 controller or a suboptimal

H∞ controller. Thus, there exists a solution - called

V (x) - of the HJB or of the HJI for which it should

be assumed that V (x) is strictly convex and its Hessian

matrix does not vanish.

∂2V (x)
∂x2 > 0, ∀x ∈ X. (7)

Since V (x) is a convex function we can now apply

Lemma 2 and the Remark 2 to define a local scalar

positive definite function Vx (e) by using the gradient

difference field (see Definition 2). The following theorem

is then sufficient for solving the RFC problem.

Theorem 1: If there exists a positive definite scalar

function V (x) which obeys (7) such that the controller

(6) guarantees robustness and if there exist positive

constants k > 0, κ ≥ 1 and 0 < α < κ
/(

kλ̄R

)

such

that the scalar function Vx̃ (e) satisfies

m
α

∥

∥

∥

∂Vx̃(e)
∂x̃

∥

∥

∥

2
+ 1

α

∂Vx̃(e)
∂e

lx̃, ˙̃x (e) + 1
2he (e)

′
he (e)

−k
∂Vx̃(e)

∂e
g (x̃ + e) g (x̃ + e)

′ ∂Vx̃(e)
∂e

′
< 0 (8)

for all x ∈ X , for a proper but constraint error region

‖e‖ < E and for m ≥ max∀t

∥

∥ ˙̃x (t)
∥

∥

2
, then a robust
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tracking controller which solves the RFC problem is

defined by

kfb (x̃, x) = −R̃ (x)
−1

rx̃ (e) (9)

with

rx̃ (e) = g (x̃ + e)
′ ∂Vx̃(e)

∂e

′

R̃ (x) = R (x)/κ
Theorem 2: If there exists a solution for (8) with

α = κ
/(

2kλ̄R

)

then the controller (9) ensures an H∞
attenuation level ‖Tze,w‖∞ ≤ γ, where

γ = λ̄R

√
2k

κ
(10)

For the proof of Theorem 1 and Theorem 2, we want to

refer to [1]. Furthermore in [1] the following remark is

shown.

Remark 3: If there is no solution satisfying Theorem

2 but there is a solution satisfying Theorem 1 which

means that α 6= κ
/(

2kλ̄R

)

and 0 < α < κ
/(

kλ̄R

)

, it

can be concluded that the guaranteed robustness bound

is

γ =

√

λ̄R

2ακ − 2α2λ̄Rk
(11)

III. TRACKING CONTROL IN PRESENCE OF

CONSTANT DISTURBANCES

In the previous sections it is assumed that w ∈ L2.

However, this assumption cannot be applied to frequent

applications. Therefore, we enlarge the class of distur-

bances by assuming they can be separated into a square

integrable part and a constant part.

w (t) = wsi (t) + wo (t)

where

∞
∫

0

wsi (τ)
′
wsi (τ) dτ < ∞ and wo (t) = const.

To compensate the constant part of the input disturbance

it is necessary to add an integrator to the controller. There

are several possibilities to consider this integrator. One

of them, the most common method, is to consider the

integrator of the controller as a part of the system to

be controlled (see [12]). This would increase the system

order and would increase the effort for the design of the

controller. In this paper we present another method. To

be precise, the controller is designed as in the case of

square integrable input disturbance and is then extended

by an integrator. The advantage of this method is that the

problem is very simple to be solved. The disadvantage is

that it is not possible to guarantee the same robustness

level than without an integrator in the controller. The

following theorem explains how to add the integrator to

the controller and how robustness of the closed loop is

affected. Suppose that the system

ẋ = f(x) + g(x)(u + w) (12a)

y = x (12b)

z = h(x) + d(x)u, (12c)

for which we use similar assumptions accordingly for

f (x), g (x), h (x) and d (x) as in system (1), is con-

trolled using the robust tracking controller mentioned

above, described in detail in [1]

u = u⋆ = kff

(

˙̃x, x̃
)

+ kfb (x̃, x) (13)

where kff is the inverse control law and kfb the robus-

tifying feedback controller (9) that restricts the L2- gain

(from w to z) as stated in Theorem 1 and Theorem 2 if

w0 = 0. Finally, consider the system

ẋ = f(x) + g(x)(u⋆ + ū + w) (14a)

y = x (14b)

z̄ = he(e) + d(x)u⋆ (14c)

where e = x − x̃ is the tracking error and he(e) is a

performance function whereas it is assumed that he(e) is

orthogonal to d(x). We are ready to prove the following

result:

Theorem 3: The integral control action

ū = −
1

α

∞
∫

t=0

g (x̃ + e)
′ ∂Vx̃ (e)

∂e

′
dt (15)

with 0 < α < κ
λ̄Rk

, is such that the L2 - attenuation

level of the closed loop system (14) with (13) and (15)

(from w to z̄) satisfies

γ̃ ≤

√

λ̄R

2ακ − 2α2λ̄Rk
(16)

Proof: Using the robust tracking controller as presented

in the theorem taking ̺ = 1
α

the closed loop error system

(ė = ẋ − ˙̃x) forms

ė = f (x̃ + e) + g (x̃ + e) kff

(

x̃, ˙̃x
)

+ g (x̃ + e)w

− ˙̃x − g (x̃ + e) R̃−1 (x̃ + e) rx̃ (e) + g (x̃ + e) ū

ξ̇ = ̺rx̃ (e)

z̄ = he(e) − d(x)R̃−1 (x̃ + e) rx̃ (e)

where ξ defines the state of the feedback law, or the

state of the integrator. The proof follows the rationale of

the proof of Theorem 2 in [2] for the augmented closed-

loop error system, characterized by the state error vector

[e′ η′]
′
, where η = w0 − ξ. With the notation of the

feedforward tracking error vector field this results in

ė = lx̃, ˙̃x (e) + g (x̃ + e) (wsi + η)

−g (x̃ + e) R̃−1 (x̃ + e) rx̃ (e) + g (x̃ + e) ū

η̇ = −̺rx̃ (e)

z̄ = he(e) − d(x)R̃−1 (x̃ + e) rx̃ (e)
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A consequence of the asymptotic stability of the closed-

loop system is that both the tracking error and the

offset of the disturbance w0 is compensated through

the controller (as obvious), i.e. η tends to zero. The

only thing left is to show the robustness of the tracking

controller. Precisely, we want to find a value of γ̃ such

that

J =
1

2

∫ ∞

0

(

z̄′z̄ − γ̃2w′
siwsi

)

dt < 0

for all wsi ∈ L2. For this purpose, the following

Hamiltonian function is considered:

H (x, η, wsi, µ̃) = 1
2rx̃ (e)

′
R̃−1 (x̃ + e) rx̃ (e)

+ 1
2h′

e (e)he (e) − γ̃2

2 w′
siwsi + µ̃′

elx̃, ˙̃x

+µ̃′
eg (x)wsi − µ̃′

eg (x) R̃−1 (x̃ + e) rx̃ (e)

+µ̃′
eg (x) η − ̺µ̃′

ηrx̃ (e) + µ̃x̃
˙̃x ≤ 0 (17)

For being robust it is sufficient that the upper bound of

the Hamiltonian function is less than zero for

µ̃e =
(

∂Ṽx̃(e,η)
∂e

)′
µ̃η =

(

∂Ṽx̃(e,η)
∂η

)′
µ̃x̃ =

(

∂Ṽx̃(e,η)
∂x̃

)′

with Ṽx̃ (e, η) being a local positive definite function

(positive definite in every x̃). Now we define

Ṽx̃ (e, η) =
1

α
Vx̃ (e, η) +

1

2
η′η with α > 0. (18)

Furthermore, from the proof of Theorem 1 and Theorem

2 in [1] it is known that

1
2rx̃ (e)

′
R̃−1 (x̃ + e) rx̃ (e) + 1

2h′
e (e)he (e)

γ̃2

2 w′
siwsi + µ̃′

elx̃, ˙̃x + µ̃′
eg (x)wsi

−µ̃′
eg (x) R̃−1 (x̃ + e) rx̃ (e) + µ̃x̃

˙̃x ≤ 0 (19)

and (11) is true if condition (8) in Theorem 1 is fulfilled.

Hence one can see that if we choose a ̺ = 1
α

then

̺µ̃′
ηrx̃ (e) = µ̃′

eg (x) η

and (17) results in (19) what finishes the proof.

Remark 4: In Theorem 3 α is a design parameter to

be fixed as a trade off between the speed of the integral

action (that increases for small values of α, see (15))

and the robustness requirements (16).

IV. GUARANTEED STATE PENALTY FOR CONSTANT

OPERATING POINTS

The proposed state feedback controller robustly stabi-

lizes the system in a wide operating range. The main

advantage of this controller is that the calculation of

one control Lyapunov function, whose Hessian matrix

is positive definite in the considered operating range, is

sufficient. However one drawback of this method is that

the performance is not equal for all operating points of

a given set.

The performance of a control loop is usually defined

by an objective function which in the optimal L2 control

problem in general is

J2 =
1

2

∫ ∞

0

z′zdt

where z is the defined performance output of the con-

sidered and often augmented plant (12).

If we concentrate on the performance output (12c) we

see that it includes both a state penalty function h(x)
and an input penalty function d(x). Since we assume

that d(x)′he(x) = 0 the state penalty function enters the

objective function in a square form m (x) = h(x)′h(x)
where m (x) is called the state penalty. In the following

it will be shown that if the input penalty function is

kept constant over the considered operating range, it is

possible to calculate a lower bound of the state penalty

which is valid for any operating point. For tuning the

tracking controller this result is quite interesting, since

it can be guaranteed that the robust tracking controller in

the undisturbed case performs in every operating point of

the considered operating range at least as a L2 optimal

controller with the guaranteed bound of the state penalty.

Since this performance bound can be calculated offline,

it may help finding a feasible control Lyapunov function.

For further progress and for system (1) we consider

the following assumptions:

(A1) There is no disturbance, hence w = 0.

(A2) There exist positive constants k > 0, κ ≥ 1 and

an α = κ
2kλR

such that the condition (8) is true for all

x ∈ X and all ‖e‖ < E and the robustifying feedback

controller is given by (6). The guaranteed robustness

bound then is given by (10) (see Theorem 1 and 2).

(A3) For each stationary operating point x0 ∈ X it

is possible to calculate the feedforward control input

kff (x0, 0) = u0 such that kfb (x̃0, x0)|x0=x̃0
= 0.

Hence,

u0 = −
(

g (x0)
′
g (x0)

)−1
g (x0)

′
f (x0) (20)

With these assumptions we are now ready for the

following theorem.

Theorem 4: If the assumptions (A1), (A2) and (A3)

hold, then for stationary operating points (x̃ ∈ X , ˙̃x = 0)

the feedback controlled system performs at least as a L2

optimal controlled system designed with the state penalty

mx0
(e) where

mx0
(e) =

κ

4kλ̄R

he (e)
′
he (e) (21)

Proof: For stationary operating points x̃ = x0, ˙̃x = 0
and with assumption (A2) the condition (8) of Theorem

1 yields

2kλ̄R

κ

∂Vx0
(e)

∂e
lx0,0 (e) + 1

2he (e)
′
he (e)

−k
∂Vx0

(e)

∂e
g (x0 + e) g (x0 + e)

′ ∂Vx0
(e)

∂e

′
< 0 (22)
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The feedback control law for stationary operating points

is

kfb (x0, e) = −R̃ (x0 + e)
−1

rx0
(e) (23)

where

rx0
(e) = g (x0 + e)

′ ∂Vx0
(e)

∂e

′

R̃ = 1
κ
R

We now apply the idea of inverse optimality to esti-

mate the loacal state penalty achieved by the controller

(see also [14] for similar ideas). Therefore, the consid-

ered objective function for a given x0 is

Jx0
=

∞
∫

t=0

(

mx0
(e) + 1

2u′R̃ (x)
−1

u
)

dτ (24)

The function mx0
(e) describes the state penalty of the

optimization problem. Under the assumptions (A1), (A2)

and (A3) the tracking error dynamics equation of the

closed loop system (u = kfb (x0, e)) is

ė = lx0,0 (e) − g (x) R̃−1 (x) rx0
(e)

Assuming the control law (23) is optimal in the sense

that it minimizes the costs of (24) the according HJB

equation is

∂Vx0
(e)

∂e
lx0,0 (e) −

∂Ṽx0
(e)

∂e
g (x) R̃ (x)

−1
g (x)

′ ∂Vx0
(e)

∂e

′
+

+ 1
2

∂Vx̃(e)
∂e

g (x) R̃ (x)
−1

g (x)
′ ∂Vx0

(e)

∂e

′
+ mx0

(e) = 0

Define

Ṽx0
(e) = Vx0

(e) =
e
∫

0

vx0
(e) de

and the state penalty function becomes

m (e) = −
∂Vx0

(e)

∂e
lx0,0 (e)

+ 1
2

∂Vx0
(e)

∂e
g (x) R̃ (x)

−1
g (x)

′ ∂Vx0
(e)

∂e

′
(25)

Applying assumption (A2) it is possible to see that

∂Vx0
(e)

∂e
lx̃,x0

(e) < αk
∂Vx̃(e)

∂e
g (x) g (x)

′ ∂Vx0
(e)

∂e

′

−α
2 he (e)

′
he (e) (26)

This can be used to estimate the lower bound of the state

penalty. From (25) and (26) it results

m (e) > α
2 he (e)

′
he (e) +

+
∂Vx0

(e)

∂e

(

1
2g (x) R̃ (x)

−1
g (x)

′

−αkg (x) g (x)
′) ∂Vx0

(e)

∂e

′

If the matrix in brackets in the second line of the last

equation is positive definite, a lower bound of the state

penalty is given by

α
2 he (e)

′
he (e) .

So we need to show that

1

2
g (x) R̃−1 (x) g (x)

′
− αkg (x) g (x)

′
≥ 0 (27)

After some computations it is possible to show that the

latter equation is true if the following statement holds:

1

2

κ

λ̄R

− αk ≥ 0

With λR > 0, the result is

κ − 2αkλ̄R ≥ 0 (28)

By using α = κ
/(

2kλ̄R

)

it is easy to deduce that if

κ − 2αkλ̄R = 0 ≥ 0 (29)

and then the lower bound of the performance is

mx0
(e) ≥

κ

4kλ̄R

he (e)
′
he (e) (30)

V. SIMULATION EXAMPLE

We will now consider a system already treated in [1]

and in [10]. For this example we will show that the

extension for constant input disturbances works efficient

and we will further show how it is possible to estimate

the lower bound of the state penalty.

ẋ = x2 + w + 2u

y = x

z = (x, u)
′

The authors in [10] also mentioned that the positive

definite solution of the HJB equation arising in the H2

optimal control problem is

V (x) =
1

6

(

x3 +
(

x2 + 4
)

√

x2 + 4
)

−
4

3

We now want the output to track a given trajectory

which changes continuously from one operating point

to another operating point. The feedforward control law

of the robust tracking controller is

kff

(

x̃, ˙̃x
)

=
1

2

(

x̃2 + ˙̃x
)

Now it is possible to show that with k = 2, κ = 4
and with the error performance variable ze = e the

conditions (8) in Theorem 1 and (22) in Theorem 4 are

satisfied. Hence, referring to (9) the robustifying state

feedback controller becomes

kfb (xi, x) = 2

(

x2
i − x2 − x

√

x2 + 4 + xi

√

x2
i + 4

)

and this controller guarantees according to (10) in The-

orem 2 an attenuation level from w to ze which is less

than 0.5. The input penalty R̃ is 1
4 which is lower than

the input penalty of the central controller. From (21) in
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Fig. 1. Tracking results

Theorem 4 it results that the lower level of the state

penalty is 1
4 . Hence, the controller in the undisturbed

case and for constant operating points would at least act

as an optimal controller with the performance index

J =
∞
∫

0

(

1
4 (x (τ) − xi)

2
+ 1

4u (τ)
2
)

dτ

Following Theorem 3 the integral part to compensate

the constant part of the disturbances is

ū = 1
α

∞
∫

t=0

kfb (xi, x)dt (31)

where α can be tuned from 0 to 2 but as long as α is

different from 1 the robustness will be lowered.

In Figure 1 the simulation tracking results and in

Figure 2 the system inputs (control inputs and distur-

bances) are shown. The plots show the tracking results

of five different test cases. Case 1 only considers the

robust tracking controller without integral action. In case

2 the controller also includes the integral action. In

case 3 an additional disturbance acting in the counter

direction of the controller is added. This disturbance is

slightly less than the worst case disturbance. In case 4 the

additional disturbance is slightly greater than the worst

case disturbance and in case 5 the disturbance is only a

white noise and the controller is without integral action.

This simulation results show quite well that the presented

theory is fine for practical applications.

VI. CONCLUSIONS

In this paper we have extended an existing approach

for the robust tracking problem of nonlinear uncertain

systems. It has been shown that the already known

solution can easily be extended by an integral part in

order to compensate constant offsets or disturbances

while robustness in terms of the L2 - gain from input

disturbance to the performance error is still guaranteed.

Furthermore we have shown a possibility for tuning
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Fig. 2. System inputs: Control input and disturbance

the controller in order to estimate the state penalty of

an equivalent optimal L2 controller. Simulation results

underlined the theoretical issues.
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