
  

  
 

Abstract— This paper presents the formulation and 
evaluation of effective algorithms of reliable data analysis for 
real-time monitoring of incipient faults and anomalies, data 
fusion and event classification. The objective is to alleviate the 
shortcomings of the existing techniques for data mining by 
taking advantage of nonlinear filtering to handle non-Gaussian 
and non-stationary multiplicative noise and uncertainties. New 
concepts have been developed toward characterization of the 
data features and behavior interpretation of the underlying 
processes to evaluate their performance. In particular, the 
techniques of wavelet transform, Hilbert-Huang transform, 
and symbolic encoding are investigated to explore their 
effectiveness and relative simplicity to interpret and implement 
data mining tasks. 
 

Index Terms—Wavelet transform, Hilbert transform, Data 
compression, Signal analysis, Fault detection 

I. INTRODUCTION 
ATA analysis is undeniably the most pertinent part of 
science and technology related to health monitoring, 

since data is generated and processed in all systems one way 
or another. Regardless of whether the source of data is 
physical measurements from a sensor signal or numerical 
modeling, the goal of data analysis is to reveal the 
underlying processes. However, a vast majority of the raw 
data sets are not well suited for analysis and may encounter 
several inherent difficulties such as (i) short data span, (ii) 
non-stationary behavior of data, (iii) underlying nonlinear 
process dynamics. Some of these problems can be simplified 
to a certain extent or approximated by simpler solutions. For 
example, the linearization around an equilibrium point 
usually works well for mildly nonlinear data sets.  

For a general solution to be tractable over a wide range, 
data analysis may require innovative techniques and 
computationally efficient algorithms. Moreover, data 
analysis should address the problems of detection of trends, 
anomalies and faults to infer mathematically and 
computationally tractable models from the data sets for 
information fusion from multiple sources and simultaneous 
classification of instances and features. This makes the 
algorithms challenging and significant since the outcome of 
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such analysis methods can be applicable to many areas from 
simple time-frequency decomposition of signals to advanced 
health monitoring and threat identification. 

Data analysis has a long history starting from Fourier 
transform in late 1700s and early 1800s [1]. However, 
traditional data analysis methods are largely based on linear 
and stationary assumptions. For example, Fourier spectral 
analysis provides a general solution for examining the global 
energy-frequency distributions. Mainly because of its 
simplicity, Fourier analysis dominated the data analysis 
efforts and has been applied to various kinds of data. 
Although the Fourier analysis is valid under extremely 
general conditions [1], the data sets still must be periodic or 
statistically stationary. The stationary requirement is not 
particular to the Fourier spectral analysis and is required for 
most of the available data analysis techniques. 

In recent years, new methods and algorithms have 
emerged for analysis of non-stationary and nonlinear data. 
For example, the Wigner-Ville distribution [2] was designed 
for linear but non-stationary data. Furthermore, various 
nonlinear time-series-analysis methods [3][4] were designed 
for nonlinear but stationary and deterministic systems. 
Nonetheless, most natural and human engineered complex 
systems produce data, which are most likely to be both 
nonlinear and non-stationary.  

A necessary condition to represent nonlinear and non-
stationary data is to have an adaptive basis. For non-
stationary and nonlinear data, where adaptation is absolutely 
necessary, no available methods could be found until 
recently [5]. In this paper, we address the problem of 
analyzing nonlinear and non-stationary data to provide the 
information about incipient faults, anomalies, trends, and 
data classifications in complex systems.  

The primary goal of the work reported in this paper is to 
develop effective and robust algorithms for real-time 
monitoring of incipient faults and anomalies, fusion of data 
and classification of events. To achieve these goals, it is 
necessary to characterize the data features and interpret the 
characteristic of underlying processes to evaluate the system 
performance. Thus, it is possible to meet the increasing 
demands for data mining of sensor signals and analytical 
observables for health monitoring applications.  Outputs 
from these analytical tools will be useful for scheduling both 
routine and preventive maintenance, threat and risk 
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assessment and reconfiguring the resilient and fault tolerant 
control. 

This paper is organized in five sections including the 
present one. Section 2 introduces the key data analysis 
methods for algorithm development, and the trend detection 
problem for incipient faults and anomalies is formulated in 
Section 3. Section 4 presents an example application of the 
developed techniques. The paper is summarized and 
concluded in Section 5. 

II. DATA ANALYSIS METHODS  
A key element in data analysis for anomaly and fault 

detection is to transform the sensor data sets into formats 
that enable efficient, effective detection and classification of 
anomaly events and trends of interest. The sensor data are 
characterized by signals that have features that can be 
intermittent in both time and space. To maximize the 
information content derived from the data, the raw signals 
can be described in multiple resolutions in time, frequency, 
and space.  

The proposed method aims to alleviate the shortcomings 
of the existing techniques for data mining. Emphasis is laid 
on nonlinear filtering to deal with (possibly) non-Gaussian 
and non-stationary multiplicative noise and uncertainties. To 
this end, several advanced methods that have been 
developed in recent years are utilized to form the basic 
functional components of the analysis. Among the few 
possibilities of nonlinear non-stationary data analysis, 
wavelet transform (WT) [6][7], Hilbert-Huang transform 
(HHT) [5][8] and symbolic encoding (SE) [9][10] 
techniques are chosen due to their effectiveness, their 
relative simplicity for interpretation and implementation. 

A. Wavelet Analysis of Time Series Data for Time-
Frequency Localization 
Time series data of signals are often preprocessed to 

characterize the signal properties and extract pertinent 
information. It is well known that for the stationary signals 
with known time periods, Fourier analysis is sufficient to 
represent the frequency domain characteristics of the signal. 
However, Fourier analysis may not be appropriate if the 
signal has non-stationary characteristics such as drifts, 
abrupt asynchronous changes, and frequency trends. 
Wavelet analysis, on the other hand, uses adaptive windows 
to overcome these difficulties. Long windows retrieve low-
frequency information, whereas short windows are used for 
high-frequency information [7]. The ability to perform 
flexible localized analysis is one of the striking features of 
wavelet transform. 

The wavelet approach is essentially an adjustable 
windowed Fourier spectral analysis. Defining the wavelet 
function as:  
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where 1ψ  is called the ‘Mother wavelet’ and p is usually 
chosen as 1/2, the wavelet transform (WT) can be defined as 
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Therefore, wavelets provide scale-independence for 
analysis and synthesis of signals, which means continuous 
wavelet transform (WT) provides resolutions for all the 
scales. This very appealing feature of wavelets and other 
relevant reasons such as WT analysis being linear and 
having an analytic form for the result make wavelets widely 
accepted among researchers and engineers. Indeed, WT is 
very useful in analyzing data with gradual frequency 
changes. Most of its applications have been in signal 
denoising and image compression, as well as heath 
monitoring [11]. 

Among other signal processing choices, wavelet 
transforms offer an attractive means for developing multi-
resolution representations of signals suitable for hierarchical 
classification algorithms. They have been used in this way in 
speech and image processing and in radar data processing, 
among many other applications. The success of wavelet 
transforms in these and other areas can be attributed to the 
inherent ability of wavelet representations to reveal the 
superposition of different structures occurring in these 
signals on different time scales at different times (or on 
different spatial scales at different locations).  

Wavelet representations efficiently separate and sort the 
constituent structures of a complex signal. Software tools for 
construction of wavelet transforms have recently become 
available, offering the user a collection of standard libraries 
of waveforms that can be chosen to fit specific classes of 
signals. The rapid development of wavelet theory and 
computational methods provides a versatile and powerful set 
of tools for the analysis and manipulation of signals. 
However, the leakage due to the compact support of the 
mother wavelet function makes the quantitative definition of 
the energy-frequency-time distribution difficult. In spite of 
these problems, wavelet analysis is still among the best 
available non-stationary data analysis method. 

B. Hilbert-Huang Transform of Time Series Data for 
Time-Frequency-Energy Analysis 
While many other techniques may fail in analyzing non-

stationary and nonlinear systems, Hilbert-Huang transform 
(HHT) meet the challenges of time-frequency-energy 
representation of the data. Consisting of empirical mode 
decomposition and Hilbert spectral analysis, HHT is suitable 
for computing instantaneous frequency and energy of the 
signal in time domain. Therefore, the ability to perform 
flexible localized analysis in the three independent variables, 
namely, time, frequency and energy, is a striking feature of 
HHT [5]. HHT has good computation efficiency and does 
not involve the concepts of time and frequency resolution. 
These features alleviate noise and signal distortion problems 
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and make HHT as an excellent candidate for data mining in 
health management applications [12]. 

The Hilbert transform is performed on real-valued time-
series data and produces an analytical signal for which the 
instantaneous frequency can be defined. The Hilbert 
transform of a signal ( )x t  is defined as its convolution with 
1 / t  as 

( )
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P x
H t d
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τ

π τ
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where P is the Cauchy principal value. Combining ( )x t and 

( )H t as ( )( ) ( ) ( ) ( ) i tZ t x t iH t A t e φ= + =  yields the analytical 
signal ( )Z t . One important property of the Hilbert transform 
is that if the signal ( )x t is monocomponent, then the time 
derivative of instantaneous phase ( )tφ  will be the physical 
meaning of instantaneous frequency  

( )
( )

d t
t

dt

φ
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The aim of HHT is to decompose the signal into 
monocomponent pieces by using an empirical mode 
decomposition algorithm. An intrinsic mode function (IMF) 
is a function that satisfies almost monocomponent 
requirements and it represents one and only one oscillation 
mode embedded in the data. Therefore, by applying the 
Hilbert transform to each IMF component, which is obtained 
from mode decomposition, it is possible to estimate 
instantaneous frequencies in the data. HHT also enables us 
to represent the amplitude and the instantaneous frequency 
as functions of time in a three-dimensional plot, in which the 
energy density of the signal can be contoured on the 
frequency-time plane to produce the Hilbert energy 
spectrum [8]. 

Among other signal processing choices, HHT offers an 
attractive means for developing time-frequency-energy 
representations of signals suitable for anomaly, fault and 
trend detection algorithms. They have been used in this way 
in signal processing and fault identification, among other 
applications. The success of HHT in these and other areas 
can be attributed to the inherent ability of localized 
representations to reveal the superposition of different 
structures occurring in these signals on different frequencies 
at different time instances (or on different energy levels at 
different locations).  

C. Symbolic Dynamics and Encoding 
The concept of symbolic dynamics and its merits for 

encoding nonlinear system dynamics from observed data 
sequence has utmost importance from data mining point of 
view. It not only helps us to describe the process dynamics 
in a lower dimensional space but also overcome the 
difficulties due to uncertainties and noise. Let a 
continuously varying physical process be modeled as 

( ) 0

( )
( ), ( ) (0)s

dx t
f x t t x x

dt
θ= =  

where [ )0,t ∈ ∞  denotes the time; nx ∈  is the state 

vector in the phase space; and mθ ∈ is the parameter 
vector varying in time scale ts. Sole usage of the model may 
not always be feasible due to unknown parametric and non-
parametric uncertainties and noise. A convenient way of 
learning the dynamical behavior is to rely on the additional 
information provided by sensory data [13]. A tool for 
behavior description of nonlinear dynamical systems is 
based on the concept of symbolic encoding for transitions 
from smooth dynamics to a discrete symbolic description 
[9].  

The stationary motion of the process dynamics are 
confined in compact (i.e., closed and bounded) region 

nΩ ∈  if the stability conditions are satisfied. The phase 
space of the dynamical system is partitioned into a finite 
number of cells, so as to obtain a coordinate grid of the 
space [14]. Encoding of Ω  is accomplished by introducing a 
mutually exclusive and exhaustive partitioning 

{ }1 , , mB b b= … consisting of m cells. The process dynamics 

describes an orbit in Ω  as { }0 , , ( )k i ix x x t ∈ Ω… , which 
passes through or touches the cells of the partition B. Let us 
denote the cell visited by the trajectory { }0 , , kx x… at a time 
instant ti as a random variable S that takes a symbol value 
σ ∈ Σ . The set Σ  of symbols that label the partition 
elements is called the symbol alphabet. Each state ix ∈ Ω  
generates a symbol defined by a mapping from the phase 
space into the symbol space as i jx σ→ . This mapping is 

called Symbolic Encoding (SE) as it attributes a legal (i.e., 
physically admissible) symbol sequence { }0 , , kσ σ…  to the 

system dynamics starting { }0 , , kx x…  from an initial state 

0x . (Note: A symbol alphabet Σ  is called a generating 
partition of the phase space Ω  if every legal symbol 
sequence uniquely determines a specific initial condition 0x , 
i.e., every symbolic orbit uniquely identifies one continuous 
space orbit [10].)  

This creates a spatial and temporal discretization of the 
system dynamics defined by the trajectories. Symbolic 
encoding can be viewed as coarse graining of the phase 
space, which is subjected to (possible) loss of information 
resulting from granular imprecision of partitioning boxes. 
However, the essential robust features (e.g., periodicity and 
chaotic behavior of an orbit) are preserved in the symbol 
sequences through an appropriate partitioning of the phase 
space [9] and usual difficulties that arise from measurement 
noise and errors, and sensitivity to initial conditions to 
analyze the process data is mostly evaded due to granular 
partitioning. 
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III. PROBLEM FORMULATION FOR TREND DETECTION 
Physical faults that gradually evolve over a prolonged 

period of operation influence the performance of 
components in electrical and mechanical system. Therefore 
from health monitoring point of view, it is imperative to 
detect the trends of incipient faults and anomalies at an early 
stage and predict the future effects and consequences. This 
provides a prognostic capability as well as diagnostics in 
advanced health management systems. Similarly, component 
degradation occurs on a slow time scale with respect to the 
system dynamics, which constitutes the fast time scale, and 
is observed in very small magnitude changes in system 
behavior before failure. The precursors to this type of slowly 
approaching failure have to be monitored in order to predict 
the remaining life of a component with the best accuracy. 

Often a small part of the energy of the signals to be 
processed can be attributed to fault conditions and there is a 
substantial level of noise and unmodeled dynamics 
associated with the observed process variables [15]. Our 
technique for trend detection of anomalies has two features 
(i) isolation of signal features that have a high degree of 
correlation with anomalies; and (ii) application of a 
decision-algorithm to classify the set of signal features to 
identify nominal and anomalous behavior. The basic 
technique include preprocessing of time series data using the 
wavelet analysis [7], which is well suited for time-frequency 
analysis of non-stationary signals, for attenuation of noise 
and spurious disturbances in the raw time series data without 
any significant loss of pertinent information. The wavelet-
transformed data is partitioned using the maximum entropy 
principle [6] to generate the symbol sequences. Then, the 
technique builds probabilistic automata [16] from temporal 
and spatial data series generated by a simple nonlinear 
spatial system [10]. The goal is to let the process describe 
itself, without appealing to “a priori” assumptions about the 
process’s structure. Computational mechanics shows, from 
either empirical data or from a probabilistic description of 
behavior, how to infer a model of the hidden process that 
generated the observed behavior. This representation 
captures the patterns and regularities in the observations in a 
way that reflects the causal structure of the process [15]. 

The procedure for trend detection of incipient faults and 
anomalies using the concept of wavelet transform-based 
symbolic encoding (WT-SE) requires the following steps: 
1. Time series data acquisition on the fast scale from 

sensors and/or analytical measurements (i.e., outputs of 
physics-based or empirical model). Data sets are 
collected either at different slow time epochs or as 
single set over the whole span of the data. 

2. Transformation of the data from time domain to the 
wavelet domain for attenuation of noise and spurious 
disturbances in the raw time series. 

3. Transformation of wavelet data from the continuous 
domain to the symbolic domain by partitioning into 
finitely many discrete blocks to generate symbol 

sequences at different slow time epochs. 
4. Construction of finite state automaton from the 

generated symbol sequence and computation of the 
instantaneous statistical pattern vectors, whose elements 
are obtained online from frequency counting of the 
automaton states. 

5. Identification of changes in statistical behavior based on 
the derived information as the evolution of 
instantaneous probability vectors relative to the nominal 
condition. 

This procedure specifically accommodates localization of 
the time-frequency characteristics of the data in a lower 
dimension than the process space, leading to data 
compression without losing pertinent information. 

For trend detection and classification, Hilbert-Huang 
transform (HHT) of the data can also be utilized since HHT 
is best suited to get a broad picture of the data in time-
frequency-energy space. This improves the solution to the 
classification problem and detection of the trends in the data 
as the information relevant to the data is enhanced by HHT. 
A natural extension of trend detection will be to infer the 
model and determine the model parameters from the data. 

Based on above discussion, the second algorithm makes 
use of the Hilbert-Huang transform of the signal which 
represents nonlinear, non-stationary process dynamics. The 
changes in the instantaneous frequency and the localized 
energy of the data may be associated with parametric and 
non-parametric anomalies in the system. The HHT 
procedure differs from the previous one as follows: 
1. Time series data acquisition on the fast scale from 

sensors and/or analytical measurements (i.e., outputs of 
physics-based or empirical model). Data sets are 
collected either at different slow time epochs or as 
single set over the whole span of the data.   

2. Transformation of the data from time domain to the 
Hilbert domain for information enhancement and 
localization of the raw time series. 

3. Identification of changes in signal behavior based on 
the derived information as the evolution of 
instantaneous frequency and amplitude relative to the 
nominal condition. 

The major advantages of the developed techniques for 
small anomaly detection and trend identification for faults 
are listed below: 
• Robustness to measurement noise and spurious signals 
• Adaptability to low-resolution sensing due to the coarse 

graining in space partitions 
• Capability for early detection of anomalies because of 

sensitivity to signal distortion and real-time execution on 
commercially available inexpensive platforms. 

IV. ALGORITHM VALIDATION  
As an example, we illustrate an application of WT-SE 

based anomaly discovery and HHT based trend detection 
algorithms for validation purposes. The example system 
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implements a second-order non-autonomous, forced Duffing 
equation with a cubic nonlinearity in one of the state 
variables [10][5], given by 

( )
2

2

2
1 cos( )

d x dx
x x A t

dt dt
α ε ω+ + + =  

where ε  is not necessarily small. The numeric values for the 
system parameter and input excitation are chosen as follows: 

1ε = , 22A =  and 5ω = . The challenge is detection of the 
slowly varying dissipation parameter α , which is associated 
with parametric anomaly during a fixed time frame. 
Furthermore, the non-stationary data of the system is 
corrupted with Gaussian noise to examine the robustness of 
the algorithms. The phase plot of the data is shown in Figure 
1, where the dissipation parameter α  is increased gradually 
from 0.10 to 0.35 in a span of 400 seconds. The sampling 
frequency of the data is 100 Hz. As seen in the figure, the 
signal content practically overlaps in the domain of α . 
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Figure 1. Phase plot of Duffing system with variable dissipation 

parameter α 

It should be noted that both the wavelet-based and HHT-
based algorithms utilize only time series data of the 
available measurements. Also, the noise content of the 
signal is not filtered so that we are able to evaluate the 
robustness of the algorithms. Undoubtedly, full observability 
and noise filtering would enhance the analysis results. 

First, the WT-SE algorithm is employed for detection of 
the trend of anomaly in the time series data of the Duffing 
system. As described earlier, WT is used for attenuation of 
noise and spurious disturbances in the raw time series as 
well as time localized analysis of the data. For this example, 
we used 1st order Daubechies (Haar) wavelet in the analysis. 
Although the usual practice is to select a wavelet basis that 
has similar characteristics with the signal, our approach for 
symbolization of the wavelet coefficients via maximum 
entropy principle relaxes this criteria. The more important 
factor in the analysis is selection of the pseudo-frequency of 
the wavelet, since the wavelet coefficients of the signal are 

usually larger when this pseudo-frequency corresponds to 
the locally dominant frequencies in the underlying signal. 

 In the context of this paper, Symbolic Encoding helps 
estimating instantaneous probability vectors based on 
wavelet transformed. In a recent study [17], Hilbert 
transformed data is also used for symbolic encoding, albeit a 
two dimensional symbolization is performed in angular and 
radial directions. For this example, the number of states for 
finite state machine is chosen as 8 and the initial probability 
vector, P0, is computed from first ten seconds of data. 
Subsequently, a sliding window of length 10 seconds is used 
for computation of instantaneous probabilities in 0.5 seconds 
intervals. Figure 2 presents the time evolution of angle 
between instantaneous probability vectors and the unit 
vector in the direction of the first component, which is 
chosen as a reference. 
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Figure 2. Time evolution of instantaneous probability vector 

using WT-SE 

The time-frequency-energy localizations of the data using 
HHT are presented in Figure 3. The frequency spectrum of 
the data is unaffected as the parameter changes. This makes 
the frequency based analysis such as FFT ineffective for this 
kind of anomalies and detection of trend in the data becomes 
conspicuously difficult. Yet, in Figure 3 we can see the 
decrease in the energy of the lower fundamental frequency 
of the signal as parameter α  increases (i.e. more the 
dissipation, less the energy remaining in the system). Just 
observing the energy content of this frequency makes a 
straightforward trend detection of the parametric anomaly. 
Another important feature of the analysis is rejection of 
noise and distortions in the data. This is achieved by 
checking the cross-correlations between the signal and each 
IMF component during the HTT process. Only the 
instantaneous frequencies and amplitudes of highly 
correlated IMF components are evaluated since the rest 
constitutes the noise and residuals in the signal. In this 
example, only two IMF components are analyzed since 
mean of their correlation sequences are at least three times 
that of remaining three components. 
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Figure 3. Time/Frequency/Energy evolutions of the data using 

Hilbert-Huang transform 

The computational complexity is obviously a big concern 
for data mining applications when real time analysis or 
online implementation of the algorithms is required. It 
should be noted that we don’t claim the algorithms to be 
optimal with respect to execution time or memory 
requirement. Yet, it is observed that both algorithms meet 
real time execution requirement as they finish analysis of 
400 seconds of data (i.e. 40000 data points) on the average 
of 4.756 seconds and 3.492 seconds for WT-SE and HHT 
algorithms, respectively, on a 3.40 GHz Pentium 4 processor 
in MATLAB 7.1 environment. From memory point of view, 
the requirement of (random access) memory is in WT-SE 
case ~30 MB whereas in HHT case ~50 MB; both are 
reasonable for a commercially available laptop computer. 

V. SUMMARY AND CONCLUSIONS 
This paper presents two novel data mining methods and 

their comparison based on real-time implementation for 
trend detection of anomalies and faults. The first method 
uses the concept of wavelet transform-based symbolic 
encoding (WT-SE), since adaptive window characteristic of 
wavelet is suitable for analysis of non-stationary data and 
symbolic encoding allows the process to describe itself, 
without resorting to assumptions about its structure. The 
second approach utilized Hilbert-Huang Transform (HHT) 
to analyze non-stationary and nonlinear data. HHT offers the 
ability to perform flexible localized analysis in three 
independent variables (i.e. time-frequency-energy). 

The Duffing system is used to validate the algorithms on a 

noise-corrupted nonlinear and non-stationary data set. WT-
SE and HHT algorithms have been executed in real time 
with low memory requirements and both of them effectively 
detected the trend of a parametric anomaly in the time series. 
Both algorithms are able to capture the non-linear nature of 
the Duffing system as the dissipation parameter changes. 
The future work includes incorporating symbolic encoding 
for the HHT data and performing the signal analysis under 
distortions and non-Gaussian noise to investigate the 
robustness and adaptability of the algorithms. It is also 
aimed to optimize the algorithms to obtain better memory 
requirement and execution times.  
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