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Abstract— A minimum dimension observer for on-line global
estimation of the frequencies of a signal resulting from the sum
of a bias and n sinusoids with unknown amplitudes, frequencies
and phases is proposed. The dimension of the observer is 3n−1
when no bias is considered, 3n otherwise.

I. INTRODUCTION

The problem of estimating the unknown frequencies and

bias of the signal

y(t) = E0 +

n
∑

i=1

Ei sin (ωit + φi), (1)

with known n ≥ 1 and unknown bias E0, angular frequencies

ωi > 0, amplitudes Ei and phases φi, for i = 1, .., n, has

been widely studied in systems theory, since the problem

arises in different engineering fields as telecommunication,

image processing, identification and control.

The first solutions have been proposed from a signal

processing point of view [1], using classical Fourier anal-

ysis performed off-line on batch processing data. Such an

approach is not suitable when on-line estimation of the

unknown frequencies is needed, as in control applications,

where compensation or simply identification of disturbances

may benefit from a frequencies estimator with suitable

asymptotic properties (see [8]). As an example, the extremum

seeking feedback schema in [3], where the probing sinusoidal

signal with unknown frequency is reconstructed simply fil-

tering the system output, would considerably benefit from a

robust frequency estimator (in this case with n = 1, it is

straightforward to retrieve E1 and φ1 when an estimate of

ω1 is available).

An on-line estimator, employing infinite impulse response

filters or notch filters, has been proposed in [2]. This estima-

tor has been enhanced with an adaptation mechanism in [4],

where the problem of single frequency estimation has been

solved globally for the first time. Since then, many authors

have, almost simultaneously, provided global solutions to the

estimation problem for n unknown frequencies.

The first on-line global estimators for n ≥ 1 make use

of 3n dimensional adaptive observers and resort to the

adaptive identifiers structure [10], [6]. A different approach

is proposed in [7], where a linear adaptive observer of

dimension 5n − 1, exploiting a filtered transformation of

coordinates, has been proposed. The latter usually provides

improved convergence properties when compared to the

formers. In [11] a revised extended Kalman filter is proposed

for the case n = 1 and in the presence of additive broad-

band noise. Finally, an adaptive observer of dimension 5n
for the estimation of the amplitudes Ei, exploiting adaptive

identifiers for the estimation of the n unknown frequencies

ωi, has been introduced in [9].

The solution that we present for the global estimation of n
unknown angular frequencies is based on the ideas developed

in [13], [14]. The observer design problem is cast into the

problem of defining an appropriate manifold in the extended

state space of the observer and of a system generating the

signal (1). The estimation error is identically equal to zero

for all trajectories on the manifold, which has, therefore, to

be rendered invariant and attractive. As discussed in [14], the

determination of the above manifold requires (in general) the

solution of a set of PDEs. However, in the present context,

we show that the manifold, with the desired properties, can

be directly determined.

The reduced-order observer that we propose is of dimen-

sion 3n − 1 (3n if the bias E0 is considered), and it is of

smaller dimension than the previous ones. Furthermore, such

a dimension is the smallest possible (hence the observer is

minimal in this respect), since 2n−1 states are needed for the

estimation of the states of the linear time invariant system

generating the measured signal y(t), and the remaining n
states are used for the estimation of the n unknown frequen-

cies (n + 1 states are necessary if the bias is considered).

The paper is organized as follows. To introduce our

approach we present in Section II the global frequency

estimator for signals having one frequency, i.e. n = 1, and

a constant bias. The generalization to the case n > 1 is

presented in Section III, together with a robustness analysis.

Simulation results are shown in Section IV to prove the

effectiveness of the proposed approach and conclusions, in

Section V, summarize the results.

II. GLOBAL ESTIMATOR OF A SINGLE FREQUENCY

The measured signal y(t) = E1 sin (ω1t + φ1) may be

regarded as the output of the system

ẏ = x,
ẋ = −θ1y,

(2)

with θ1 = ω2
1 > 0. Define the estimation error z =

[zx, zθ] = β(y, ξ)−h(ξ, x, θ1), with h(·) left invertible with

respect to x and θ1, and ξ = [ξ1, ξ2]
⊤ ∈ R

2 an auxiliary

variable, the dynamics of which will be selected in the

sequel. In particular, let

zx = β1(y, ξ) − h1(ξ, θ1, x), (3)

zθ = β2(y, ξ) − h2(ξ, θ1), (4)

with h1(·) and h2(·) invertible with respect to x and θ1,

respectively.

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrC17.2

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 5236



Consider now the variables y, x and ξ and the set z = 0,

which describes a manifold, parameterized by θ1 in the

space (y, x, ξ). Note that the estimation problem is solved

if this manifold is rendered invariant and attractive by some

selection of the functions βi(·) and hi(·), and of the ξ
dynamics. In fact, on the manifold, one can express the

unknown variables x and θ1 as a function of the known

variable ξ, exploiting the assumed invertibility conditions.

To this aim, consider the selection

β1(y) = k1y,

β2(y, ξ) = γ2yξ1 + ξ2,

h1(ξ1, θ, x) = −γ1ξ1(k
2
1 + θ1) + x,

h2(θ1) = γ1θ1,

with k1 and γi positive constants. The given choice for βi(·)
and hi(·) yields

zx = k1y + γ1ξ1

(

k2
1 + θ1

)

− x, (5)

zθ = γ2yξ1 + ξ2 − γ1θ1, (6)

hence

żx = k1x + γ1ξ̇1

(

k2
1 + θ1

)

+ θ1y, (7)

żθ = γ2

(

ξ1x + yξ̇1

)

+ ξ̇2. (8)

Substituting x in żx, using (5), yields

żx = −k1zx − ∆1(y, ξ1)(k
2
1 + θ1), (9)

where

∆1(y, ξ1) = (ξ̇1 + k1ξ1)γ1 + y.

It is now evident that the selection of h1(·), in which the

free variable ξ1 is multiplied by the unknown parameter

θ1, allows to render asymptotically stable and independent

from zθ (i.e. the unknown parameter θ1) the dynamics of (9)

selecting ξ̇1 such that ∆1(y, ξ1) = 0, i.e.

ξ̇1 = −k1ξ1 −
y

γ1
.

Substituting θ1 in (8), using (6), yields

żθ = −γ2ξ1zx − γ2ξ
2
1zθ + ∆2(y, ξ),

where

∆2(y, ξ) = γ2ξ1

(

k1y + ξ1γ1

(

k2
1 + ξ2+γ2ξ1y

γ1

))

+

γ2yξ̇1 + ξ̇2.

Note now that selecting

ξ̇2 = −γ2ξ
2
1

(

γ1k
2
1 + ξ2 + γ2ξ1y

)

+
γ2

γ1
y2,

yields ∆2(y, ξ) = 0, hence the dynamics of z are given by

żx = −k1zx, (10)

żθ = −γ2ξ1zx − γ2ξ
2
1zθ. (11)

This system can be regarded as the cascade of the LTI and the

LTV systems (10) and (11), respectively. Global exponential

convergence of the estimation error to zero can be easily

proved noting that ξ1(t) = 0 no more then two times in

each time interval 2π/ω1. As a result, the following fact

holds, the proof of which is omitted since it is contained in

the proof of Proposition 2.

Proposition 1: Consider the signal y(t) = E1 sin (ω1t+
φ1), with ω1 ≥ 0 and unknown, and E1 and φ1 unknown.

Consider the dynamical system

ξ̇1 = −k1ξ1 −
y

γ1
,

ξ̇2 = −γ2ξ
2
1

(

γ1k
2
1 + ξ2 + γ2ξ1y

)

+
γ2

γ1
y2,

with output

ω̂1 =
√

γ−1
1 |γ2yξ1 + ξ2|,

x̂ = k1y + ξ1

(

γ1k
2
1 + γ2yξ1 + ξ2

)

.

Then

ω̂1(t) − ω1 ∈ L∞,

lim
t→+∞

x̂(t) − ẏ(t) = 0,

exponentially,

ξ1(t)zθ(t) ∈ L2

and

lim
t→+∞

ξ1(t)zθ(t) = 0.

In addition, if E1 6= 0 and ω1 > 0 then

lim
t→+∞

ω̂1(t) = ω1,

exponentially. �

When the measured signal y(t) has a constant bias of

unknown magnitude E0, i.e. y(t) = E0 +E1 sin (ω1t + φ1),
which may be modeled as the output y of the dynamical

system
ẏ = x,
ẋ = −θ1y + θ0,

(12)

with θ0 = E0θ1, the proposed observer has to be modified

introducing the vectors Θ = [θ1, θ0]
⊤ ∈ R

2 and R(ξ1) =
[ξ1, 1/(γ1k1)] ∈ R

1×2, leading to the definition

zx = k1y + γ1

(

k2
1ξ1 + R(ξ1)Θ

)

− x,

zΘ = γ2R(ξ1)
⊤y + ξ2 − γ1Θ.

(13)

The dynamics of the observer states ξ1 ∈ R and ξ2 ∈ R
2 are

selected, similarly to the previous case, as

ξ̇1 = −k1ξ1 −
y

γ1
,

ξ̇2 = −
[

γ2R(ξ1)
⊤

(

k1y + γ1

(

k2
1ξ1+

R(ξ1)
ξ2+γ2R(ξ1)

⊤y

γ1

))

+ γ2yṘ⊤(ξ1)
]

,

(14)

yielding

żx = −k1zx,
żΘ = −γ2R(ξ1)

⊤zx − γ2R(ξ1)
⊤R(ξ1)zΘ.

(15)

Note the cascaded structure of the system (15). We now

briefly analyze the properties of system (15), and in particular

show that its zero equilibrium is globally exponentially
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stable, provided E1 6= 0 and ω1 > 0. To this end, we first

prove that the LTV system (15) with zx = 0, i.e.

żΘ = −γ2

[

ξ2
1

ξ1

γ1k1

ξ1

γ1k1

1
γ2

1
k2

1

]

= −γ2F (t)zΘ, (16)

is uniformly globally asymptotically stable (UGES). To this

end, since at steady state ξ1(t) = c0 + c1 sin (w1t + c2)
for some constants ci, with c1 6= 0, the vector R(ξ) is

persistently exciting (PE), i.e. there exist δt > 0, σ1 > 0,

and σ2 > 0 such that, for all t0 ≥ 0,

σ1I ≤

∫ t0+δt

t0

R(ξ1(τ))⊤R(ξ1(τ))dτ ≤ σ2I.

This yields (see [5]) that the origin zΘ = 0 of the system

(16) is UGES. Moreover, since ξ1(t) is bounded and con-

tinuous, so is F (t) and by [12, Theorem 4.12] there exists

a positive definite, symmetric, smooth and bounded matrix

P (t) solution of the time varying Lyapunov equation

−Ṗ (t) = P (t)F (t) + F (t)⊤P (t) + Q(t),

with Q(t) any continuous, bounded, positive definite, and

symmetric matrix. This implies the existence of a Lyapunov

function V (t, zΘ) = z⊤ΘP (t)zΘ and proves that system (15)

is ISS with respect to zx. Then, exponential convergence to

zero of the estimation error z = [zx, zΘ] trivially follows

from the exponential convergence to zero of zx for any

strictly positive constants k1 and γi.

As a result, claims similar to those in Proposition 1 hold

with the ξ dynamics as in equation (14) and

Θ̂ = γ−1
1

(

γ2R(ξ1)
⊤y + ξ2

)

.

III. THE GENERAL CASE

Consider now the case in which the measured signal is

given by 1 with1 E0 = 0, known n ≥ 2, unknown angular

frequencies wi > 0, amplitudes Ei and phases φi. This signal

can be regarded as the output y of a time invariant neutrally

stable linear system in observer canonical form described by

the equations

Σ̄ :

{

η̇ = Āη,
y = C̄η,

with y ∈ R, η ∈ R
2n,

Ā =



















0 1 0 . . . 0
−θ1 0 1 . . . 0
0 0 0 . . . 0
... . . . . . . . . .

...

0 . . . . . . 0 1
−θn 0 . . . 0 0



















∈ R
2n×2n,

C̄ =
[

1 0 · · · 0 0
]

∈ R
1×2n,

1We present the result for an unbiased signal since the case E0 6= 0 can
be easily derived mimicking the case n = 1.

and where the unknown parameters θi, i = 1, .., n, are related

to the angular frequencies wi by the relation

n
∏

k=1

(

s2 + ω2
k

)

= s2n + θ1s
2(n−1) + · · · + θn. (17)

System Σ̄ can be written, in compact form, as

Σ :

{

ẏ = Cx,
ẋ = Ax − MΘy,

(18)

with x ∈ R
2n−1, A ∈ R

(2n−1)×(2n−1), C ∈ R
1×(2n−1), and

where C and A are obtained eliminating the last column

and the first row and column from C̄ and Ā, respectively,

Θ = [θ1, . . . , θn]⊤ ∈ R
n, and M ∈ R

(2n−1)×n has non-zero

elements m2j−1,j = 1, for j = 1, . . . , n.

Note that the signal y(t) and its derivatives y(j)(t), j =
1, .., 2n − 1, are related to x(t) by

x(t) = TΘY (t), (19)

where TΘ ∈ R
(2n−1)×2n is defined as

TΘ =























0 1 0 0 0 . . . 0
θ1 0 1 0 0 . . . 0
0 θ1 0 1 0 . . . 0
θ2 0 θ1 0 1 . . . 0
0 θ2 0 θ1 0 . . . 0
...

. . .
. . .

...

0 θn−1 0 θn−2 . . . 0 1























and

Y (t) = [y(t), y(1)(t), y(2)(t), . . . , y(2n−1)(t)]⊤ ∈ R
2n.

As in the previous section, define the estimation error z =
[z⊤x , z⊤θ ]⊤ ∈ R

3n−1, as z = β(y, ξ) − h(ξ, x,Θ), with ξ =
[ξ⊤1 ξ⊤2 ]⊤ ∈ R

3n−1, and

β(y, ξ) =

[

Ky
γ2(CR(ξ1))

⊤y + ξ2

]

h(ξ, x,Θ) =

[

x − γ1(G(ξ1) + R(ξ1)Θ)
γ1Θ

]

,

yielding

zx = Ky + γ1(G(ξ1) + R(ξ1)Θ) − x,

zθ = γ2(CR(ξ1))
⊤y + ξ2 − γ1Θ,

with K = [k1, . . . , k2n−1]
⊤ ∈ R

2n−1, where the ki’s are the

coefficients of the Hurwitz polynomial

s2n−1 + k1s
2n−2 + · · · + k2n−1,

γi > 0 for all i, and the column vector G(·) ∈ R
2n−1 and

the matrix R(·) ∈ R
2n−1×n have entries given by

Gi(ξ1)=







−
∑2n−1

j=1 ξ1,jk2n−jki if i ≥ j,

∑2n−1
j=1 ξ1,j(ki−j+2n−kik2n−j) if i < j,

(20)

Rij(ξ1) =







−
∑i

h=1 ki−hξ1,p+h if i < 2j,

∑2n−1−i
h=0 ki+hξ1,p−h if i ≥ 2j,

(21)
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where p = 2(n − j), k0 = 1, and ξ1,j stands for the j-th

element of the vector ξ1. With these definitions we are able

to state the following result.

Proposition 2: Consider the signal (1) with unknown

ωi ≥ 0, for i = 1, · · · , n, and unknown Ei and φi, for

i = 1, · · · , n with E0 = 0. Consider the dynamical system

ξ̇1 =











0 1 . . . 0
... . . . . . .

...

0 . . . . . . 1
−k2n−1 −k2n−2 . . . −k1











ξ1+











0
...

0
γ−1
1











y, (22)

ξ̇2 = −γ2R(ξ1)
⊤C⊤C

(

R(ξ1)(γ2yR(ξ1)
⊤C⊤ + ξ2)

+Ky + G(ξ1)
)

− γ2yṘ(ξ1)
⊤C⊤ (23)

with input y and output

Θ̂ = 1
γ1

(

γ2yR(ξ1)
⊤C⊤ + ξ2

)

,

x̂ = Ky + γ1

(

G(ξ1) + R(ξ1)Θ̂
)

,
(24)

where G(ξ1) and R(ξ1) are defined as in equations (20) and

(21), respectively.

Then ξ(t) ∈ L∞,

Θ̂(t) − Θ ∈ L∞,

lim
t→+∞

x̂(t) − TΘY (t) = 0

exponentially, with TΘ as in equation (19),

C⊤CR(ξ1(t))zΘ(t) ∈ L2

and

lim
t→∞

C⊤CR(ξ1(t))zΘ(t) = 0. (25)

In addition, if ωi 6= ωj , for all i 6= j, ωi > 0, for all i, and

Ei 6= 0, for all i, then

lim
t→+∞

Θ̂(t) = Θ,

exponentially. �

Proof: To begin with note that the time derivative of

the variable z is given by

żx = (A − KC)zx + ∆1(y, ξ1)zθ + ∆2(y, ξ1),

żθ = −γ2R(ξ1)
⊤C⊤Czx + ∆3(y, ξ) + ξ̇2+

−γ2R(ξ1)
⊤C⊤CR(ξ1)zθ,

(26)

where

∆1(y, ξ1) =
1

γ1

(

γ1(KC − A)R(ξ1) + γ1Ṙ(ξ1) + yM
)

,

∆2(y, ξ) = ∆1(y, ξ1)
(

γ2y(CR(ξ1))
⊤ + ξ2

)

+

(KC − A)(Ky + γ1G(ξ1)) + γ1Ġ(ξ1), (27)

∆3(y, ξ) = γ2R(ξ1)
⊤

C
⊤

C
(

R(ξ1)(γ2yR(ξ1)
⊤

C
⊤+ ξ2)

+ Ky + G(ξ1)
)

+ γ2yṘ(ξ1)
⊤

C
⊤

.

The selection of R(ξ1) and G(ξ1) in (20) and (21), respec-

tively, is such that

(KC − A)R(ξ1) + Ṙ(ξ1) +
y

γ1
M = 0,

(KC − A)G(ξ1) + Ġ(ξ1) +
y

γ1
(KC − A)K = 0,

hence ∆1(y, ξ1) = ∆2(y, ξ) = 0. This, together with the

selection of ξ̇2 given in equation (23), yields

ż = F (t)z, (28)

where

F (t)=

[

A − KC 0
−γ2R(ξ1)

⊤C⊤C −γ2 R(ξ1)
⊤C⊤CR(ξ1)

]

. (29)

Note now that, as in the previous section, the system (28)

has a cascaded structure.

To prove the first claims, consider the Lyapunov function

V (zx, zΘ) =
1

2
z⊤x Pzx +

1

2γ2
z⊤ΘzΘ,

with P positive definite and such that

(A − KC)⊤P + P (A − KC) = −I,

and note that, along the trajectories of (28),

V̇ ≤ −
1

2
‖zx‖

2 −
1

2
‖C⊤CR(ξ1)zΘ‖

2,

where we have used the fact C⊤C = (C⊤C)(C⊤C). As a

result, zx(t) ∈ L∞, zΘ(t) ∈ L∞ and C⊤CR(ξ1(t))zΘ(t) ∈
L2, and by Barbalat’s Lemma

lim
t→∞

C⊤CR(ξ1(t))zΘ(t) = 0.

Moreover, by the cascaded structure of system (28) and

stability of the matrix A−KC we infer that limt→∞ zx(t) =
0, exponentially, hence limt→∞ x̂(t) − TΘY (t) = 0, expo-

nentially. Finally, ξ1 is the state of an asymptotically stable

linear system with bounded input, hence ξ1(t) ∈ L∞ and

from the definition of zΘ we conclude that ξ2(t) ∈ L∞ and

Θ̂(t) ∈ L∞, which completes the proof of the first claims.

To prove the second claim note that CR(ξ1(t)) = −Sξ1(t),
where each element of S is such that Si,2n−i = 1, zero

otherwise, i.e. CR(ξ1(t)) is a vector with the components the

states (with inverted order with respect to ξ1(t)) of the filter

(22), that can be also written, in terms of Laplace transforms,

as

CR(ξ1(s))=
1

s2n−1 + · · · + k2n−2s +k2n−1











s2(n−1)

...

s2

1











y(s).

As a result, if ωi 6= ωj , for all i 6= j, ωi > 0, for all i,
and Ei 6= 0, for all i, by [5, Lemma 2.6.7], CR(ξ1(t)) is

PE. This implies, by [5, Theorem 2.5.1], that the equilibrium

zθ = 0 of the system

żΘ = −R(ξ1)
⊤C⊤CR(ξ1)zΘ (30)
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is UGES. Finally, by [12, Theorem 4.12], the equilibrium

z = 0 of system (28) is UGES, which proves the claim.
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Fig. 1. Estimation of two single-frequency signals.

Remark 1: We stress that the zero equilibrium of system

(28) is globally stable even if CR(ξ1(t)) is not PE. This

implies that even if some of the Ei’s are zero or ωi = ωj

for some i and j, then it is possible to partially estimate

the angular frequencies associated with nonzero Ei and to

estimate a subset of the angular frequencies ωi, as implied

by equation (25).

Remark 2: When n is large the effectiveness of the pro-

posed on-line method, and of all other available on-line

methods, may be compromised since the estimates of the

ωi’s have to be evaluated by means of numeric procedures

to find the zeros of a polynomial.

Remark 3: Consider the case in which the system gen-

erating the signal y(t) is affected by additive bounded

disturbances (v1(t), v2(t)), i.e. it is described by equations

of the form

ẏ = Cx + v1,
ẋ = Ax − Mθ y + v2.

(31)

Defining the variable z as in the previous section, yields

ż = F (t)z + v(t), (32)

where

v(t) =

[

Kv1 − v2

γ2R(ξ1)
⊤C⊤v1

]

and the matrix F (t) is as in equation (29). If the signals vi(t)
are such that all solutions of (31) exist and are bounded for

all time, and if the resulting signal CR(ξ1) is PE (this is the

case if v(t) is sufficiently small) then [12, Theorem 4.12]

implies input-to-state-stability of system (32) with respect

to v(t). This implies that approximate frequency estimation

can be achieved even in the presence of a class of (small)

perturbations.
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Fig. 2. Estimation of single-frequency signals with noise.

IV. NUMERICAL EXAMPLES

In the first example we show the observer effectiveness by

choosing two signals with n = 1 and with sensibly different

frequencies, namely y1(t) = sin (100t) and y2(t) = sin (t).
The observer dynamics are chosen as in Section II, with

observer gains [γ1, γ2] = [0.01, 10], and k1 = 2. The initial

values ξi(0) are set to zero. Figure 1 displays the frequency

estimates for the signals y1(t) and y2(t), whereas Figure 2

shows simulations results in the presence of the disturbances

v1 = Ad sin (50t) and v2 = 0. It can be seen that in the case

ω1 = 100 the estimation is not affected by the noise v1(t)
with Ad = 0.05, whereas for ω1 = 1 a noise v1(t) with

Ad = 0.001 leads to a sensible degradation of the estimate,

mainly due to the low value of ω1 = 1 (better estimate can

be obtained decreasing γ2).
The observer of Section III is implemented in the case

n = 2, for the signal y(t) = sin (2t)+sin (5t), as in [7]. The
estimates of the vector Θ and of the state x are defined as in
equation (24), and R(ξ1) and G(ξ1) are selected according
to equations (21) and (20), namely

R(ξ1)=







−ξ1,3 −ξ1,1

k3ξ1,1 + k2ξ1,2 −k1ξ1,1 − ξ1,2

k3ξ1,2 −k2ξ1,1 − k1 ξ1,2 − ξ1,3






,

G(ξ1) =





−k3k1ξ1,1 + (k3 − k2k1)ξ1,2 + (k2 − k2

1)ξ1,3

−k3k2ξ1,1 − k2

2ξ1,2 + (k3 − k2k1)ξ1,3

−k2

3ξ1,1 − k3k2ξ1,2 − k3k1ξ1,3



 .

The derivatives ξ̇1 and ξ̇2 are defined as in equation (23),

and ξ1(0) and ξ2(0) have been set to zero. In the simulation

results, shown in Figure 3, the vector K has been chosen

as K = [k1, k2, k3] = [6, 12, 8] yielding the polynomial

k3+k2λ+k1λ
2+λ3 = (λ+2)3, and γ1 = 0.01 and γ2 = 10

as in the previous example. The unknown frequencies w1 and

w2 are evaluated from θ̂1 and θ̂2 using the equation

ŵ1,2 =

√

√

√

√

√

∣

∣

∣

∣

θ̂1 ±

√

∣

∣

∣
θ̂2
1 − 4θ̂2

∣

∣

∣

∣

∣

∣

∣

2
.
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The same observer has been applied to the signal y(t) =
2 sin (t) + 4 sin (1.2t) (as in [9]). The peculiarity of this

signal stands in the closeness of the two frequencies ω1 and

ω2, resulting in a weaker persistency of excitation property,

that may lead to slower convergence of the estimates (see

the adaptive identifier simulation results in [9]). However,

as illustrated in Figure 4, even in this case the estimates

converge to the correct values, with a good convergence rate.

Finally, the same observer is tested on a single frequency

signal, namely y(t) = 2 sin (3t + π/8), that could be re-

interpreted as the signal (1) with n = 2 and E0 = E2 = 0,

i.e., an overestimation of the frequencies of y(t). In this case,

illustrated in Figure 5, the frequency ω1 = 3 is correctly

estimated by ω̂1, while ω̂2 remains bounded.

V. CONCLUSIONS

We have presented a minimal dimension observer for the

global estimation of n unknown frequencies. The asymptotic

properties and the robustness of the proposed observer have

been proved by means of classical analysis tools. Simulations

results show the effectiveness of the observer.
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Fig. 3. Frequencies estimation for the signal y(t) = sin (2t) + sin (5t).
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