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Abstract— The focus of the paper is the review of the control
structure selection for a given system. If a framework, derived
from game theory is used for the control system design of multi-
loop systems, the question arises, how unequally distributed
or incomplete information affects the selection of the players
strategies. In the field of game theory, information is an essential
component. Different information sets lead to different strategy
selections provided by the controllers and the belonging control
laws. In the present paper, an asymmetric triangular multi-
loop control structure was chosen as basis to study and discuss
the effects of different information sets to the solution of each
game. The solution of the game provides a Pareto-optimal set
of controller parameters for the multi-loop control system.

I. INTRODUCTION

According to [1], the disadvantages of using single-

input/single-output (SISO) proportional-integral (PI) and

proportional-integral-derivative (PID) controllers for multi-

loop systems are the lack of loop interaction consideration

and the existence of few powerful tools for its design.

In contrast, standard techniques for controller tuning of

multi-loop systems assume that the control loops can be

adjusted individually by loop decoupling, thereby neglecting

the interactions of the different control loops. A detailed

literature research leads to the conclusion that there is no

good method for simultaneous tuning of several controllers

that significally improved performance over that of a single

loop controller, see for example [2].

This was the most important motivation of developing a new

method, considering several interacting controllers, see [3],

[4], and [5]. In this method, a game-theoretic framework is

designed, where the control system is viewed as a differential

cooperative game. The differential game models a dynamic

decision process evolving in time including more than one

player. Each player has his own cost function and possibly

access to different information, see [6]. In the present paper,

the controllers are viewed as players i and the strategies

of each player depend on the controller parameters and the

control laws of the system. A cost function Ji is assigned to

each player, such that the control system design consists in

minimizing jointly all indices. This leads to a multi-objective
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optimization (MOO) problem, see [7], which is solved here

using a genetic algorithm.

In [3], the design method was satisfactory applied to solve

controller interactive design in cascade structures and in [5] it

was applied to the control of a two-input/two-output (TITO)

multi-loop control structure of a reverse osmosis desalination

plant. In [3], and [5], constraints for control signals were

included during the control system design in a weighted

sum manner. However, the selection of the weights is not

simple and there is no guarantee, that the constraints will not

be violated. Thus, in [8], constraints for the control signals

are explicitly formulated and maintained during the control

system design. The consideration of the system requirement

on robust stability is proposed in [19].

The application of game theory in control theory is not new.

According to [6], differential game theory can be viewed

as a child of the parents game theory and optimal control

theory. For example, a game-theoretic approach to design

controllers for safety specifications is given in [9]. [10] uses

ideas of game theory, to treat the design process as a two

player zero sum game between the controller of a player and

the disturbance generated by the actions of the other player.

The new approach for control system design, optimizing

the performance of multi-loop systems in a game-theoretic

framework, proposed in [3], [4], and [8] by the authors,

is now used to study the effects of different information

distribution based on one basic structure, leading to different

control structures for the same system.

II. GAME DESCRIPTION

The basic control structure for the multi-loop system

is shown in Fig.1. The TITO system consists of two PI

controllers C11 = Q11/P11, and C22 = Q22/P22, and three

transfer functions G11 = B11/A11, G21 = B21/A21, and

G22 = B22/A22 describing the process through polynomial

equations. The polynomial description of the PI controllers

is

CPIi
=

QPIi

PPIi

=
q0iz + q1i

z − 1
. (1)

The chosen control structure is triangular (asymmetric) in

such a way that the upper control loop act as a disturbance on

the lower control loop. Thus, the control loops of the multi-

loop system interact only one-way. The control system design

with optimal performance concerning the error convergence

is now implemented using the authors approach in the game-

theoretic framework.
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Fig. 1. Triangular control structure of a two-input/two-output system

A. The differential game description

The control system design of the two-input/two-output

system in Fig. 1 is considered as a differential game between

two players i with i = 1, 2 on the time period [t0, T ]. The

strategies of the players are defined as

ui(t) =

∫ T

t0

cij(t)ei(t − τ)dτ (2)

with

L{cij(t)} = Cij(s) = Qij(s)/Pij(s). (3)

Qij and Pij , with j = 1, 2, are the controller parameters

of Cij in Fig.1. The strategies of the players belong to the

strategy sets Ui = {ui|ui is given by (2)}.

The differential game can now be described as the evolution

of the errors ei with

e
(n)
i = fi(e

(n−1)
i , ..., ėi, u1, u2) (4)

and initial condition ei(t0) = ei0, as well as costs Ji with

Ji = gi0(eiT ). (5)

The errors ei belong to the set Ei =
{ei|ei as solution of(4)}. Functions fi are defined on

fi : Ei×U1×U2 → R
+ and function gi0 on gi0 : Ei → R

+.

B. Cost function and constraint set up

A typical performance index applied to control problems is

the integral square error (ISE) over the complete time interval

with t0 = 0 and T = ∞, which is used in the following for

the costs Ji as

Ji =

∫

∞

0

e2
i (t)dt. (6)

The terminal state eiT as well as the cost functions Ji depend

on the choice of u1 and u2. In contrast, the players strategies

u1 and u2 depend on the controller parameters Qij and Pij as

well as the control system structure and the reference signals

ri. Equations of (6) are solved according to [20].

In a cooperative differential game involving two players, each

player wants to minimize his cost criterion Ji = gi0(eT )
through the selection of his control strategies ui.

A minimization of both costs Ji with given reference signals

ri and control structure leads to an optimization of the

controller parameters Qij and Pij .

C. Course of the game

To satisfy all cost functions Ji by tuning the controller

parameters Qij and Pij , a multi-objective optimization

(MOO) problem has to be solved. The genetic algorithm

of [11], which is already used in previous works, see [3],

[4], and [5], is applied as solution method. The advantages

of using a genetic algorithm to solve a MOO problem

compared to other solution methods are: 1) GA’s are Pareto

methods, which are able to take care of all conflicting design

objectives individually but compromising them concurrently,

see [12] and 2) GA’s have a multiple search property, see

[13].

A range for each controller parameter Qij and Pij must

be specified at the beginning. The values for the starting

population as well as all experimental parameter sets must

be within this range. The final solution of the GA is a

Pareto-optimal set of the controller parameters. A solution

is Pareto-optimal, also called non-inferior, in the sense

of Pareto, if there is no way of improving any cost of

objective without leading to a degradation of at least one

another. The chosen parameter sets have to ensure, that the

final closed-loop system is stable, which is done during the

evaluation of the cost functions Ji. In the present paper,

only one system requirement for the different loops is

considered during the optimization.

Using GA’s to solve MOO problems is not new. If the

reader is interested to know more about GA’s, he is referred

for example to [14] or [15].

D. Solution of the game

With the calculation of the optimal controller parameters

Qij and Pij , the costs Ji for the game are obtained, too.

Some costs could be part of a solution concept for coopera-

tive games, named the core, known to be the most attractive

solution concept in cooperative game theory. In [16], the

core is defined to be the subset of outcomes maximal with

respect to the dominance relation; in other words, the subset

of outcomes from which there is no tendency to move away

- the equilibrium states. The idea of Pareto optimality can

be obtained with the core.

Hence, the core collects cost pairs J1, and J2 (also called

imputations) that are not dominated. All possible cost pairs

are imputations where none of the players gets less than he

would get if he plays alone.

In general the core is a selection from the set of imputations.

For two player games the set of imputations coincides with

the core.

E. Information

An essential component in the field of game theory is the

information. According to [17], a player can make decisions

(choose strategies) only dependent on his available informa-

tion at that time. In this work, the available information is

given through the control system structure.

To be able to classify the present information structure in

a game, game theory distinguishes among others between
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complete and incomplete information. In a game with com-

plete information, all players know the strategy sets Ui and

the costs Ji at any time. There are no private information

like unknown strategies ui for player ¬i or even unknown

costs Ji. In contrast, in a game with incomplete information,

certain properties as for example the controller parameters

of a player i are unknown to the teammates. A further dis-

tinction is done with symmetric and asymmetric incomplete

information, where all players do not know a parameter, and

asymmetric incomplete information, where only some of the

teammates do not know this parameter.

Many games are characterized through unequally distributed

or incomplete information. This is exactly the case given

in the triangular control structure of Fig.1. In this structure,

player 1 operates with his own information, that is the control

law of the upper control loop and the parameters of controller

C11. In contrast, player 2 has information about his own

control law and the parameters of controller C22 as well as

information about player 1, indicated by the information flow

from player 1’s control signal u1 over the transfer function

of G21 to the output signal y22 of player 2.

In the following, different possible information structures and

thus different control system design games with different

control structures are implemented and their effects on the

control system behaviour are studied.

III. GAMES WITH DIFFERENT INFORMATION

Five reasonable and different games are described in this

section, where the basic control structure of Fig.1 is used as

first structure for comparison. The second, third and fourth

controller structures are modified in the way that the control

system contains different control laws leading to different

information sets of the players.

A further differential game is considered here, which is

not mentioned before in this paper, where the order of

decision making and strategy selection is considered. The

strategies of the players are, among others, dependent on the

controller parameters Qij and Pij . In this game, the con-

troller parameters Qij and Pij are not tuned according to a

multiple parameter optimization simultaneously. In contrast,

the controller parameters Qij and Pij of the leader (player

i) are optimized first. Dependent on the parameter set Qij

and Pij , the parameters Q¬ij and P¬ij of the other player

¬i are optimized. In the previous work of the authors only

the simultaneous parameter optimization was studied, but

the basic control structure, analyzed in this paper allows the

additional consideration of a leader-follower game, which is

also known in the literature as stackelberg game.

The forthcoming descriptions of the varying games are

restricted through those components which distinguish the

games from each other. These components are the informa-

tion sets of both players containing the error signals ei(s),
with steps (1/s) as references ri, needed for the calculation

of the cost functions Ji formulated in (6).

The applied constraints on the control signals ui of [8] are

neglected (wide ranges are set) in this study to clarify the

pure influence of the information structure on the control

system performance.

For shortage of space, the polynomials Aij(s), Bij(s),
Pij(s), Qij(s), ei(s) and ri(s) are abbreviated in the fol-

lowing as Aij , Bij , Pij , Qij , ei, and ri.

A. Game I - the basic game

The first game (GI) is played based on the given control

structure of Fig.1. The information set of player 1 consists of

the error signal e1, dependent on the controller parameter set

Q11 and P11, and the control law of the upper control loop.

In contrast, the information set of player 2 includes his own

control law, and his controller parameter set Q22 and P22 as

well as the control law, and the controller parameters Q11

and P11 of player 1. According to the expressions of Section

II-E the information structure of game I is incomplete and

asymmetric.

The error functions e1 and e2 of game I are formulated as:

e1 =
A11r1

A11P11 + B11Q11
(7)

for the first player, and

e2 =
A21A22(A11P11 + B11Q11)r2 − B21Q11A11A22r1

A21(A11P11 + B11Q11)(A22P22 + B22Q22)
(8)

for the second player.

As a result, the cost function J1 for player I contains only

elements of the upper control loop while the cost function

J2 of the second player consists of elements of the lower

control loop as well as elements of the upper control loop

of player I.

B. Game II - a game with forward information flow

In this game no modifications on the information sets

of both players are made. Only an additional controller is

inserted to be able to add the error signal e1 of the first player

to the control signal u2 of the second one as displayed in

Fig.2. Hence, player 2 gets information about player 1 (his

input) earlier. This makes it possible for him to react earlier

on potential disturbances.

The additional controller C21, together with controller C22

represent the second player, choosing the strategy u2. The

error functions e1, and e2 of game II (GII) are

e1 =
A11r1

A11P11 + B11Q11
(9)
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Fig. 2. Control structure of Game II and III
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for the first player, and

e2 =
(A11P11 + B11Q11)A21A22r2

(A21A22P22 + B22Q22A21)(A11P11 + B11Q11)

−
(B21Q11A22 + B22Q21A21)A11r1

(A21A22P22 + B22Q22A21)(A11P11 + B11Q11)

(10)

for the second player.

Like in the game before, the cost function J1 for player 1
contains only elements of the upper control loop while the

cost function J2 of the second player consists of elements

included in the lower control loop as well as elements of the

upper control loop of player 1. There is no modification on

the information sets neither for player 1 nor player 2.

C. Game III - a game with a decoupler

Game III (GIII) plays with the same control structure as

game II, displayed in Fig.2 with the distinction that controller

C21 now acts as a decoupler with

C21 = −
G21

G11
= −

B21A11

A21B11
(11)

to reformulate

G =

[

G11 0
G21 G22

]

(12)

as

G∗ =

[

1 0
C21 1

]

·

[

G11 0
G21 G22

]

=

[

G1 0
0 G2

]

(13)

The intention of a decoupler is to mathematically eliminate

the effect of interactions, that means to transform the process

matrix into a diagonal matrix. Hence, no parameters has to be

tuned for this controller C21 and the error signals e1 and e2

are formulated like (9) and (10) except that Q21 = −B21A11

and P21 = A21B11.

However, this approach is limited through basics of control

theory. The decoupling method could translate zeros to poles

and unstable decoupling elements may result.

D. Game IV - a game with complete information

The most interesting game in the perspective of game

theory is the game (GIV) where a modification of one

information set is made. Thus, an extra controller C12 is

added to the structure, see Fig.3, summating the error signal

e2 of the second player to the control signal u1 of player 1.

Player 1 extends its information set with the control law and

the controller parameters Q22 and P22 of player 2 while the

information set for the second player remains unchanged.

The information structure is changed resulting in a game

with complete information. All three controllers C11, C12,

and C22 are tuned while minimizing (6) of both players. The

corresponding error signals e1 and e2, needed to calculate the

costs of (6), are

e1 =
TA11r1 − B11Q12A21A22r2

(A11P11 + B11Q11)T − B11Q12B21Q11A22
(14)

and

e2 =
(A11P11 + B11Q11)A21A22r2 − B21Q11A22A11r1

(A11P11 + B11Q11)T − B11Q12B21Q11A22
(15)

with T = A21P12A22 + B21Q12A22 + B22Q22A21.

Considering the elements of the error functions e1 and e2 in

(14) and (15), one can conclude that there exists an analogy

to the information sets of the players. Both, equations (14),

and (15), contain elements (or information) of the other

player.

E. Game V - a stackelberg game

According to [6], games, in which one player (called the

leader) declares his strategy first and enforces it on the other

player (called the follower) is called a stackelberg game.

As in the given basic triangular control structure of Fig.1

there is only one connection from player 1 to player 2. Player

2 has no effect (influence) on the control loop of player 1 at

all. This leads to the idea that player 1 is treated as leader

and player 2 as follower in a stackelberg game. The main

advantage of this approach: no trade-off has to be met.

Player 1 minimizes his cost J1 while choosing an optimal

parameter set Q11 and P11. Under consideration of the

resulting strategy u1, player 2 chooses his parameter set Q22

and P22 depending on the minimization of his cost and the

use of the leader’s strategy u1, including the parameter set

Q11 and P11. Concerning game V (GV), the corresponding

error functions e1 and e2 are evaluated as in (7) and (8) but

with the attention of the order in decision making (strategy

choosing).

IV. APPLICATION AND SIMULATION RESULTS

To be able to compare the five different games of Section

III, the process transfer functions of a reverse osmosis

desalination plant are used in this work with the appropriate

basic control structure of Fig.1 and the following transfer

functions from [18] with

G11 =
0.002(0.056s + 1)

(0.003s2 + 0.1s + 1)
, (16)

G12 = 0, (17)

G21 =
−0.51(0.35s + 1)

(0.213s2 + 0.7s + 1)
, (18)

and

G22 =
−57(0.32s + 1)

(0.6s2 + 1.8s + 1)
. (19)
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The five different games are implemented using the genetic

algorithm (GA) of [11]. For the discrete reverse osmosis

system, the genetic algorithm operates with 1000 generations

and 4 chromosomes, two for each controller. Four subpopu-

lations with 50 individuals each are chosen and the number

of cost functions is 2. For the stackelberg game the number

of cost functions is 1, but the GA is run twice.

Using the proposed approach of [3], and [8], Pareto-optimal

sets as solutions of the different games were obtained, where

the parameter vector χ of the controllers is of the form

χ = [q01 q11 q02 q12] , (20)

depending on the game and providing the chromosomes for

the GA.

The range of the parameters are set equally for all games

in the range around the controller parameters of [18]. The

selection of a parameter set from the Pareto-optimal set

is done with no predefined choice in this paper. For the

solution of the game, it is primary necessary to satisfy all

constraints and belonging to the Pareto-optimal set. The

required decision maker, choosing a single parameter set

from control theoretic view is still an open question.

Obtained controller parameters are listed in Table I. As

mentioned in the description of the games, the presented

solutions are part of the core, since this two player game is

fully cooperative.

To be able to display the dependency of the systems’ outputs

and the control structure derived from different information

access from the game-theoretic view, the step responses of

the outputs are shown and discussed in the following.

In Fig.4, the step responses for the outputs y1, and y2 to a

change in the setpoint of the permeate flux, from 232 m3/h
to 341 m3/h are shown. Considering the step responses of

the flux in the upper part of Fig.4, three groups of amplitudes

are distinguished. Those step responses for games II and III,

showing fast rise time but overshoots, and those for games I

and V with no overshoot and more slowly rise times. The step

response for game IV lies somewhere in between with middle

rise time and small overshoot. The step responses of the

flux for games II, III, and IV achieve a setpoint convergence

after 24 seconds while the step response for game V requires

42 seconds and the one for game I requires 51 seconds for

setpoint convergence. The display range of Fig.4 is cutted at

24 seconds to be able to identify the single step responses

of the conductivity.

TABLE I

CONTROLLER AND OPTIMIZATION PARAMETERS

GI GII GIII GIV GV

KP11 424.33 800 696.34 550.44 485

KI11 8376.4 80000 80000 18480 10560

KP12 − − − 13.058 −

KI12 − − − −5000 −

KP21 − −23.174 − − −

KI21 − −2298.6 − − −

KP22 −89.79 −500 −500 −500 −99.525

KI22 −42154 −43307 −10000 −48750 −10000
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Fig. 4. Step responses of the systems’ outputs y1, and y2 for all games
to a step change in the setpoint of the permeate flux

A step in the setpoint of the permeate flux causes a distur-

bance in the step responses for the conductivity due to the

information distribution during the games: player 2 of all

games has information about the controller parameters Q11

and P11 and the control law of player 1. The disturbance of

game V is the largest while it needs 6 seconds to get back

to the setpoint. Game I shows a relative large disturbance of

about 11 µS, too, but it is the first of all games in reaching

the setpoint after 3 seconds. Those games with a forward of

information flow show the smallest disturbances due to the

earlier information flow and the possibility to compensate

the disturbance earlier. The amplitude response of game IV
show both, a relative large disturbance and a comparatively

long time of about 14 seconds to reach the setpoint again.

The step responses for the outputs y1 and y2 to a change in

the setpoint of the permeate conductivity from 400 µS to 430
µS are shown in Fig. 5. Concerning the permeate flux, the

amplitude responses for all games except game IV show

no disturbance since only player 1 of game IV possesses

additional information about player 2. The disturbance is

about 0.82 µS and needs about 7 seconds to get back to

the setpoint. Again, the display range is cutted to identify

the step responses of the conductivity.

The step responses of game II and game III concerning the

permeate conductivity reach the setpoint already after 0.03
seconds with no overshoot. game IV and game V show

amplitude responses with small overshoot and a setpoint

convergence of 1, respectively 2 seconds. Game I is the

slowest game in setpoint reaching with the largest overshoot.

A. Discussion

Game I and game V are working with the same cost

functions only the order of the parameter optimization is

different. The amplitude responses of Fig.4 and Fig.5 verify

this difference. Game V first satisfies the cost function of

the leader. Dependent on the result of this optimization the
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Fig. 5. Step responses of the systems’ outputs y1, and y2 for all games
to a step change in the setpoint of the permeate conductivity

cost function of the follower is optimized. Corresponding

to this order of optimization, the step response of the flux

for game V shows a faster setpoint convergence after a step

than the one for game I. In contrast, the step response for

the conductivity of game V converges more slowly to the

setpoint compared to game I. Game I tries to find a trade-off

between both cost functions while game V first satisfies the

leader’s cost function (concerning the flux) and than the one

for the follower (concerning the conductivity).

Game II and game III consist of the same control structure

with an additional controller from e1 to u22, leading to an

earlier information flow. Comparing their step responses,

both show similar behaviour. The redundant but earlier

information flow from e1 to u22 affects the rise time of the

conductivity positively, but the step responses of the flux

show a considerable overshoot of about 10% of the operating

point.

Game IV, the game with the additional information of the

first player, needs only a few time steps concerning the

setpoint convergence with marginal overshoot in the step

responses of the flux as well as in the step responses of

the conductivity.

V. CONCLUSION

Games with a forward of information flow from player 1
to player 2 show a faster error convergence in the flux (y1)

but larger amplitudes in the conductivity (y2) compared to

game I and game V. An extension of the information flow

as in game IV leads to a better trade-off compared to those

games with incomplete information.

So far, the first study leads to the preliminary conclusion

that game theory is a qualified tool to analyse, optimize

and categorize different topologies, derived from different

information distribution, in multi-loop systems.

Next step in this work will be the study of the effects if

explicit constraints on the control signals are considered

during the game. It is necessary, to clarify if this step

improves the performance of game I and game V or if there

arise other effects on the control system behaviour.
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