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Abstract— The estimation of the maximum lateral coefficient
of friction of a passenger vehicle between tire and road is
presented in this paper. This is achieved by utilizing the
instantaneous cornering stiffness, which is defined as the slope
of the nonlinear curve of the lateral friction coefficient at the
instantaneous tire slip angle. The maximum lateral coefficient of
friction is necessary for integrated global cassis control (IGCC)
especially for the estimation of the lateral velocity of the vehicle.
The advantage of this method is the low computational effort
and the independence of tire or road conditions. Two methods
for estimation of the instantaneous cornering stiffness and the
maximum coefficient of friction in real time and a method
for offline estimation used as a reference are described and
validated using measured data of a passenger vehicle.

I. INTRODUCTION

For IGCC it is necessary to have precise information

about vehicle states and the tire-road condition. A main

problem is to detect when the tire force reaches its maximum

and the tires start to skid. This may result in a unstable

driving situation. Many works have already been carried

out on the slip based estimation of the maximum friction

coefficient µmax between tire and road. The longitudinal

slip λ and the slip angle α are used for longitudinal and

lateral dynamics, respectively. In the following publications

a defined slope is used to identify µmax for longitudinal and

lateral considerations:

In [1] the slip slope k is defined as the slope of the µx-λ-

curve at µx = 0. The information of the slip slope and the

variance of the slip signal leads to a defined road condition

including a specific µx,max. With this method four different

road surfaces can be classified. In [2] the same assumption

is made distinguishing between dry and wet asphalt only by

estimating the slip slope. In [3] the extended braking stiffness

XBS is defined as the slope of the Fx-λ-curve at any λ

with Fx being the longitudinal force of the tire. The XBS

is estimated by the power spectrum density of the angular

velocities of the wheels.

The cornering stiffness c0 is estimated in [4] to be used in

active steering. c0 is defined as the slope of the Fy-α-curve

at α = 0. In [5] the cornering stiffness Cα is estimated using

the same definition like [4].

This paper concentrates on lateral dynamics including lateral
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Fig. 1. Lateral tire model presenting the instantaneous cornering stiffness
Cα(α)

tire forces and tire slip angles. In contrast to [4] and [5] the

instantaneous cornering stiffness Cα(α) is defined as first

derivative of the µy-α-curve similar to the definition in [3]

for longitudinal dynamics. Thus it is not constant for static

road conditions, but changes regarding the slope of the µy-

α-curve.

For Cα(α) = 0, the maximum lateral coefficient of friction

µy,max is reached. Hence, the vehicle state has to pass the

non-monotone part of the lateral tire characteristics in order

to detect µy,max as shown in Fig. 1 where Cα(α) becomes

zero or negative. An actual vehicle in such a driving situation

will become unstable, and therefore the estimation of µy,max

is essential for IGCC.

The proposed concept of instantaneous cornering stiffness

estimation is therefore capable of not only detecting µy,max,

but also of estimating the instantaneous driving conditions.

The remainder of the paper is organized as follows: In II

a vehicle model and the used variables are defined, in III

three estimation methods for Cα(α) are presented, which is

consequently utilized as an input to the µy,max-estimation,

in IV experimental results show the performance of these

methods, and in V conclusions and future works are shown.

II. VEHICLE MODEL

The single-track model of Fig. 2 is used for further

considerations with vCoG, ax, ay , Fy , v, α, l, ψ̇, δ and β

being the velocity of the center of gravity, the longitudinal

and lateral acceleration, the lateral force, the velocity of the

tire, the tire slip angle, the distance from center of gravity

to the tire, the yaw rate, the steering angle, and the sideslip

angle of the vehicle, respectively. The indices F and R relate

to the front and rear tire of the vehicle, respectively. The road

inclination and superelevation are not taken into account.

However, there exists literature where the problem of vehicle
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Fig. 2. Single-track model for vehicle lateral dynamics

state estimation in the presence of these road characteristics

is treated extensively, e.g. [6].

The lateral and vertical tire forces Fy and Fz can be written

as

Fy,F =
maylR − Jzψ̈

(lF + lR)cosδ
, (1)

Fy,R =
maylF + Jzψ̈

lF + lR
,

Fz,F =
m(glF − axh)

lF + lR
, and (2)

Fz,R =
m(glR + axh)

lF + lR

with m, Jz and g being the vehicle mass, the moment of

inertia and the gravitatonal constant. The front and rear

lateral coefficient of friction read:

µy,F =
Fy,F

Fz,F

(3)

µy,R =
Fy,R

Fz,R

µy is a nonlinear function depending on the tire slip angle,

the vehicle vehicle velocity, the tire and road condition

and other parameters. The slip angles of the front and

rear tires can be calculated with the following widely used

approximation:

αF = δ − β −
ψ̇lF

vCoG

(4)

αR = −β +
ψ̇lR

vCoG

Using the relations (1) to (4) the lateral vehicle dynamics can

be computed for all driving situations. Since not all necessary

variables are measured online, a combination of parameter

estimation and observers becomes necessary (see Fig. 3). In

order to reconstruct correct tire slip angles αF and αR in

all driving conditions the cornering stiffness is of crucial

importance.

III. ESTIMATION OF THE INSTANTANEOUS

CORNERING STIFFNESS AND THE FRICTION

COEFFICIENT

A. Basic Considerations
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Fig. 3. Schematic of vehicle state estimation

For the estimation of the instantaneous cornering stiffness

Cα(α) the inputs µy and α are required. µy can be calculated

with (1), (2) and (3) as ax, ay and ψ̇ are measured in

modern passenger vehicles. α has to be either measured or

estimated by an observer. The measurement of α can be

done indirectly by velocity sensors in longitudinal and lateral

direction and with (4). Velocity sensors are expensive and

not feasible in mass production. Alternatively, an α-observer

uses ax, ay , δ, ψ̇ and the four angular velocities of the

wheels ~ω as inputs. An extended Kalman filter as in [7] is

used as well as nonlinear observer presented by [8] and [9].

The instantaneous cornering stiffness Cα(α) indicates when

µy,max is reached, which is necessary for vehicle control.

As additional input µy,max can be used in the α-observer

as shown in Fig. 3. As discussed in [11], another potential

issue is the stability/convergence analysis in feeding back

µy,max. Although not addressed in this paper, the problem

of the stability/convergence of the overall state estimation

(Fig. 3) has to be investigated in future works. For IGCC

the instantaneous cornering stiffness has to be estimated in

real-time. Therefore the algorithm has to work with limited

computational effort and only utilizing present and past data.

Two methods are presented for online estimation of Cα(α):

• Least Squares Online Estimation (III-C)

• Weighted Recursive Least Squares Online Estimation

(III-D)

The offline estimation (III-B) is used as a reference to the

online methods.

B. Offline Estimation

For the offline estimation the whole data set can be used,

even the values of future vehicle states. Thus it is possible

to fit a tire model to the µy-α-data set. Similar to the tire
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model presented in [10] the following more flexible structure

is used:

µy =
aα2 + bα

cα2 + dα+ 1
(5)

The four parameters of the tire model have to be optimized to

get a curve fitting regarding to total least squares (TLS) [12].

Because of different noise levels of µy- and α-data, a nor-

malization has to be done before executing the algorithm.The

data has to be filtered with a high pass filter in order to get

the noise signal for each data. The standard deviation σ of

the noise signals is now used for the normalized coefficient

of friction µn
y :

µn
y = µy

σα

σµy

(6)
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Fig. 4. Projection of the data points orthogonally on the fitted tire model

to the n points [P t
1 , P

t
2 , ..., P

t
i , ..., P

t
j , ..., P

t
n] on the tire

model so that the line P d
i P

t
i is orthogonal to the tire model

respectively to its slope at P t
i as shown in Fig. 4. The

parameter vector is optimized iterative using a constant step

size. For all the permutations of the parameter vector the

criterion V of the summed squared orthogonal distances

V =
n

∑

i=1

P d
i P

t
i

2

(7)

has to be calculated. The parameter vector with minimum V

becomes the new vector for the next iteration step. So the

parameter vector converges to a vector fitting the tire model

to the data points. Considering the definition of

P d
i = [αd

i , µ
d
y,i] and (8)

P t
i = [αt

i , µ
t
y,i] (9)

the instantaneous cornering stiffness Cα,i can now be written

as:

Cref
α,i = Cα(αd

i ) =
dµy

dα

∣

∣

∣

∣

α=αt

i

(10)

This method needs a lot of computational effort. On the one

hand, the fitting of the tire model to the measured data needs

many calculation steps. On the other hand, the calculation of

the related data points of the tire model has to be performed

for each data point. However, this method is reasonable as a

reference to benchmark the methods for online estimation.

C. Online Estimation with LS

For this method a regression line is calculated for a defined

data window of the length l. The instantaneous cornering

stiffness Cα,i representing the i-th data point can be written

as slope of above mentioned regression line

Cls
α,i =

∑i

k=i−l (αk − ᾱi)(µy,k − µ̄y,i)
∑i

k=i−l (αk − ᾱi)
2

(11)

with ᾱi and µ̄y,i being the mean value of the data set

[αi−l, ..., αi] and [µy,i−l, ..., µy,i]. It is necessary to use a

variable window length to have a satisfying performance at

any driving situation. The window length l is chosen minimal

fulfilling the condition

max([αi−l, ..., αi]) −min([αi−l, ..., αi]) ≥ ∆αmin (12)

with ∆αmin being constant. If ∆αmin is chosen large, the

estimation will be slow especially at large values of dα
dt

.

Choosing a small value leads to a poor estimation being very

dependent on noise. For further consideration ∆αmin should

be optimized by fulfilling an optimization criterion.

D. Online Estimation with WRLS

In this section the regression line is calculated with the

WRLS-algorithm. The vector Θ includes the two parameters

of the regression line and is calculated recursively with

xi = [αi, 1] and yi = µy,i, the forgetting factor λ, and the

covariance of the error P :

γ =
Pi−1xi

xT
i Pi−1 + λ

(13)

Pi =
1

λ
(1 − γxT

i )Pi−1 (14)

Θi+1 = Θi + γ(y − xT
i Θi) (15)

Cwrls
α,i is given by the first entry of Θi. Like in [13] a variable

forgetting factor is used. Similar to the window length l

in III-C the data points of the past are weighted by λ. λ

is assumed as proportional to l with a lower and upper

saturation:

λ = λmin for l ≤ lmin

λ = λmin +
l − lmin

lmax − lmin

for lmin < l < lmax (16)

λ = λmax for l ≥ lmax

The constraints λmax and λmin have to be chosen to have

an accurate estimation at l ≥ lmax and a fast performance at
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l ≤ lmin. Together with ∆αmin used for the calculation of

l in (12) there are 5 free parameters for the optimization of

λ. These could be chosen by minimizing a criterion in order

to get optimal performance.

E. Estimation of µy,max

As shown in Fig. 1 the maximum coefficient of friction

µy,max is reached when Cα(α) = 0. Because of measure-

ment noise this condition has to be relaxed in order to get a

robust µy,max-detection (see Fig. 3):

Cα(αi) < Cα,crit ⇐⇒ µy,max,i = µy,i (17)

Cα(αi) ≥ Cα,crit ⇐⇒ µy,max,i = 1 (18)

The constant Cα,crit has to be chosen such that for given

vehicle data a robust detection results. As an input in an

α-observer, µy,max is only needed in the nonlinear region

of the tire model. In the linear region the cornering stiffness

Cα(0) is essential. Therefore µy,max is assumed to be 1

according to (18), as long as data are only available for the

linear region of the tire model.

IV. EXPERIMENTAL RESULTS

The measurement was done with a modern passenger

vehicle having attached velocity sensors. Thus it is possible

to calculate α with (4). In the first experiment the vehicle

was doing a circle movement on wet road. With increasing

speed and steering angle the vehicle starts to skid, reaching a

velocity of 20m/s. After reducing velocity and steering angle,

α decreases abruptly reaching the monotone part of the tire

model.In Fig. 5 the reference Cref
α (α) starts at high level and

reaches the low level at about t = 6s, where Cα(α) becomes

zero or even negative. At t = 12s Cα(α) is changing rapidly

back to high level.

Both the LS- and WRLS-estimation do not reach the value

of the reference algorithm at high level, because of the effect

of the noise of α. However, the high and low level can be

distinguished in their value. The LS-estimation follows the

reference-curve rapidly at changes, but it is varying strongly

at low level due to small window length l shown in Fig. 6.

The WRLS-algorithm causes a filtering, making noise of the

signal of Cwrls
α (α) very small.

Even though the forgetting factor λ is chosen variable as

shown in Fig. 7 the WRLS-estimation is not as fast as the

LS-estimation at the change of Cα(α) high to low level. It

is hard to chose the parameters of the variable forgetting

factor in (16) so that the estimator works well in every part.

That is the reason of errors in the constant high level area

at 0s < t < 6s and 13s < t < 15s. In the second experiment

the vehicle was absolving a slalom course on dry road at a

velocity of 20m/s. In Fig. 8 the LS- and WRLS-estimation

follow the reference only with a small time delay and the

low and high level areas can be separated. Because of the

fast change of α in slalom maneuvers l and λ are very small.

The time delay is not caused by the computational effort of

the estimation, but because of the noisy data and the usage of
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Fig. 5. Validation of the Cls
α (α)- and Cwrls

α (α)-estimation method at a
circle movement on wet road
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Fig. 6. Window length l referring to the LS-estimation in Fig. 5

only the past data. However, the LS-estimation is sufficiently

fast and accurate for the use in vehicle control.

In Fig. 9 the validation of the µy,max-estimation is shown.

The vehicle is moving along four different surfaces with

different values of µy,max:

dry asphalt µy,max = 0.85 0s < t ≤ 12s
wet asphalt µy,max = 0.75 12s < t ≤ 24s
snow µy,max = 0.25 24s < t ≤ 36s
ice µy,max = 0.05 36s < t ≤ 60s

On dry and wet asphalt the vehicle is accelerating to 70km/h

with increasing steering angle. On snow the vehicle is doing a

slalom maneuver with 40km/h. On the icy surface the vehicle

is doing a cornering maneuver with 25km/h reaching a front

sideslip angle of 0.15rad. According to (18) µy,max is set

to the value 1 when the vehicle is moving in the linear

region of the tire model, which is defined by Cα(α) ≥

Cα,crit, where Cα,crit = 1 was found to deliver good results.

The reference algorithm can clearly distinguish between the

surfaces and detect the correct value of µy,max. The LS-

Estimation can not distinguish between dry and wet asphalt,
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Fig. 7. Forgetting factor λ referring to the WRLS-estimation in Fig. 5
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Fig. 8. Validation of the Cls
α (α)- and Cwrls

α (α)-estimation method at a
slalom movement on dry road
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Fig. 9. Validation of the µy,max-Estimation on four different surfaces

but shows an accurate and fast behavior on snow and ice.

Values of µy,max = 1 for short durations on wet asphalt

and snow are caused by short stretches of straight driving.

Under these driving conditions no information on the current

value of µy,max is available and an estimation scheme for

the maximum longitudinal friction coefficient µx,max would

have to be implemented. Because of the higher performance

of the LS-Estimation, the WRLS-Estimation is not shown

here.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The method described in III-B works well for the offline

estimation of the instantaneous cornering stiffness. The LS-

estimation is very flexible due to the variable window length

l and has a satisfying performance at both constant and

changing tire slip angle, using only one parameter for the

calculation of l. The forgetting factor of the WRLS-algorithm

can be tuned by 5 parameters, but the structure of the

variable forgetting factor is not flexible enough to satisfy

under all driving conditions. Therefore, the LS-estimation of

the instantaneous cornering stiffness was used for the µy,max-

estimation and leads to accurate results.

B. Future Works

A suitable criterion can be incorporated into the compu-

tation of the variable window length l of the LS-estimation

and the optimal parameters of the forgetting factor λ of the

WRLS-estimation. Finding other structures of λ could lead to

a better performance as well. Since the output of the µy,max-

estimation presented in this paper is still affected by noise,

an improvement can be expected by implementing a suitable

filter.
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