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Abstract— A novel path planning algorithm L
⋆ is intro-

duced that reduces the problem to optimization of a proba-
bilistic finite state machine and applies the rigorous theory
of language-measure-theoretic optimal control to compute
ν-optimal paths to the specified goal. It is shown that al-
though the underlying navigation model is probabilistic, the
proposed algorithm computes plans that can be executed
in a deterministic sense with automated optimal trade-off
between path length and robustness under dynamic uncer-
tainty. The algorithm has been validated on mobile robotic
platforms in a laboratory environment.

Index Terms— Language Measure; Finite Markov Chains;
Discrete Event Systems; Supervisory Control

1. INTRODUCTION & MOTIVATION

The field of trajectory and motion planning is enormous,

with applications in such diverse areas as industrial robots,

mobile robot navigation, spacecraft reentry, video games and

even drug design. In the context of planning for mobile

robots and manipulators much of the literature on path

and motion planning is concerned with finding collision-free

trajectories [7]. Graph-based techniques have been used

very successfully in many wheeled ground robot path plan-

ning problems and have been used for some UAV planning

problems, typically radar evasion [1]. These approaches suf-

fer from exponential growth in complexity with both graph

size and dimension. To circumvent the complexity associ-

ated with graph-based planning, sampling based planning

methods [2] such as probabilistic roadmaps have become

widespread. These approaches are probabilistically complete

(i.e. if a feasible solution exists it will be found, given enough

time) but there is no guarantee of finding a solution within

a specified time. This paper introduces a novel approach

to path-planning that models the navigation problem in

the framework of Probabilistic Finite State Machines and

computes robust optimal plans via optimization of the PFSA

from a strictly control-theoretic viewpoint. The key advan-

tages are as follows:

1) L
⋆ pre-processing is cheap: Conventional cellular ap-

proaches decompose the set of free configurations into

simple non-overlapping regions [7][8] with the adjacency

relations and reachability constraints represented in a

connectivity graph which is subsequently searched for a

path. Construction of the connectivity graph that faith-

fully reflects the continuous C-Space constraints (e.1. ob-

stacles) is expensive and often intractable for high di-

mensional problems. The decomposition required by L
⋆ is

simple and computationally cheap. The cells are mapped
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to PFSA states which are defined to have identical con-

nectivity via symbolic inter-state transitions. Desirable

or ”good” states assigned relatively positive weights to

undesirable or ”bad” states. A change in the C-Space con-

straints therefore requires updating the 1D state weight

vector only; recomputing the decomposition is unneces-

sary.

2) L
⋆ is fundamentally different from a search: L

⋆

replaces the ”search” problem to solution of a sequence

of linear systems (i.e. matrix inversions). On comple-

tion of cellular decomposition, L
⋆ optimizes the resultant

PFSA via a iterative sequence of combinatorial operations

which elementwise maximizes the language measure vec-

tor [4][5]. Note that although L
⋆ involves probabilistic

reasoning, the final waypoint sequence obtained is deter-

ministic.

3) Computational efficiency: The intensive step in L
⋆ is

the inversion of certain specialized matrices to compute

the language measure. The time complexity of each it-

eration step can be shown to be linear in problem size

implying significant numerical advantage over search-

based methods for high-dimensional problems.

4) Global monotonicity: The solution iterations are glob-

ally monotonic. The final waypoint sequence is generated

essentially by following the measure gradient which is

maximized at the goal. The measure gradient is remi-

niscent of potential field methods [2]. However, L
⋆ au-

tomatically generates the measure gradient; no potential

function is necessary. Furthermore, the potential function

based planners often get trapped in local minimum which

can be shown to be a mathematical impossibility for L
⋆.

The paper is organized in five sections including the present

one. Section 2 briefly explains the language-theoretic models

considered in this paper and reviews the language-measure-

theoretic optimal control of probabilistic finite state ma-

chines. Section 3 presents the basic problem formulation

with Section 4 deriving a decision-theoretic solution to the

path-planning problem. The paper is summarized and con-

cluded in Section 5 with recommendations for future work.

2. LANGUAGE MEASURE-THEORETIC OPTIMIZATION

This section summarizes the signed real measure of reg-

ular languages; the details are reported in [9]. Let Gi ≡

〈Q,Σ, δ, qi,Qm〉 be a trim (i.e., accessible and co-accessible)

finite-state automaton model that represents the discrete-

event dynamics of a physical plant, where Q = {qk : k ∈ IQ}

is the set of states and IQ ≡ {1, 2, · · · ,n} is the index set

of states; the automaton starts with the initial state qi; the

alphabet of events is Σ = {σk : k ∈ IΣ}, having Σ
⋂
IQ = ∅ and

IΣ ≡ {1, 2, · · · , ℓ} is the index set of events; δ : Q × Σ → Q
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is the (possibly partial) function of state transitions; and

Qm ≡ {qm1
, qm2
, · · · , qml

} ⊆ Q is the set of marked (i.e., accepted)

states with qmk
= q j for some j ∈ IQ. Let Σ∗ be the Kleene

closure of Σ, i.e., the set of all finite-length strings made of

the events belonging to Σ as well as the empty string ǫ that is

viewed as the identity of the monoid Σ∗ under the operation

of string concatenation, i.e., ǫs = s = sǫ. The state transition

map δ is recursively extended to its reflexive and transitive

closure δ : Q × Σ∗ → Q by defining ∀q j ∈ Q, δ(q j, ǫ) = q j and

∀q j ∈ Q, σ ∈ Σ, s ∈ Σ⋆, δ(qi, σs) = δ(δ(qi, σ), s)
Definition 2.1: The language L(qi) generated by a DFSA

G initialized at the state qi ∈ Q is defined as: L(qi) = {s ∈
Σ
∗ | δ∗(qi, s) ∈ Q} The language Lm(qi) marked by the DFSA

G initialized at the state qi ∈ Q is defined as: Lm(qi) = {s ∈
Σ
∗ | δ∗(qi, s) ∈ Qm}

Definition 2.2: For every q j ∈ Q, let L(qi, q j) denote the set

of all strings that, starting from the state qi, terminate at the

state q j, i.e., Li, j = {s ∈ Σ
∗ | δ∗(qi, s) = q j ∈ Q}

The formal language measure is first defined for terminating

plants [6] with sub-stochastic event generation probabilities

i.e. the event generation probabilities at each state summing

to strictly less than unity.

Definition 2.3: The event generation probabilities are

specified by the function π̃ : Σ⋆ × Q → [0, 1] such that

∀q j ∈ Q,∀σk ∈ Σ,∀s ∈ Σ⋆,

(1) π̃(σk, q j) , π̃ jk ∈ [0, 1);
∑

k π̃ jk = 1 − θ, with θ ∈ (0, 1);
(2) π̃(σ, q j) = 0 if δ(q j, σ) is undefined; π̃(ǫ, q j) = 1;

(3) π̃(σks, q j) = π̃(σk, q j) π̃(s, δ(q j, σk)).

The n × ℓ event cost matrix is defined as: Π̃|i j = π̃(qi, σ j)
Definition 2.4: The state transition probability π : Q×Q→

[0, 1), of the DFSA Gi is defined as follows: ∀qi, q j ∈ Q, πi j =∑

σ∈Σ s.t. δ(qi,σ)=q j

π̃(σ, qi) The n × n state transition probability

matrix is defined as Π| jk = π(qi, q j)
The set Qm of marked states is partitioned into Q+m and

Q−m, i.e., Qm = Q+m ∪ Q−m and Q+m ∩ Q−m = ∅, where Q+m
contains all good marked states that we desire to reach, and

Q−m contains all bad marked states that we want to avoid,

although it may not always be possible to completely avoid

the bad states while attempting to reach the good states.

To characterize this, each marked state is assigned a real

value based on the designer’s perception of its impact on

the system performance.

Definition 2.5: The characteristic function χ : Q → [−1, 1]
that assigns a signed real weight to state-based sublanguages

L(qi, q) is defined as:

∀q ∈ Q, χ(q) ∈



[−1, 0), q ∈ Q−m
{0}, q < Qm

(0, 1], q ∈ Q+m

(1)

The state weighting vector, denoted by χ = [χ1 χ2 · · · χn]T,

where χ j ≡ χ(q j) ∀ j ∈ IQ, is called the χ-vector. The j-th
element χ j of χ-vector is the weight assigned to the corre-

sponding terminal state q j.

In general, the marked language Lm(qi) consists of both

good and bad event strings that, starting from the initial

state qi, lead to Q+m and Q−m respectively. Any event string

belonging to the language L0
= L(qi) − Lm(qi) leads to one of

the non-marked states belonging to Q −Qm and L0 does not

contain any one of the good or bad strings. Based on the

equivalence classes defined in the Myhill-Nerode Theorem,

the regular languages L(qi) and Lm(qi) can be expressed as:

L(qi) =
⋃

qk∈Q
Li,k and Lm(qi) =

⋃
qk∈Qm

Li,k = L+m ∪ L−m where the

sublanguage Li,k ⊆ Gi having the initial state qi is uniquely

labelled by the terminal state qk, k ∈ IQ and Li, j ∩ Li,k = ∅

∀ j , k; and L+m ≡
⋃

qk∈Q
+
m

Li,k and L−m ≡
⋃

qk∈Q
−
m

Li,k are good and

bad sublanguages of Lm(qi), respectively. Then, L0
=
⋃

qk<Qm
Li,k

and L(qi) = L0 ∪ L+m ∪ L−m.

A signed real measure µi : 2L(qi) → R ≡ (−∞,+∞) is con-

structed on the σ-algebra 2L(qi) for any i ∈ IQ; interested read-

ers are referred to [9] for the details of measure-theoretic

definitions and results. With the choice of this σ-algebra,

every singleton set made of an event string s ∈ L(qi) is a

measurable set. By Hahn Decomposition Theorem [10], each

of these measurable sets qualifies itself to have a numerical

value based on the above state-based decomposition of L(qi)
into L0(null), L+(positive), and L−(negative) sublanguages.

Definition 2.6: Let ω ∈ L(qi, q j) ⊆ 2L(qi). The signed real

measure µi of every singleton string set {ω} is defined as:

µi({ω}) ≡ π̃(ω, qi)χ(q j). The signed real measure of a sub-

language Li, j ⊆ L(qi) is defined as: µi, j ≡ µ
i(L(qi, q j)) =(∑

ω∈L(qi,q j )
π̃[ω, qi]

)
χ j

Therefore, the signed real measure of the language of a

DFSA Gi initialized at qi ∈ Q, is defined as µi ≡ µ
i(L(qi)) =∑

j∈IQ
µi(Li, j). It is shown in [9] that the language measure can

be expressed as µi =
∑

j∈IQ
πi jµ j + χi. The language measure

vector, denoted as µ = [µ1 µ2 · · · µn]T, is called the µ-vector.

In vector form, we have µ = Πµ + χ whose solution is given

by µ = (I − Π)−1χ The inverse exists for terminating plant

models [6] because Π is a contraction operator [9] due to

the strict inequality
∑

jΠi j < 1. The residual θi = 1−
∑

jΠi j is

referred to as the termination probability for state qi ∈ Q. We

extend the analysis to non-terminating plants with stochas-

tic transition probability matrices (i.e.with θi = 0, ∀qi ∈ Q) by

renormalizing the language measure [4] with respect to the

uniform termination probability of a limiting terminating

model as described next.

Let Π̃ and Π be the stochastic event generation and

transition probability matrices for a non-terminating plant

Gi = 〈Q,Σ, δ, qi,Qm〉. We consider the terminating plant Gi(θ)
with the same DFSA structure 〈Q,Σ, δ, qi,Qm〉 such that the

event generation probability matrix is given by (1 − θ)Π̃
with θ ∈ (0, 1) implying that the state transition probability

matrix is (1 − θ)Π.
Definition 2.7: (Renormalized Measure:) The renor-

malized measure νi
θ

: 2L(qi (θ)) → [−1, 1] for the θ-parameterized
terminating plant Gi(θ) is defined as:

∀ω ∈ L(qi(θ)), νi
θ({ω}) = θµi({ω}) (2)

The corresponding matrix form is given by νθ = θ µ =
θ [I − (1 − θ)Π]−1χ with θ ∈ (0, 1). We note that the vector

representation allows for the following notational simplifi-

cation νi
θ
(L(qi(θ))) = νθ

∣∣∣
i

The renormalized measure for the

non-terminating plant Gi is defined to be limθ→o+ ν
i
θ
.

A. Event-driven Supervision of PFSA

Plant models considered in this paper are deterministic

finite state automata (plant) with well-defined event oc-

currence probabilities. In other words, the occurrence of

events is probabilistic, but the state at which the plant ends

up, given a particular event has occurred, is deterministic.
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Since no emphasis is placed on the initial state and marked

states are completely determined by χ, the models can be

completely specified by a sextuple as: G = (Q,Σ, δ, Π̃, χ,C )
Definition 2.8: (Control Philosophy) If qi −→

σ
qk, and the

event σ is disabled at state qi, then the supervisory action

is to prevent the plant from making a transition to the

state qk, by forcing it to stay at the original state qi. Thus

disabling any transition σ at a given state q results in deletion

of the original transition and appearance of the self-loop

δ(q, σ) = q with the occurrence probability of σ from the state

q remaining unchanged in the supervised and unsupervised

plants. For a given plant, transitions that can be disabled

in the sense of Definition 2.8 are defined to be controllable

transitions. The set of controllable transitions in a plant is

denoted C . Note controllability is state-based.

B. The Optimal Supervision Problem: Formulation &

Solution

A supervisor disables a subset of the set C of controllable

transitions and hence there is a bijection between the set of

all possible supervision policies and the power set 2C . That

is, there exists 2|C | possible supervisors and each supervisor

is uniquely identifiable with a subset of C and the language

measure ν allows a quantitative comparison of different

policies.
Definition 2.9: For an unsupervised plant G =

(Q,Σ, δ, Π̃, χ,C ), let G† and G‡ be the supervised plants

with sets of disabled transitions, D† ⊆ C and D‡ ⊆ C ,

respectively, whose measures are ν† and ν‡. Then, the

supervisor that disables D† is defined to be superior to the

supervisor that disables D‡ if ν† ≧(Elementwise) ν
‡ and strictly

superior if ν† >(Elementwise) ν
‡.

Definition 2.10: (Optimal Supervision Problem)

Given a (non-terminating) plant G = (Q,Σ, δ, Π̃, χ,C ), the

problem is to compute a supervisor that disables a subset

D⋆ ⊆ C , such that ν⋆ ≧(Elementwise) ν
† ∀D† ⊆ C where ν⋆

and ν† are the measure vectors of the supervised plants G⋆

and G† under D⋆ and D†, respectively.

Remark 2.1: The solution to the optimal supervision prob-

lem is obtained in [5], [3] by designing an optimal policy

for a terminating plant [6] with a sub-stochastic transition

probability matrix (1−θ)Π̃ with θ ∈ (0, 1). To ensure that the

computed optimal policy coincides with the one for θ = 0,

the suggested algorithm chooses a small value for θ in each

iteration step of the design algorithm. However, choosing θ
too small may cause numerical problems in convergence.

Algorithms reported in [5], [3] computes how small a θ is

actually required, i.e., computes the critical lower bound θ⋆,

thus solving the optimal supervision problem for a generic

PFSA. It is further shown that the solution obtained is

optimal and unique and can be computed by an effective

algorithm.

Definition 2.11: Following Remark 2.1, we note that al-

gorithms reported in [5], [3] compute a lower bound for the

critical termination probability for each iteration of such that

the disabling/enabling decisions for the terminating plant

coincide with the given non-terminating model. We define

θmin = mink θ
[k]
⋆ where θ[k]

⋆ is the termination probability

computed in the kth iteration.
Definition 2.12: If G and G⋆ are the unsupervised and su-

pervised PFSA respectively then we denote the renormalized

measure of the terminating plant G⋆(θmin) as νi
# : 2L(qi) →

[−1, 1] (See Definition 2.7). Hence, in vector notation we have:

ν# = θmin[I − (1 − θmin)Π#]−1χ where Π# is the transition

probability matrix of the supervised plant G⋆, we note that

ν# = ν
[K] where K is the total number of iterations required

for convergence.

3. PROBLEM FORMULATION: A PFSA MODEL OF

AUTONOMOUS NAVIGATION

Fig. 1. (a) shows the vehicle (marked ”R”) with the obstacle
positions shown as black squares. The green dot identifies the
goal (b) shows the finite state representation of the possible one-
step moves from the current position. (d) shows uncontrollable
transitions ”u” from states corresponding to blocked grid locations
to ”q⊖”

We consider a 2D workspace for the mobile agents. This

restriction on workspace dimensionality serves to simplify

the exposition and can be easily relaxed. To set up the

problem, the workspace is first discretized into a finite grid

and hence the approach developed in this paper falls under

the generic category of discrete planning. The underlying

theory does not require the grid to be regular; however

for the sake of clarity we shall present the formulation

under the assumption of a regular grid. The obstacles are

represented as blocked-off grid locations in the discretized

workspace. We specify a particular location as the fixed goal

and consider the problem of finding optimal and feasible

paths from arbitrary initial grid locations in the workspace.

Figure 1(a) illustrates the basic problem setup. We further

assume that at any given time instant the robot occupies one

particular location (i.e. a particular square in Figure 1(a)).

As shown in Figure 1, the robot has eight possible moves

from any interior location. The boundaries are handled by

removing the moves that take the robot out of the workspace.

The possible moves are modeled as controllable transitions

between grid locations since the robot can ”choose” to execute

a particular move from the available set. We note that the

number of possible moves (8 in this case) depends on the

chosen fidelity of discretization of the robot motion and also

on the intrinsic vehicle dynamics. The complexity results

presented in this paper only assumes that the number of

available moves is significantly smaller compared to the

number of grid squares, i.e., the discretized position states.

Specification of inter-grid transitions in this manner allows

us to generate a finite state automaton (FSA) description

of the navigation problem. Each square in the discretized

workspace is modeled as a FSA state with the controllable

transitions defining the corresponding state transition map.

The formal description of the model is as follows:

Let GNAV = (Q,Σ, δ, Π̃, χ) be a Probabilistic Finite State

Automaton (PFSA). The state set Q consists of states that

correspond to grid locations and one extra state denoted
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by q⊖. The necessity of this special state q⊖ is explained

in the sequel. The grid squares are numbered in a pre-

determined scheme such that each qi ∈ Q \ {q⊖} denotes a

specific square in the discretized workspace. The particular

numbering scheme chosen is irrelevant. In the absence

of dynamic uncertainties and state estimation errors, the

alphabet contains one uncontrollable event i.e. Σ = ΣC

⋃
{u}

such that ΣC is the set of controllable events corresponding

to the possible moves of the robot. The uncontrollable event

u is defined from each of the blocked states and leads to q⊖
which is a deadlock state. All other transitions (i.e. moves)

are removed from the blocked states. Thus, if a robot moves

into a blocked state, it uncontrollably transitions to the

deadlock state q⊖ which is physically interpreted to be a

collision. We further assume that the robot fails to recover

from collisions which is reflected by making q⊖ a deadlock

state. We note that q⊖ does not correspond to any physical

grid location. The set of blocked grid locations along with

the obstacle state q⊖ is denoted as QOBSTACLE j Q. Figure 1

illustrates the navigation automaton for a nine state dis-

cretized workspace with two blocked squares. Note that the

only outgoing transition from the blocked states q1 and q8 is

u. Next we augment the navigation FSA by specifying event

generation probabilities defined by the map π̃ : Q × Σ →
[0, 1] and the characteristic state-weight vector specified as

χ : Q → [−1, 1]. The characteristic state-weight vector [5]

assigns scalar weights to the PFSA states to capture the

desirability of ending up in each state.
Definition 3.1: The characteristic weights are specified for

the navigation automaton as follows:

χ(qi) =



−1 if qi ≡ q⊖
1 if qi is the goal
0 otherwise

(3)

In the absence of dynamic constraints and state estimation

uncertainties, the robot can ”choose” the particular control-

lable transition to execute at any grid location. Hence we

assume that the probability of generation of controllable

events is uniform over the set of moves defined at any

particular state.
Definition 3.2: Since there is no uncontrollable events de-

fined at any of the unblocked states and no controllable events
defined at any of the blocked states, we have the following
consistent specification of event generation probabilities: ∀qi ∈
Q, σ j ∈ Σ,

π̃(qi, σ j) =

{
1

No. of controllable events at qi
, if σ j ∈ ΣC

1, otherwise
The boundaries are handled by ”surrounding” the workspace

with blocked position states shown as ”boundary obstacles”

in the upper part of Figure 1(c).

Definition 3.3: The navigation model id defined to have

identical connectivity as far as controllable transitions are

concerned implying that every controllable transition or move

(i.e. every element of ΣC) is defined from each of the unblocked

states.

4. PROBLEM SOLUTION AS A DECISION-THEORETIC

OPTIMIZATION OF PFSA

The above-described probabilistic finite state automa-

ton (PFSA) based navigation model allows us to compute

optimally feasible path plans via the language-measure-

theoretic optimization algorithm [5] described in Section 2.

Keeping in line with nomeclature in the path-planning liter-

ature, we refer to the language-measure-theoretic algorithm

as L
⋆ in the sequel. For the unsupervised model, the robot

is free to execute any one of the defined controllable events

from any given grid location (See Figure 1(b)). The optimiza-

tion algorithm selectively disables controllable transitions

to ensure that the formal measure vector of the naviga-

tion automaton is elementwise maximized. Physically, this

implies that the supervised robot is constrained to choose

among only the enabled moves at each state such that the

probability of collision is minimized with the probability of

reaching the goal simultaneously maximized. Although L
⋆ is

based on optimization of probabilistic finite state machines,

it is shown that an optimal and feasible path plan can be

obtained that is executable in a purely deterministic sense.
Let GNAV be the unsupervised navigation automaton and

G⋆
NAV

be the optimally supervised PFSA obtained by L
⋆. We

note that νi
# is the renormalized measure of the terminating

plant G⋆
NAV

(θmin) with substochastic event generation proba-

bility matrix Π̃θmin = (1−θmin)Π̃. Denoting the event generat-
ing function (See Definition 2.3) for G⋆

NAV
and G⋆

NAV
(θmin) as

π̃ : Q × Σ→ Q and π̃θmin : Q × Σ→ Q respectively, we have

π̃θmin (qi, ǫ) = 1 (4a)

∀qi ∈ Q, σ j ∈ Σ, π̃
θmin (qi, σ j) = (1 − θmin)π̃(qi, σ j) (4b)

Notation 4.1: For notational simplicity, we use

νi
#(L(qi)) = ν#(qi) = ν#|i

where ν# = θmin[I − (1 − θmin)Π#]−1χ
Definition 4.1: (L

⋆-path:) A L
⋆-path ρ(qi, q j) from state

qi ∈ Q to state q j ∈ Q is defined to be an ordered set of PFSA
states ρ = {qr1

, · · · , qrM
} with qrs ∈ Q, ∀s ∈ {1, · · · ,M},M ≤

CARD(Q) such that
qr1
= qi (5a)

qrM
= q j (5b)

∀i, j ∈ {1, · · · ,M}, qri
, qr j

(5c)

∀s ∈ {1, · · · ,M},∀t ≦ s, ν#(qrt
) ≦ ν#(qrs

) (5d)

Lemma 4.1: There exists an enabled sequence of transi-

tions from state qi ∈ Q \ QOBSTACLE to q j ∈ Q \ {q⊖} in G⋆
NAV

if and only if there exists a L
⋆-path ρ(qi, q j) in G⋆

NAV
.

Proof: Let qi
σ1
−→ qk1

σ2
−→ qk2

σ3
−→ · · · qkℓ → · · · → q j

be an enabled sequence of transitions in G⋆
NAV

where ℓ ∈
{1, · · ·M} for some M ≦ CARD(Q). We note from the defined

structure of the navigation automaton that there is no

transition qs
σ
−→ qr where qs ∈ QOBSTACLE , qr , q⊖. It follows

that ∀ℓ ∈ {1, · · · ,M}, qkℓ < QOBSTACLE . This in turn implies that

each of the individual transitions qkℓ1
σ
−→ qkℓ2 in the above

transition sequence is controllable. Monotonic convergence

of the optimizaton algorithm [5], [3] then implies ν#(qi) ≤
ν#(qk1) ≤ ν#(qk2) ≤ · · · ≤ ν#(q j) implying that {qi, qk1, qk2, · · · , q j}

is a L
⋆-path. The converse follows by a similar argument.

r

Proposition 4.1: For the optimally supervised navigation

automaton G⋆
NAV

, we have

∀qi ∈ Q \QOBSTACLE , L(qi) j Σ
⋆
C

Proof: We proceed by the method of contradiction.
Assume ∃s ∈ L(qi) for some qi ∈ Q \QOBSTACLE such that s < Σ⋆

C
.

Since u ∈ Σ is the only uncontrollable event and

δ#(q j, u) = q⊖ (if defined) (6)

δ#(q⊖, u) = q⊖ (Self − loop) (7)
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it follows that s = s1uK where s1 ∈ Σ
⋆
C

and K ≧ 1. Since u is
only defined from q j ∈ QOBSTACLE , it follows that there exists
an enabled sequence of controllable transitions from qi to
q j ∈ QOBSTACLE \ {q⊖} which in turn implies (See Lemma) that

ν#(qi) ≦ ν#(q j) (8)

Since L(q j) = u⋆, it follows from Definition that

ν#(q j) = θmin

∞∑

k=2

(1 − θmin)k × −1 = −(θmin − 1)2 < 0 (9)

ν#(qi) = ν#(ω ∈ L(qi)s.t.δ
#(qi, ω) < QOBSTACLE )

+ν#(ω ∈ L(qi)s.t.δ
#(qi, ω) ∈ QOBSTACLE ) (10)

Now, since only q⊖ has a negative characteristic weight (See
Definition), we have ν#(ω ∈ L(qi)s.t.δ

#(qi, ω) < QOBSTACLE ) ≧ 0. On
the other hand, qi < QOBSTACLE implies

ν#(ω ∈ L(qi) : δ#(qi, ω) ∈ QOBSTACLE ) = αν#(qr),

where qr ∈ QOBSTACLE \ {q⊖}

⇒ ν#(ω ∈ L(qi) : δ#(qi, ω) ∈ QOBSTACLE ) = αν#(q j) (11)

where α = θmin

∑

ω:δ#(qi ,ω)∈QOBSTACLE
\{q⊖}

π̃θmin (qi, ω). We observe that

α ∈ [0, 1) with the strict upper bound α < 1 following from

the consideration of the worst case scenario where δ#(qi, σ) ∈
QOBSTACLE , ∀σ ∈ ΣC, in which case we have

α = θmin
1

CARD(ΣC)
(1 − θmin) ×CARD(ΣC) = θmin − θ

2
min < 1

Hence we conclude ν#(qi) ≦ ν#(q j) which contradicts Eq. (8).

r

Corollary 4.1: (Obstacle Avoidance:) There exists no

L
⋆-path from any unblocked state to any blocked state in the

optimally supervised navigation automaton G⋆
NAV

.

Proof: Let qi ∈ Q\QOBSTACLE and assume that there exists

a L
⋆-path from qi to some q j ∈ QOBSTACLE \ {q⊖}. It follows

from Lemma 4.1 that there exists an enabled sequence of

transitions from qi to q j. Since the uncontrollable transition

u is defined from q j ∈ QOBSTACLE (See Definition), it follows that

L(qi) " Σ
⋆
C

which contradicts Proposition 4.1. r

Proposition 4.2: (Existence of L
⋆-paths:) There exists a

L
⋆-path ρ(qi, qGOAL) from any state qi ∈ Q to the goal qGOAL ∈ Q

if and only if ν#(qi) > 0.
Proof: Partitioning L(qi) based on terminating states,

ν#(qi) = ν#({ω : δ#(qi, ω) = qGOAL })

+ ν#({ω : δ#(qi, ω) ∈ Q \ (QOBSTACLE

⋃
{qGOAL })})

+ ν#({ω : δ#(qi, ω) ∈ QOBSTACLE }) (12)

Now, Corollary 4.1 implies {ω : δ#(qi, ω) ∈ QOBSTACLE } =
∅ ⇒ ν#({ω : δ#(qi, ω) ∈ QOBSTACLE }) = 0. Also, since ∀q j ∈
Q \ (QOBSTACLE

⋃
{qGOAL}), χ(q j) = 0, we have ν#({ω : δ#(qi, ω) ∈

Q \ (QOBSTACLE

⋃
{qGOAL})}) = 0. Hence we conclude

ν#(qi) = ν#({ω : δ#(qi, ω) = qGOAL}) (13)

It follows from χ(qGOAL) = 1 that δ#(qi, ω) = qGOAL ⇒ ν#({ω}) >
0 implying there exists an enabled sequence of controllable

transitions from qi to qGOAL in G⋆
NAV

if and only if ν#(qi) > 0.

The result then follows from Lemma 4.1. r

Corollary 4.2: (Absence of Local Maxima:) If there ex-

ists a L
⋆-path from qi ∈ Q to q j ∈ Q and a L

⋆-path from qi to

qGOAL then there exists a L
⋆-path from q j to qGOAL , i.e.,

∀qi, q j ∈ Q
(
∃ρ1(qi, qGOAL)

∧
∃ρ2(qi, q j)⇒ ∃ρ(q j, qGOAL)

)

Proof: Let qi, q j ∈ Q. We note

∃ρ1(qi, qGOAL)⇒ ν#(qi) > 0 (Proposition 4.2) (14a)

∃ρ2(qi, q j)⇒ ν#(qi) ≤ ν#(q j) (Definition 4.1) (14b)

It follows that ν#(q j) > 0 which implies that there exists a

L
⋆-path from q j to qGOAL (Proposition 4.2). r

input : Current State qCURRENT , ν#, δ
output: Next State qNEXT

begin1

Set M = -Inf;2

for j = 1 to CARD(ΣC) do3

q j = δ(qCURRENT , σ j);4

if ν#(q j) >M then5

qNEXT = q j;6

M = ν#(q j);7

8

9

end10 Algorithm 1: Computation of Next State

qk qℓ

qmq j

· · · ≤ q j ≤ qk ≤ qm ≤ qℓ ≤ · · ·

Fig. 2. States q j, qk, qm, qℓ with q j ≤ qk ≤ qm ≤ qℓ implying

{q j, qk, qm, qℓ} is a L
⋆-path from q j to qℓ; smoothed path is {q j, qℓ}

Remark 4.1: (Smoothing computed L
⋆-paths:) We note

that given an arbitrary current state qi, Algorithm 1 computes

the next state qNEXT as the one which has maximal measure

among all possible next states q j satisfying ν#(q j) ≧ ν#(qi).
This precludes the possibility illustrated in Figure 2 implying

that the computed plan is relatively smoother. However, such

smoothing may result in a computed plan that is not neces-

sarily the shortest path from the initial state to the goal. This

is expected since L
⋆ is not meant to determine the shortest

path, but compute a ν-optimal path to the goal. In the sequel,

we expound this optimal tradeoff that L
⋆ makes between path

length and robust planning.

Notation 4.2: We denote the L
⋆-path computed by Algo-

rithm 1 as a L
⋆-plan in the sequel.

A. Optimal Tradeoff between Computed Path Length

& Robustness to Dynamic Uncertainty

Majority of reported path planning algorithms consider

minimization of the computed feasible path length as the

sole optimization objective. Mobile robotic platforms how-

ever suffer from varying degrees of dynamic and parametric

uncertainties, implying that path length minimization is of

lesser practical importance to computing plans that are ro-

bust under sensor noise, imperfect actuation and possibly ac-

cumulating odometry errors. Even with sophisticated signal

processing techniques such errors cannot be eliminated. The

L
⋆ algorithm addresses this issue by an optimal trade-off

between path lengths and availability of feasible alternate

routes in the event of unforeseen dynamic uncertainties. If

ω is the shortest path to goal from state qk, then the shortest

path from state qi (with qi
σ2
−→ qk) is given by σ2ω. However, a

larger number of feasible paths may be available from state
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q j (with qi
σ1
−→ q j) which may result in the optimal L

⋆ plan to

be σ1ω1. Mathematically, each feasible path from state q j has

a positive measure which may sum to be greater than the

measure of the single path ω from state qk. The condition

ν#(q j) > ν#(qk) would then imply that the next state from

qi would be computed to be q j and not qk by Algorithm 1.

Physically it can be interpreted that the mobile gent is better

off going to q j since the goal remains reachable even if one

or more paths become unavailable. Next we estimate the

minimum number of alternate routes required for the L
⋆ plan

to be different from the shortest path.

Lemma 4.2: For the optimally supervised navigation au-

tomaton G⋆
NAV

, we have ∀qi ∈ Q \QOBSTACLE ,

∀ω ∈ L(qi), ν
i
#({ω}) = θmin

(
1 − θmin

CARD(ΣC)

)|ω|
χ(δ#(qi, ω))

Proof: We claim that ∀qi ∈ Q \QOBSTACLE ,

∀ω ∈ L(qi), π̃
θmin (qi, ω) =

(
1 − θmin

CARD(ΣC)

)|ω|
(15)

We note that on account of Proposition 4.1 we need to
consider only ω ∈ Σ⋆

C
. Eq. (15) is trivially satisfied for |ω| = 0.

For |ω| ≧ 1, we proceed by the method of induction. First we
note that since the control philosophy (See Definition 2.8)
does not alter the event generation probabilities, we have
from Definition 3.2 that ∀qi ∈ Q\QOBSTACLE , σ ∈ ΣC, π̃

θmin (qi, σ) =
1

CARD(ΣC) implying Eqn.(15) is satisfied for |ω| = 1. Assume

that the result holds for all ω ∈ Σ⋆
C

and for all qi ∈ Q\QOBSTACLE

such that |ω| = K. Then the claim follows from noting

π̃θmin (qi, σω) = π̃θmin (qi, σ)π̃
θmin (δ#(qi, σ), ω) =

(
1 − θmin

CARD(ΣC)

)K+1

Finally we recall Definition 2.12 to note νi
#({ω}) =

θminπ̃
θmin (qi, ω)χ(q j) where q j = δ

#(qi, ω). This completes the

proof. r

Proposition 4.3: For qi ∈ Q \QOBSTACLE , let qi
σ1
−→ q j → · · · →

qGOAL be the shortest path to the goal. If there exists qk ∈

Q \QOBSTACLE with qi
σ2
−→ qk for some σ2 ∈ ΣC such that ν#(qk) >

ν#(q j), then the number of distinct paths to goal from state qk

is at least CARD(ΣC) + 1.

Proof: Let the length of the shortest path qi
σ1
−→ q j →

· · · → qGOAL be m. To compute a lower bound on the number of
alternate routes, we assume that there is only one path from
state q j to the goal. Further we assume that every alternate
path from state qi through qk has length m + 1. If there are
r such paths, then for the condition ν#(qk) > ν#(q j) to be true,
we need

∑

ω1∈L(q j)

ν#({ω1}) >
∑

ω2∈L(qk )

ν#({ω2})

⇒r × θmin

(
1c − θmin

CARD(ΣC)

)m
> θmin

(
1 − θmin

CARD(ΣC)

)m−1

(Lemma 4.2)

⇒r > CARD(ΣC)⇒ r ≧ CARD(ΣC) + 1

r

The lower bound computed in Proposition 4.3 is not tight

and if the alternate paths are longer or if there are multiple

’shortest’ paths then the number of alternate routes required

is significantly higher. Detailed examples can be easily pre-

sented to illustrate situation where L
⋆ opts for a longer but

more robust plan.

5. SUMMARY & FUTURE RESEARCH

A novel path planning algorithm L
⋆ is introduced that

models the autonomous navigation as an optimization prob-

lem for probabilistic finite state machines and applies the

rigorous theory of language-measure-theoretic optimal con-

trol to compute ν-optimal plan to the specified goal, with

automated trade-off between path length and robustness of

the plan under dynamic uncertainty.

A. Future Work

Future work will extend the language-measure theoretic

planning algorithm to address the following problems:

1) Multi-robot coordinated planning: Run-time com-

plexity grows exponentially with the number of agents if

one attempts to solve the full Cartesian product problem.

However L
⋆ can be potentially used to plan individually

followed by an intelligent assembly of the plans to take

interaction into account.

2) Hierarchical implementation to handle very large

workspaces: Large workspaces can be solved more ef-

ficiently if planning is done when needed rather than

solving the whole problem at once; however care must be

taken to ensure that the computed solution is not too far

from the optimal one.

3) Handling uncontrollable dynamic events: In this

paper the only uncontrollable event is the one model-

ing a collision when the robot attempts to move into a

blocked state. Physical dynamic response of the robot may

need to be modeled as uncontrolled transitions in highly

uncertain environments and will be addressed in future

publications.
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