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Abstract— The networked environment presents many new
challenges for the design of feedback control systems. A specific
problem is that networked control systems (NCSs) are subject
to the performance-degrading effects of time-varying, random
loop delays. Model predictive controllers are a well-known
method for delay compensation, but often exhibit poor perfor-
mance under these types of loop delay. This paper investigates
the use of play-back buffers to remove the uncertainty in the
delay. First we study the value of removing all delay uncertainty
with comparisons to unbuffered PID control using a bounded-
interval delay distribution, and then we explore optimal play-
back buffer design for bounded-interval and heavy-tailed delay
distributions.

I. INTRODUCTION

Communication networks offer considerable capabilities

for the implementation of feedback control systems, but only

if the control system can be designed to effectively com-

pensate for the impact of network nondeterminism. Control

systems in which information from the sensors and con-

trollers is sent over an electronic communication network are

called networked control systems (NCSs) [9], [14], [21], [23];

see Fig. 1. Some basic benefits of using networks to close

the feedback loop include reduced cost, relatively simple

implementation, and greatly increased flexibility. Of course,

an NCS must also tolerate the performance-degrading aspects

of the network, including time-varying random transmission

delays.

Fig. 1. A block diagram of a networked control system.

Control with loop delay is hardly a new issue, and much

analysis has been devoted to time-delay systems and the

problem of delay compensation [7], [12], [20], [22]. Perhaps

the most popular method of delay compensation is model

predictive control (MPC). MPC uses a model of the plant to

be controlled to generate control signals so that the system

can be controlled as if there were no delay in the loop.

The Smith predictor is an example of such a controller [12].

However, MPC can be very sensitive to errors in the model,

including specific sensitivity to errors (or “mismatches”)

in the model of the delay, which is usually constant [2].

Because NCSs are subject to random, time-varying delays,

this presents a significant obstacle.

One proposed method for implementing MPC for delay

compensation in a networked environment is the use of play-

back buffers [11]. Play-back buffers can be used to reduce

the variability in the loop delay, but only by effectively in-

creasing the delay. This paper aims to initiate the discussion

of the control-related aspects of using play-back buffers in

systems with time-varying loop delays such as those found in

NCSs. First, we describe the value of removing uncertainty in

the delay, showing the types of situations where the value of

removing uncertainty in the delay is greater than the decrease

in performance due to the effective increase in loop delay.

Then we address some design issues for the implementation

of the Smith predictor using a play-back buffer.

In Section II, we introduce the concept of play-back

buffers and their adaptation for networked control. In Sec-

tion III, we consider the situation when all uncertainty in

the delay can be removed (using a bounded-interval delay

distribution) and compare the performance using a play-

back buffer with a Smith predictor to the use of unbuffered

PID control. In Section IV, we explore two basic problems

in the design of a networked control system using play-

back buffers: how to choose the optimal play-back delay

with average-case analysis using knowledge of the delay

distribution and how to design the internal controller for a

Smith predictor. Finally, Section V concludes the paper and

discusses possibilities for future work.

II. PLAY-BACK BUFFERS

Play-back buffers were originally designed for multimedia

play-back [16]. In [11], Liberatore proposed an algorithm to

integrate a play-back buffer with networked control for the

control algorithm, actuator, and sensor. The main feature is a

buffer located at the actuator which delays the application of

a control signal until a specified play-back time is reached.

The play-back time is determined at the controller and is

paired with the appropriate control signal in a single packet.

Control signals which arrive after the play-back time are

applied immediately. For an example of the effects of a

play-back buffer on an arbitrary signal, see Fig. 2. The play-

back delay, the difference between the time when the plant

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThC05.2

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3106



is sampled and when the control signal calculated from that

output is applied, is chosen to remove much of the variability

in the loop delay (or round-trip time), and therefore the

application of the control signal is more predictable. This is

particularly advantageous for model predictive controllers.
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Fig. 2. An example demonstrating the effects of a play-back buffer in the
time domain. The continuous-time signal to be sampled, f(t), is solid blue.
The left plot shows the delayed signal, fd(t), without play-back buffering,
where one sample (marked by an “x”) is dropped due to out of order arrival.
The plot on the right shows the delayed signal using a play-back buffer,
removing the uncertainty in the delay using a play-back delay of 1.2 s (thus
the output samples are again equally spaced with h = 0.1). Instantaneous
delays before buffering are denoted with “+”.

In this paper, we focus on the control-related performance

and design issues regarding the basic idea of removing

uncertainty in the delay by adding a play-back delay. Clearly,

adding any delay to a closed-loop system generally degrades

performance. Therefore, we must investigate the design of

a controller which takes advantage of an effectively more

deterministic loop delay and evaluate the overall performance

of the resulting system.

In addition to the control signal and play-back time, the

integrated algorithm proposed in [11] includes mechanisms

that we do not implement here. For example, it proposes

contingency control: a conservative control signal which has

a longer play-back delay and is intended to prevent extended

application of an aggressive control signal when a new con-

trol signal is not received on time. The integrated algorithm

also assumes the actuator only has enough local memory to

be able to hold a single packet, and thus discards, or quashes,

a control signal waiting to be applied if a newer control

signal is received. To limit the number of quashed signals,

the algorithm uses variable sampling periods and an updated

guess of the minimum round-trip time (RTT). However,

when using a constant sampling rate and a play-back delay

significantly beyond the body of the delay distribution, a high

percentage of control signals may be quashed because several

packets are usually received before the play-back time. This

leads to significantly degraded performance, so we always

assume the actuator has enough memory so that no signals

are quashed, and therefore we can independently study the

effects of longer play-back delays.

III. INITIAL EVALUATION

In general, we divide controllers for systems with time-

varying loop delays into two categories: buffered and un-

buffered. First, a buffered controller (i.e., one using a play-

back buffer) can take advantage of an effectively more

deterministic loop delay by using MPC for delay compensa-

tion. As a consequence, the controller can be designed very

aggressively if a good plant model is available. The drawback

of this method is the effective increase in loop delay due to

the play-back buffer. Here, we use the Smith predictor for

MPC and abbreviate its combination with a play-back buffer

“SP-PB”.

On the other hand, an unbuffered controller applies the

control signal as soon as it is received. An example of

a controller which can be implemented effectively without

buffering is a PID controller (because the “D” term serves

as a crude predictor that is sufficiently robust to the time-

varying nature of the delay). Intuitively, we know that

for small delays, a PID controller can perform very well.

However, the drawback is that for longer delays, the gains

of the PID controller become conservative and performance

is significantly degraded. Certainly, gain scheduling of PID

control could be done in this case, as Nilsson did for LQR

in [14], but this would require knowledge of the current

round-trip time (RTT), including a prediction of the next

controller-to-actuator delay. Implementation of this type of

unbuffered controller is beyond the scope of this paper, and,

indeed, the SP-PB does not require such information. (Also,

an unbuffered Smith predictor could be used to compensate

for the delay, but when the delay is time-varying, the Smith

predictor’s sensitivity to these changes in delay leads to

prohibitively poor performance.)

Therefore, in this section we compare the performance

of a buffered controller to an unbuffered controller in order

to more precisely characterize the situations in which the

buffered controller shows superior performance. To simplify

the analysis, we will use a bounded-interval delay distri-

bution and set the play-back delay equal to the maximum

possible delay, thereby removing all variability in the delay.

We start by describing how time-varying, random loop delays

were generated for our comparison experiments.

A. Generating Delays for Experiments

While network delays are usually modeled by a semi-

infinite, heavy-tailed distribution defined on [τmin,+∞) [13]

(and we will also use a similar model later in Section IV.

C.), we begin by studying the case when all uncertainty in

the loop delay can be removed. Therefore, we generate ran-

dom delays using a bounded-interval distribution defined on

[τmin, τmax]. We use the beta distribution, whose probability

density function (PDF) on the interval [τmin, τmin] is given

by

f(x) =

(

x−τmin

τmax−τmin

)α−1 (

1 −
(

x−τmin

τmax−τmin

))β−1

(τmax − τmin)
∫ 1

0
uα−1(1 − u)β−1 du

. (1)

It should be noted that this distribution was not chosen be-

cause it specifically matched any real network data. However,

we chose this distribution for qualitative reasons: in most

real network delay distributions, most delays will be close
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to the minimum delay and the system will be subject to

less frequent, long delay spikes [4]. If we set α = 1, as

β increases from 1 to ∞, the beta distribution shifts from

uniform to an impulse at the minimum value; see Fig. 3.

Therefore, as β increases and the play-back delay stays at

τmax, we can study the importance of how close the play-

back delay is to the body of the delay distribution.
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Fig. 3. Normalized PDFs for beta distribution (i.e., the numerator of Eq.
(1)) for several values of β and α = 1.

Here, we study varying values of β, τmin, and τrange,

where τrange = τmax− τmin, and we always use α = 1. We

start with β = 1, which is the case of uniformly distributed

delays, and increase β to 7. In [11], the default value of

the minimum delay was 50 ms, so we consider values of

the minimum delay in that neighborhood. Specifically, we

consider τmin ∈ [10, 150] ms and τrange ∈ [0, 150] ms.

When generating independent random values for delays,

the policy of dropping out-of-order packets can lead to the

loss of a high percentage of packets. This is especially true

for systems where the probability of longer delays is low,

as these infrequent delay spikes will usually be dropped due

to out-of-order arrival because the less likely long delays

are most likely to be followed by a short delay. As a conse-

quence, the system effectively suffers from a dropped packet

instead of a delay spike. However, our purpose in this paper

is to specifically study the effects of time-varying delays,

not packet loss. (For analysis of systems with packet drops,

see [3], [8], [19].) Additionally, in practice, many packets

often arrive almost simultaneously after a delay spike. To

simulate this behavior, the randomly generated delays were

modified so that no packets would be dropped due to out-

of-order arrival. Instead, the arrival of any packet that would

arrive out-of-order (i.e., before a preceding packet) is moved

until slightly after the older packet arrives. For example, if

a packet sent at t = 1 s has a delay of 5 s and is followed

by a packet sent at t = 2 s which has a delay of 3 s, the

first packet would arrive at t = 6 s, after the second packet

arrives at t = 5 s. In this case, we would increase the delay

of the second packet to 4 + δ s, where δ is an arbitrary,

small number. Here, we used δ = 1 ms. A similar method

was used in [18].

B. Performance Comparison Methodology

Our purpose is to characterize the situations where a

controller with a play-back buffer outperforms an unbuffered

controller, and vice versa. These two controllers are de-

scribed in detail below. It is important to test the two

controllers on a plant whose dynamics are fast enough to

be affected by the range of delay values which we will

consider, so we use a first-order plant G(s) = 1/(Ts + 1)
with T = 0.1. We use a constant sampling time, h = 0.01.

We use step responses to test each controller, and the

integral absolute error (IAE) metric is used to measure

the performance. We compare their performance by simply

subtracting the IAE of the SP-PB controller from the IAE

of the unbuffered PID controller. Hence, because we want

to minimize IAE, a positive cost difference will indicate

superior performance for the SP-PB.

C. The Smith Predictor

The Smith predictor [2], [12] takes advantage of a plant

model and a constant known loop delay (here, the same as

the play-back delay) to control the system as if there were no

loop delay. Thus, the internal controller should be designed

for the delay-free system. Because we are controlling a first-

order plant, we use a PI controller.

Because all the uncertainty in the delay will be removed by

the play-back buffer, we can use the most aggressive PI gains

possible for the delay-free design of the discrete controller.

With T = 0.1, the gains KP = 10.508, KI = 200 bring the

plant to the set point within one sampling period and hold

it there until the set point changes. We can use these gains

throughout.

With all uncertainty removed from the loop delay, the cost

of a step response for the SP-PB can be trivially calculated

without repeated simulation. It is always equal to the cost

due to dead-time (which is equal to the dead-time, τpb, for

a unit step response) plus the transient cost, which, again,

is independent of the random loop delays. We also note that

the component of the cost metric which is due to the dead-

time (i.e., the play-back delay before the system responds)

usually dominates the component of the cost metric which

is due to the transient response. For example, for our range

of parameters for the loop delay distribution, the dead-time

cost will range from 0.010 to 0.300, whereas the transient

cost is about 0.0049.

D. The Unbuffered PID Controller

The main drawback of using play-back buffers is the cost

due to the intentionally added delay. Therefore, the SP-PB

controller should be compared to a controller which instead

acts immediately. Here, we will use a PID controller, but we

must be careful to pick good gains so that the comparison is

fair. In this section we describe how gains were optimized

for different parameterizations of the delay distribution.

Optimal PID gains for systems with time-varying, random

delays is a topic which has not been thoroughly studied

(though some analysis was performed in [6]). For every

plant and every delay distribution, PID gains could be found
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using optimization algorithms such as those used in [10] and

[17], but this is hardly a feasible proposal when studying

as many different delay distributions and parameterizations

thereof as we are in this paper. Instead, we propose a method

which tries to take advantage of the extensive work which

has already been done for PID control of systems with a

fixed loop delay. For first-order plants, a tuning rule can be

used which takes a loop delay τd as a parameter so that

gains become more conservative in a nearly optimal way as

the loop delay increases. Herein, we use Wang’s tuning rule

which minimizes IAE for first-order plants with an ideal PID

controller (see p. 162 in [15]). The tuning rule is given by

Kc =
(0.7645 + 0.6032

τd/T )(T + 0.5τd)

K(T + τd)
, (2)

Ti = T + 0.5τd, (3)

Td =
0.5Tτd

T + 0.5τd
, (4)

where KP = Kc, KI = Kc/Ti, and KD = KcTd. We

propose using these gains for systems with random delays by

finding an effective delay, τeff , for a given delay distribution.

This effective delay will intuitively be between the minimum

delay and maximum delay (if it exists) in the system; where

it lies in between those values is determined by how the

delays are distributed. This method takes advantage of the

relationships between the gains given by the tuning rule so

we only need to optimize over one parameter, τd, instead of

optimizing over the full space of all three gains. This optimal

τd is τeff .

For example, if the loop delays belong to the beta dis-

tribution with β = 1 (uniformly distributed delays) and

τmin = 50 ms and τmax = 100 ms, we used simulation

and found τeff = 86.7 ms, which gives KP = 1.121,

KI = 7.820, and KD = 0.0339. If the delays are distributed

more closely to the minimum delay, or equivalently, if β is

higher, the gains can be more aggressive and consequently

τeff is lower. For example, if β is increased to 4, τeff = 66.0
ms.

The cost for unbuffered PID control of the system with

random loop delays is estimated through simulation by

averaging 24 successive unit step responses, alternating from

zero to one, then from one to zero. The length of each step

response is three seconds, which gives the system ample time

to settle between changes in the reference signal.

E. Comparison Results

In Fig. 4, we show the cost difference for step tracking

on a grid of values of τmin and τrange representing changes

in the delay distribution. Here, β = 3, and the colormap

is chosen specifically to distinguish the two regions where

one controller outperforms the other. We pick β = 3 to

show in Fig. 4 because for all lower values of β, the SP-PB

always outperforms the unbuffered PID controller. Therefore,

for β < 3, the play-back delay can always be set to τmax,

removing all uncertainty in the delay, because the unbuffered

PID controller must be tuned too conservatively (relative to

the SP-PB controller) due to the distribution of the delays

between the minimum and maximum values.
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Fig. 4. Cost comparisons via subtraction for step tracking with β = 3.
Positive values indicate SP-PB shows superior performance.

An important feature in Fig. 4 is the curve where the cost

difference is zero that divides the regions for which each

controller is best. Fig. 5 shows these isocurves for several

values of β. As expected, the area below the curve (which is

the region where the unbuffered PID controller outperforms

the SP-PB) grows as β increases. The majority of the delay

distribution is moving closer and closer to τmin, so we

expect the play-back delay of τmax to eventually become

too conservative.
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Fig. 5. Curves of equal cost for the unbuffered PID controller and the
SP-PB. For all values of β, the area below and to the right of the curves is
where the unbuffered PID controller has superior performance.

Interestingly, the curves in Fig. 5 seem to approach a limit.

As β increases, we know that τeff increases less with τrange

because more and more delays are closer to τmin. When β =
∞, all the delays are equal to τmin, and therefore τeff =
τmin regardless of the value of τrange. As β increases, the

cost of the unbuffered PID controller should approach this
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Fig. 6. Cost as a function of the play-back delay.
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case, and consequently, the cost comparison should approach

the comparison with this constant delay case. The dividing

curve for the β = ∞ case is shown with a dotted line in Fig.

5, and it appears to be the line which the other curves are

approaching. This curve also shows that even when there is

no randomness in the delay, as τmin increases, the margin by

which the SP-PB outperforms the PID controller increases

as well.

Another way to interpret the results is to recognize the

importance of choosing the play-back delay close to the

body of the delay distribution. As β increases, the body

of this delay distribution moves away from the play-back

delay because we are naively always choosing the play-back

delay equal to the maximum delay. Therefore, in these cases,

choosing τpb < τmax is likely advantageous.

IV. DESIGN

In the previous section, we simply considered the case

when all uncertainty in the loop delay could be removed and

characterized situations when this improved performance.

However, if the distribution of the delays is concentrated near

the minimum delay, performance of the SP-PB controller can

be improved by setting the play-back delay below τmax. For

example, Fig. 6 shows the IAE as a function of τpb when the

delays are given by the beta distribution. We see that as β
increases, the optimal play-back delay moves closer towards

τmin. Also, the maximum delay may be unknown or infinite

if the delay is modeled by a semi-infinite interval delay

distribution. In this section, we explore the optimization of

the play-back delay using an approximation method (which

uses analytical cost calculations) and then use simulation

to verify the results. We also discuss the design of the

controller’s gains.

A. Choosing the Play-Back Delay: An Analytical Approxi-

mation Method

While complete simulation and optimization is the most

straightforward way to determine the play-back delay, it can

certainly be computationally expensive. Here, we propose a

method to determine the optimal play-back delay for any ar-

bitrary delay distribution using a matrix of costs determined

by the step response of the plant in certain deterministic

situations. Specifically, each cost entry in the matrix is

associated with a possible loop delay and a candidate play-

back delay. Then, for every candidate play-back delay, we

find the weighted average of the cost over all possible

loop delays, with weights being given by the probability

distribution of the delay. This weighted average gives an

“expected cost” for each candidate play-back delay, and the

play-back delay with the minimum such expected cost should

be near optimal.

Formally, for each play-back delay, we define its asso-

ciated cost to be the weighted average of the cost of each

possible delay spike,

Jpred(τpb) =
N

∑

i=1

w(τi)Jspike(τi, τpb), (5)

where Jspike(τi, τpb) denotes the cost of a worst-case delay

spike of value τi with the play-back delay τpb, and N is the

number of discrete delay values used. The weights w(τi)
come from the discretized probability distribution of the

delays, where

w(τi) = F (τi) − F (τi−1), (6)

where F (x) is the cumulative distribution function (CDF) of

the delay distribution, i.e. F (x) = Pr(τ < x). Using F (τi)−
F (τi−1) indicates that delay values are always rounded up

when discretized.

The first step is to specify a cost as a function of a possible

loop delay value and a candidate play-back delay. Here, we

define this cost to be the IAE from the “worst-case” delay

spike of length τ in a step response with the play-back delay

set to τpb. In a step response, the worst time for a delay spike

is the sampling period immediately following a step change

in the reference signal, because at this point, the controller

has just sent an aggressive control signal to the plant to

bring the plant output up to the reference signal quickly. The

following control signal is a lower value which is designed

to hold the plant output at the reference, but if this value is

not received, the actuator holds the last, aggressive control

signal until a new control signal is received. Thus, if a delay

spike is above the play-back time, the system will typically

suffer a high overshoot, and additionally, the Smith predictor

3110



0.05 0.06 0.07 0.08 0.09 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

τ
min

τ
max

τ
pb

IA
E

 

 

β = 1

β = 3

β = 7

Fig. 9. Three examples of predicted play-back
costs, Jpred(τpb). Cf. Fig. 6.

2 4 6 8 10 12

0.05

0.06

0.07

0.08

0.09

0.1

β

τ p
b
*

 

 

τ
max

τ
min

Approx Method

Simulation Method

Fig. 10. Comparing τ∗
pb

for both methods as β

increases, with τmin = 50 ms and τmax = 100
ms.

2 4 6 8 10 12
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

β

F
(τ

p
b
*)

 

 

Approx Method

Simulation Method

Fig. 11. Comparing F (τ∗
pb

) for both methods

as β increases, with τmin = 50 ms and τmax =
100 ms.

will also need a few sampling periods to re-synchronize with

the plant. Fig. 7 shows three example step responses for such

“worst-case” delay spikes above the play-back delay. In this

section, we again use a PI controller with the aggressive

gains KP = 10.508 and KI = 200.

For delay “spikes” below the play-back time (i.e., τ <
τpb), the step response of the system will be unaffected, thus

the cost associated with τ in this case will be equal to τpb

(the dead-time cost for the step response) plus the delay-

independent transient cost. For τ > τpb, the dead-time cost

will be the same, but the cost from the transient response will

now increase with the value of the delay spike (due to higher

overshoot and longer settling time; see Fig. 7). The transient

cost also depends on the play-back delay because for higher

play-back delays, the controller will not be able to respond

as quickly to bring the plant back to the reference signal. We

used a grid of values from 10 to 150 ms for both τ and τpb,

discretized to a 1 ms resolution. The cost of all delay spikes

above τpb used in this paper are calculated analytically by

using the solution of the first-order system. Fig. 8 shows the

cost as a function of τ for a few values of τpb.

The next step is to find a predicted cost for each candidate

play-back delay as prescribed by Eqs. (5) and (6). Fig.

9 shows the predicted play-back cost, Jpred(τpb), for the

beta distribution with τmin = 50 ms, τmax = 100 ms,

and three values of β. We note that the play-back cost has

two important expected features. First, the cost increases

relatively quickly as τpb approaches τmin from the right,

because for these values of the play-back delay, the system

is either unstable or has very poor performance as the play-

back buffer is not removing enough uncertainty from the

loop delay. Second, for higher values of β, the increase

in cost approaches a linear function after the optimal play-

back delay. We expect this because as the play-back delay

increases past the most likely delays, the majority of the

increase in cost will come from the dead-time cost, which is

equal to the increase in play-back delay.

B. Optimal Play-Back Delays for the Beta Distribution

Once the two-dimensional grid of cost values is con-

structed, the optimal play-back delay can be found for an

arbitrary delay distribution which predominantly lies within

the set of delay spikes considered. In this section, we present

the results of the approximation method for delays given by

the β distribution. We compare these results to simulation

results, which we find by averaging the costs from 70

simulated step responses. Fig. 10 compares the results as

β increases. As expected, as β increases, the optimal play-

back delay τ∗

pb decreases, or in other words, becomes more

aggressive because the delay distribution moves towards

τmin. The results from the approximation and simulation

methods are fairly similar, though the former is notably more

aggressive.

We would also like to relate the optimal play-back delay to

the delay distribution. For example, one might hypothesize

that τ∗

pb is related to a constant value in the CDF of the

delay distribution, i.e., F (τ∗

pb) should be constant even as

the shape (here, β) or location (τmin and τmax) of the

delay distribution changes. Specifically, one might expect

τ∗

pb to always be above 95% of the possible delay values,

i.e., F (τ∗

pb) ≈ 0.95 for all values of β, τmin, and τmax.

Fig. 11 shows the value of the CDF evaluated at τ∗

pb as β
increases. The simulation results show F (τ∗

pb) to be fairly

constant around 0.98, but the approximation method does

not show a similarly smooth relationship.

C. Optimal Play-Back Delays for a Heavy-Tailed Distribu-

tion

Now we consider the same distribution as Liberatore (see

[11] and references therein) to model realistic network RTTs:

a shifted gamma distribution for the body and a Pareto

distribution for the tail. The PDF of the gamma distribution

(before shifting) is defined on [0, +∞) and is given by

f(x; r, λ) =
λr

Γ(r)
xr−1eλx, (7)

where

Γ(r) =

∫

∞

0

sr−1e−sds. (8)

The gamma distribution is then shifted so the minimum delay

is τmin. We will always use λ = 1000. Fig. 12 shows the

gamma distribution for a few values of r. Delays are chosen
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from the body with a 99% probability. The PDF of the Pareto

distribution is defined on [K, +∞) and is given by

f(x; K, α) = α
Kα

xα+1
. (9)

We will always use α = 1.5 and K = 2r/λ, where K is

chosen so that it is significantly beyond the mean of the

gamma distribution. For α = 1.5, the variance of the Pareto

distribution is infinite, and therefore the distribution is said

to be heavy-tailed [4].

As in Section III, we also adjust the delays after indepen-

dent generation to remove out-of-order drops, but instead of

removing all drops, they are removed with a 99% probability

as in [11], [18]. Again, this is to simulate the almost

simultaneous arrival of several packets after a delay spike.

We again compare the results to those from simulation,

where the simulated cost again averages the IAE of 70 step

responses. As the parametrization of the gamma distribution

changes, the change in τ∗

pb as predicted by the approximation

method is similar to the change in τ∗

pb using simulation.

Fig. 13 shows the increase in τ∗

pb with r for both methods.

Both methods show a linear increase in τ∗

pb with r. In other

experimentation, we also found a straightforward relationship

between τ∗

pb and τmin, i.e., τ∗

pb(r, τmin) ≈ τ∗

pb(r, 0) + τmin.

Fig. 14 shows the value of the CDF for the values of

τ∗

pb predicted by the analytical method is not constant, but

cycles around 0.91. These larger cycles are probably due to

the larger jumps in the discretized version of the CDF for

values of τ closer to the body of the distribution.

D. Choosing PI Gains for the Predictor

Above, we only considered the design of the play-back

delay, but in the entire problem, we have the freedom to

choose a few other parameters. Because the Smith predictor

uses a PI controller, the gains of this internal controller

are obviously important parameters in the design of the

overall controller. Our default choice of gains are those

which maximize performance of the delay-free system, that

is, the most aggressive gains for the given sampling time. So

while there is no reason to investigate the use of even more

aggressive gains, we might expect more conservative gains to

improve performance for the following reason. From Section

III, we know that the dead-time cost component of the IAE

usually dominates the transient cost. Therefore, although

more conservative gains will lead to a higher transient cost,

we should be able to use a more aggressive play-back delay

and thus decrease the dead-time cost. In this section, we

study the optimal play-back time and overall performance

of the system with changes in the aggressiveness of the PI

gains.

Intuitively, we know KP is the gain which is most

closely related to the overall aggressiveness of the controller.

However, to decrease the total aggressiveness of the con-

troller, we must also try to appropriately decrease KI as

well. Therefore, we use an alternate parametrization of the

PI controller (where KP = Kc and KI = Kc/Ti) and

change the aggressiveness of the controller by changing Kc

but keeping Ti constant. Thus, KI will decrease with Kc,

reducing the aggressiveness of both gains simultaneously.

Fig. 15 shows performance as a function of play-back

delay for decreasing values of Kc and the baseline plant

dynamics (T = 0.1). In this figure, we improved the

resolution on the play-back delays to 0.5 ms to illustrate

more clearly the behavior of the cost function. The figure

confirms that more conservative gains can lead to a more

aggressive optimal play-back delay (τ∗

pb decreases for both

Kc = 9.708 and Kc = 9.308), but the overall performance

is not improved. We found similar results for all values of

the parameters we considered for both the beta and gamma

delay distributions.

V. CONCLUSIONS AND FUTURE WORK

Networked control systems present unique challenges for

traditional control system design. This paper specifically

focused on the use of play-back buffers to eliminate the

variability in the loop delay, thereby enabling more effective

use of a Smith predictor for delay compensation. We studied

the value of removing all uncertainty in the loop delay given

by a bounded-interval distribution. Using a first-order linear

plant, we showed that play-back buffering is most valuable

when the delays are distributed more evenly between the

minimum and maximum delay, and also more valuable when

the minimum delay is higher. These results also show the
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importance of choosing a play-back delay close to the body

of the delay distribution.

We also explored design issues for a Smith predictor

with a play-back buffer controlling a first-order linear plant

with loop delays given by both bounded-interval and heavy-

tailed distributions. We presented an analytical approxima-

tion method for finding the optimal play-back delay. We

also demonstrated a simple, intuitive relationship between

the optimal play-back delay and the CDF of the delay

distribution. We considered the design of gains for the PI

controller, showing that the most aggressive gains gave

the best performance, even if a slightly more conservative

(i.e., longer) play-back delay was necessary. Thus, we can

conclude that (when an exact model is available), the play-

back delay is the most important parameter.

Our results here are far from complete. Future work should

consider more aspects of co-design of the controller and the

play-back buffer. For example, we only considered choosing

gains for the PI controller strictly based on performance

in a system free from model errors, disturbances, and sen-

sor noise. The most aggressive gains may not be optimal

under such conditions. Also, other aspects of Liberatore’s

full integrated play-back algorithm for networked control

[11], including the integration of variable sampling times,

adaptive play-back delays, and the use of a contingency

control, should be studied. Additionally, because the buffer

at the actuator could have other uses (as in [5]), other

future work should consider the combination of such control

strategies. Finally, more complete analysis of the randomness

in the delay could determine a more accurate cost than the

approximation method as presented (e.g., by calculating the

true expected value of the cost), and this would also assess

the accuracy of the approximation method.
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