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Abstract—This paper deals with the stability issue of T-
S fuzzy models by eigenvalue analysis. Based on Lyapunov’s
direct method, the stability of T-S fuzzy models can be reduced
to finding a common positive definite matrix. Conditions for the
existence of such a matrix are discussed in terms of eigenvalue
distributions. Then, the relaxed eigenvalue constraints for the
the stabilization of T-S fuzzy models are given via state feedback
controllers.

I. INTRODUCTION
Fuzzy dynamic models proposed by Takagi and Sugeno

are known as T-S fuzzy models. The basic idea of fuzzy
modeling for T-S fuzzy models is to decompose the input
space into a number of fuzzy regions in which the system
behavior is approximated by a local linear model. The overall
fuzzy model is then a fuzzy blending of the local models
interconnected by a set of membership functions [9]. Since
T-S fuzzy models can be finally formulated in terms of
differential or difference equations, they can be taken as
conventional nonlinear systems as well. Thereby, most of the
stability analysis approaches for nonlinear systems can also
be applied to the study of T-S fuzzy models. By Lyapunov’s
direct method the stability of fuzzy T-S models can be
reduced to finding a common positive definite matrix [7]. In
order to find such a common positive definite matrix, a lot of
numerical approaches have been presented in the literature,
such as gradient algorithm [3], genetic approach [1], LMI
approach [5], etc.. Theoretical results are also reported e.g.
in [7], [8] and [2] with respect to the necessary conditions for
the existence of such a matrix. However, the necessary and
sufficient conditions for the existence of such a matrix remain
open. We show first the eigenvalue locations for the existence
of such a common matrix. Then, by employing fuzzy state
feedback controllers, extended stabilization conditions for
T-S fuzzy models are presented in terms of eigenvalue
constraints.

II. EIGENVALUE-BASED STABILITY
CONDITIONS

In discrete case, T-S fuzzy models can be described by
the following fuzzy rules ([6], [9]):
Plant rules: If x1(k) is M i

1 and ... and xn(k) is M i
n, then

x(k + 1) = Aix(k) +Biu(k) (i = 1, 2, ..., r)
where r is the number of fuzzy rules, M i

j stands for the
fuzzy set of the j-th antecedent variable in the i-th fuzzy
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rule, u(k) = [u1(k), u2(k), ..., um(k)]T is the control input,
and x(k) = [x1(k), x2(k), ..., xn(k)]

T is the state variable.
By the singleton fuzzifier, product inference and the center
average defuzzifier, the final outputs of the fuzzy systems
can be represented by:

x(k + 1) =
rX

i=1

αi(x(k))(Aix(k) +Biu(k)) (1)

where αi(x(k)) = ωi(x(k))/
rP

j=1
ωj(x(k)), ωi(x(k)) =

nQ
j=1

μMi
j
(x(k)) and

rP
i=1

ωi(x(k)) 6= 0 for all k > 0.

Obviously it holds: 0 6 αi(x(k)) 6 1 (i = 1, 2, ..., r)

and
rP

i=1
αi(x(k)) = 1. In general, αi(x(t)) can be regarded

as the matching degree between the state variable and the
antecedent of the i-th fuzzy rule.
Specially, the undriven (i.e. u(k) ≡ 0) discrete T-S fuzzy

models can be formulated as:

x(k + 1) =
rX

i=1

αi(x(k))Aix(k). (2)

According to Theorem 4.2 in [7], the open loop model
(2) is globally asymptotically stable if there is a common
positive definite matrix P such that AT

i PAi − P < 0
(i = 1, 2, ..., r). If all matrices Ai are non-singular, then
the necessary condition for the existence of such a common
positive definite matrix P is that AiAj is stable for all
i, j = 1, 2, ..., r (Theorem 4.3, [7]). We will show that the
non-singular condition of Ai is unnecessary. The results in
[7] can be extended to:
Lemma 1: For discrete T-S fuzzy model (2), the following

sufficient stability conditions are equivalent:
1. There is a positive symmetric matrix P such that
AT
i PAi − P < 0 (i = 1, 2, ..., r).

2. AT
ik
AT
ik−1 ...A

T
i1
PAi1 ...Aik−1Aik − P < 0 for all

Aij ∈ {A1, A2, ..., Ar}.
3. (Ai1+Ai2+...+Aikk )TP (

Ai1+Ai2+...+Aik
k )− P < 0

for all Aij ∈ {A1, A2, ..., Ar} and all k ∈ N .
Proof: (1⇒2) Since AT

i PAi − P < 0, we have:

AT
i1PAi1 − P =: −Q1 < 0 (3)

AT
i2PAi2 − P =: −Q2 < 0 (4)

...

AT
ik
PAik − P =: −Qk < 0.
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Multiplying AT
i2
to the left side and Ai2 to the right side of

(3), we have:

AT
i2A

T
i1PAi1Ai2 −AT

i2PAi2 =: −AT
i2Q1Ai2 6 0. (5)

Then, from (4) and (5) it yields:
AT
i2
AT
i1
PAi1Ai2 − P = −Q2 −AT

i2
Q1Ai2 < 0.

Continuing the procedure we obtain:
AT
ik
AT
ik−1

...AT
i1
PAi1 ...Aik−1Aik − P < 0.

(1⇒3) (Ai1+Ai2+...+Aikk )TP (
Ai1+Ai2+...+Aik

k )− P

= 1
k2 (

kP
j=1

AT
ij
PAij+

P
16s<t6k

(AT
is
PAit+A

T
it
PAis))−P

6 1
k2 (

kP
j=1

AT
ij
PAij+

P
16s<t6k

(AT
is
PAis+A

T
it
PAit))−P

= 1
k

kP
j=1
(AT

ij
PAij − P ) < 0.

(2⇒1) and (3⇒1) are obvious.
Theorem 1: If there exists P > 0 such that AT

i PAi−P <
0 for all i = 1, 2, ..., r, then
1). the eigenvalues of the product of any number of Ai

(i = 1, 2, ..., r) must be located strictly in the unit circle,
2). the eigenvalues of the average of any number of Ai

(i = 1, 2, ..., r) must be located strictly in the unit circle,
Proof: It follows from Lemma 1 directly.

The above result holds true without additional conditions
for non-singularity of Ai, which can be taken as a gener-
alization of Theorem 4.3 in [7]. It is easy to see that the
necessary conditions in Theorem 1 are satisfied if all the
spectral norms ||Ai|| < 1. Moreover, we have:

||Ai|| < 1 (i = 1, 2, ..., r)
⇒ ∃P > 0, s.t. AT

i PAi − P < 0 (i = 1, 2, ..., r)
⇒ |λ(Ai)| < 1 (i = 1, 2, ..., r).

That is, the eigenvalue constraint on Ai for the existence of a
common P > 0 such that AT

i PAi−P < 0 for i = 1, 2, ..., r
expresses just a region, which is included in the unit circle
and contains {λAi : ||Ai|| < 1}.
We consider next the stabilization of (1) using fuzzy

state feedback controllers. Based on the parallel distributed
compensation (PDC), the fuzzy control law for (1) can be
expressed by the following fuzzy rules:
Controller rules: If x1(k) is M i

1 and ... and xn(k) is M i
n,

then
u(k) = Fix(k) (i = 1, 2, ..., r),

where Fi ∈ <m×n are the state feedback gains to be
designed. Thereby, the overall state feedback fuzzy controller
is of the form:

u(k) =
rX

i=1

αi(x(k))Fix(k). (6)

For brevity, we denote:
Hij := Ai +BiFj , Gij :=

Hij+Hji

2 ,
λij := λmax(G

T
ijPGij − P ), αi := αi(x(k)),

q := max
x(k)

|{αi(x(k)) : αi(x(k)) 6= 0, i = 1, 2, ..., r}|,
where q stands for the maximum number of the fired rules
for all k > 0. Then we can prove:
Theorem 2: The fuzzy system described by (1) is globally

asymptotically stabilized via fuzzy control law (6), if there

exists a matrix P > 0 and Fi ∈ <m×n such that λii < 0

for i = 1, 2, ..., r and λij <

√
λiiλjj
q−1 for 1 6 i < j 6 r

excepting the pairs (i, j) such that αi(x(k))αj(x(k)) ≡ 0.
Proof: Let V (x(k)) = xT (k)Px(k). Then:

∆V (x(k)) = V (x(k + 1))− V (x(k))
=

P
i,j,s,t

αiαjαsαtx
T (k)HT

ijPHstx(k)− xT (k)Px(k)

6
P
i,j

αiαjx
T (k)GT

ijPGijx(k)− xT (k)Px(k)

=
P
i

α2ix
T (k)(HT

iiPHii − P )x(k)

+
P
i<j
2αiαjx

T (k)(GT
ijPGij − P )x(k)

6
P
i
α2ix

T (k)λiix(k) +
P
i<j
2αiαjx

T (k)λijx(k)

= 1
q−1

P
i
(q − 1)α2iλii|x(k)|2 +

P
i<j
2αiαjλij |x(k)|2

6
P
i<j
2αiαj(λij −

√
λiiλjj
q−1 )|x(k)|2.

Thereby ∆V (x(k)) < 0 holds for all x(k) 6= 0, if the
given conditions are satisfied, which completes the proof.
Based on the eigenvalue constraints in the theorem, the

desired feedback gains Fi can be solved by the following
exploratory procedures:
(1). Set ε = 0, N = 0.
(2). Find 0 < P ∈ <n×n and Fi ∈ <m×n, such that

λii + ε < 0 for i = 1, 2, ..., r.
(3). Verify the inequalities λij <

√
λiiλjj
q−1 for all i < j.

(4). If the inequalities in (3) are not satisfied, set
N = N + 1, ε = N × ε0, then go to (2).

In the above solution procedures, step (2) can be solved by
employing the linear matrix inequality (LMI) tools in Matlab.
The parameter ε0 can be chosen to be a sufficiently small
positive scalar such that step (2) is always feasible.
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