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Abstract— In this paper, adaptive model reference control is
investigated for a class of discrete-time multi-input-multi-output
(MIMO) systems. Estimation of both unknown system parame-
ters and nonparametric model uncertainty is constructed. Based
on the estimation, a novel adaptive control is proposed which
completely compensates the nonparametric model uncertainty.
The boundedness of the closed-loop signals are guaranteed and
the outputs are made asymptotically track the reference model
outputs if there is no external disturbance. Simulation results
are presented to demonstrate the effectiveness of the proposed
control approach.

I. INTRODUCTION

In recent years, adaptive control of discrete-time systems
has been studied extensively and quite a number of adaptive
schemes have been developed to deal with nonparametric
model uncertainty. In contrast to continuous-time systems,
nonparametric model uncertainty is very hard to deal for
discrete-time systems. In most existing literature on discrete-
time adaptive control, the nonparametric model uncertainty
is assumed to be global bounded [1] such that some tech-
niques, e.g., deadzone, projection and σ-modification, can
be employed to guarantee the boundedness of parameter
estimation as well as closed-loop signals [2], [3]. To improve
control performance, some approximation based method such
as neural network (NN) has been used to emulate and then
compensate the nonparametric model uncertainty [4], where
the nonparametric uncertainty is still required to be assumed
globally bounded and due to NN approximation error, the
model uncertainty cannot be completely compensated. On
the other hand, in some other works [5], [6], [7], [8], [9],
the nonparametric model uncertainty is assumed to be of
linear growth of the system states or inputs and outputs.
Then by using projection or deadzone in the parameter
estimation, it is proved that when the growing rate of the
nonparametric uncertainty is smaller than certain constant,
the proposed adaptive control guarantees the closed-loop
stability. However, it is noted that there is no compensation
of the nonparametric uncertainty in these results. In [10],
the nonparametric model uncertainty is assumed to belong
to L1+α with α ≥ 1 such that asymptotical tracking can be
achieved using some robust control.
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Inspired by a recent paper [11] where an estimation of
parametric and non-parametric uncertainties is proposed for
a class of first order systems, we investigate adaptive control
with completely compensation of the both uncertainties un-
der assumption that the Lipschiz coefficient of the nonpara-
metric uncertainty is smaller than some constant. The main
idea is using past input output data in the adaptive control
to estimate and then to cancel the nonparametric uncertainty
in addition to the estimation of unknown parameters. In the
parameter estimates update law, adaptive dead-zone [9] is
adopted to guarantee the boundedness of estimations. The
proposed adaptive control guarantees the boundedness of
all the closed-loop signals and further, the nonparametric
model uncertainty can be completely compensated in the
closed-loop system such that the output tracking error is only
affected by external disturbance.

The main contributions of the paper lie in:
(i) With the introduction of a notation lk, a novel estimation

of nonparametric model uncertainty is constructed.
(ii) Both unknown system parameters and nonparametric

model uncertainty are estimated for adaptive control
design.

(iii) In the presence of nonzero nonparametric model un-
certainty, the proposed adaptive control guarantees the
asymptotical output tracking if the system is free of
external disturbance. model uncertainty .

Throughout this paper, the following notations are used.
• ‖ ·‖ denotes the Euclidean norm of vectors and induced

norm of matrices.
• Z+

0 represents the set of all nonnegative integers.
• 0[p] stands for p-dimension zero vector.
• (̂ ) and (̃ ) denote the estimate of unknown parameter

and the estimation error, respectively.

II. PROBLEM FORMULATION

A. System Representation

Consider a class of multi-input-multi-output (MIMO)
discrete-time systems with nonparametric uncertainty in the
the following form:

A(q−1)y(k + τ) = B(q−1)u(k) + ν(z(k)) + d(k) (1)

where τ ≥ 1 is system delay and A(q−1) and B(q−1) are
polynomial matrices in terms of the unit back shift operator
q−1 with A(q−1) being diagonal, which can be represented
in the following forms

A(q−1) = I +A1q
−1 + · · ·+Anaq

−na

B(q−1) =B0 +B1q
−1 + · · ·+Bnbq

−nb
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where na and nb denote the orders of A(q−1) and B(q−1)
respectively, Ai and Bi are n × n constant matrices of
q−i, u(k) = [u1(k), · · · , un(k)]T ∈ Rn and y(k) =
[y1(k), · · · , yn(k)]T ∈ Rn are the system inputs and out-
puts, d(k) ∈ Rn is bounded external disturbance satisfying
‖d(k)‖ ≤ d̄, with d̄ a constant, and the nonparametric
vector function ν(z(k)) : Rn(nνy+nνu) → Rn denotes the
nonparametric model uncertainty, with its arguments defined
as

z(k) = [yT (k), uT (k − 1)]T ∈ Rn(nνy+nνu) (2)

y(k) = [yT (k), yT (k − 1), . . . , yT (k − nνy + 1)]T

u(k) = [uT (k), uT (k − 1), . . . , uT (k − nνu + 1)]T

Assumption 1: The nonlinear vector function of nonpara-
metric uncertainty, ν(·) : Rn(nνy+nνu) → Rn, are Lipschiz
function satisfying

‖ν(ε1)− ν(ε2)‖ ≤ L‖ε1 − ε2‖

where L ≤ L∗ and L∗ will be defined later in (37).
Assumption 2: The constants nνu and nνy are unknown

but there is a know constant nν such that nνu ≤ nν and
nνy ≤ nν .

In the following of the paper, the nonparametric un-
certainty ν(z(k)) will be denoted briefly as ν(k) without
ambiguity.

Assumption 3: The system is in minimum phase, i.e.,
B(q−1) is a stable operator.

Assumption 4: The system dynamics matrix A(q−1) and
B(q−1) are unknown, but their orders na and nb are known.
In addition, the matrix B0 is nonsingular and is known.

Consider a reference model as

P (q−1)y∗(k + τ) = Rr(k) (3)

where r(k) is bounded reference trajectory and

P (q−1) =P0 + P1q
−1 + · · ·+ Pnpq

−np

is a diagonal weighting polynomial matrix and R is a
diagonal weighting constant matrix. They are specified by
the designer such that P (q−1) is stable.

Given the reference model (3), the control objective is to
design an adaptive control input u(k), such that the output of
system (1) tracks the output of the reference model, y∗(k),
while all closed loop signals remain bounded.

B. Preliminaries

The following lemmas will be used for adaptive control
design and stability analysis in the remainder of the paper.

Lemma 1: [12] Given a bounded sequence X(k) ∈ Rp,
i.e., sup{‖X(k)‖} < ∞, and a fixed positive integer τ .
Define

lk = arg min
l≤k−τ

‖X(k)−X(l)‖ (4)

Then, we have limk→∞ ‖X(k)−X(lk)‖ = 0.
Proof. See Appendix A.

Lemma 2: [13] For some given real scalar sequences s(k),
b1(k), b2(k) and vector sequence σ(k), if the following
conditions hold:

(i) limk→∞
s2(k)

b1(k)+b2(k)σT (k)σ(k)
= 0,

(ii) 0 < b1(k) < K <∞ and 0 ≤ b2(k) < K <∞ for all
k ≥ 1,

(iii) ‖σ(k)‖ ≤ C1 +C2 max0≤k′≤k |s(k′)|, where 0 < C1 <
∞ and 0 < C2 <∞,
then, we have
(a) limk→∞ s(k) = 0, and (b){‖σ(k)‖} is bounded.

Lemma 3: The nonparametric uncertainty ν(k) satisfies

‖ν(k)‖ ≤ L‖z(k)‖+ ‖ν(0[n(nνy+nνu)])‖

Proof. It is obvious from Assumption 1.

III. ADAPTIVE CONTROL DESIGN

A. System Transformation

Define a generalized output vector yp(k) as

yp(k) = P (q−1)y(k) (5)

and introduce the following Diophantine equation

P (q−1) = F (q−1)A(q−1) + q−τG(q−1) (6)

where

F (q−1) =F0 + F1q
−1 + . . .+ Fnf q

−nf

G(q−1) =G0 +G1q
−1 + . . .+Gngq

−ng

with nf = τ − 1, ng = max{na− 1, np− τ}, Fi and Gi are
n× n diagonal constant matrices.

Remark 1: It should be noted that F0 = P0 because
A(0) = I .

Based on the Diophantine equation (6) and the definition
of yp(k) in (5), we have

yp(k + τ) = G(q−1)y(k)+H(q−1)u(k)+νF (k)+dF (k) (7)

where

H(q−1) =F (q−1)B(q−1)
=H0 +H1q

−1 + · · ·+Hnhq
−nh (8)

νF (k) =F (q−1)ν(k), dF (k) = F (q−1)d(k) (9)

with nh = τ −1+nb. It should be noted that H0 = F0B0 =
P0B0 is known because P0 is specified by designer and B0

is known according to Assumption 4.

B. Estimation of Nonparametric Model Uncertainty

For convenience of analysis, denote Θ as

Θ = [G0, G1, . . . , Gng , H1, · · · , Hnh ]T (10)

Then, equation (7) can be written as

yp(k + τ) = ΘTΦ(k) +H0u(k) + νF (k) + dF (k) (11)

where

Φ(k) = [ȳT (k), ūT (k − 1)]T ∈ R(np+nb)×n (12)
ȳ(k) = [yT (k), yT (k − 1), . . . , yT (k − ng)]T

ū(k) = [uT (k), uT (k − 1), . . . , uT (k − nh + 1)]T
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Let us define

z̄(k) = [yT (k), yT (k − 1), . . . , yT (k −m),
uT (k − 1), . . . , uT (k −m)] (13)

where m ≥ max{ng, nh, nν}.
According to Lemma 1, we introduce the notation lk,

which is defined as

lk = arg min
l≤k−τ

‖z̄(k)− z̄(l)‖ (14)

This notation will be used later for estimation of nonpara-
metric model uncertainty.

Based on the definition of z̄(k) in (13) and lk in (14), we
have the following lemma which will be used for analysis
later.

Lemma 4: Consider the definition of lk in (14). If

lim
k→∞

‖z̄(k)− z̄(lk)‖ = 0

then, we have

lim
k→∞

‖Φ(k)− Φ(lk)‖ = 0

lim
k→∞

‖ν(k)− ν(lk)‖ = 0

Proof. See Appendix B.

Define an auxiliary output ya(k) as

ya(k) := ΘTΦ(k) + νF (k) + dF (k)
≡ yp(k + τ)−H0u(k) (15)

Then, we have

ya(k) =ya(k)− ya(lk) + ya(lk)
= ΘTΦ(k) + νF (k) + dF (k) + ya(lk)
−ΘTΦ(lk)− νF (lk)− dF (lk)

= ΘT [Φ(k)− Φ(lk)] + ya(lk)
+∆νF (k) + ∆dF (k) (16)

where

∆νF (k) =νF (k)− νF (lk)
∆dF (k) =dF (k)− dF (lk) (17)

Denote Θ̂(k) as the estimate of the unknown parameter Θ
at the k-th step, and then we take

ŷa(k) = Θ̂T (k)[Φ(k)− Φ(lk)] + ya(lk) (18)

as estimation of auxiliary output ya(k).
Remark 2: The nonparametric uncertainty ν(k) is in-

cluded in the auxiliary output ya(k). Therefore, the estima-
tion of ya(k) is a indirect way to estimation ν(k).

Remark 3: It should be noted that at k-th step, lk ≤ k−τ
such that ya(lk) can be calculated as ya(lk) = yp(lk + τ)−
H0u(lk).

C. Estimation of Unknown System Parameters

Define the estimation error of auxiliary output as

ỹa(k) = ŷa(k)− ya(k) = Θ̃T (k)[Φ(k)− Φ(lk)]
−∆νF (k)−∆dF (k) (19)

where Θ̃(k) = Θ̂(k)−Θ(k). According to Lemma 3 and the
definition of νF (k) and dF (k) in (17), we have

‖∆νF (k) + ∆dF (k)‖ ≤ 2c1Lmax
k′≤k
{z(k′)}+ 2c2

‖∆dF (k)‖ ≤ 2db (20)

where db = d̄
∑nf

0 ‖Fi‖ and

c1 =
nf∑
0

‖Fi‖, c2 = db + ‖ν(0[n(nνy+νu)])‖ (21)

Because c1 and c2 are unknown, their corresponding
estimations ĉ1(k) and ĉ2(k) can be used to construct the
dead-zone. Now, define

ĉ(k) = 2λĉ1(k) max
k′≤k
{‖z(k)‖}+ 2ĉ2(k) (22)

where L < λ ≤ λ∗ with λ∗ defined later in (44). The dead-
zone function is defined as

a(k) =

{
1− ĉ(k−τ)

‖ỹa(k−τ)‖ if ‖ỹa(k − τ)‖ ≥ ĉ(k − τ)
0 otherwise

(23)

The update laws for Θ̂(k), ĉ1(k) and ĉ2(k) are given as

Θ̂(k) = Θ̂(k−τ)−a(k)γ[Φ(k−τ)−Φ(lk−τ )]ỹTa (k − τ)
D(k − τ)

(24)

ĉ1(k) = ĉ1(k−τ)+
a(k)γλ‖ỹa(k−τ)‖

D(k − τ)
max
k′≤k
{‖z(k′−τ)‖}(25)

ĉ2(k) = ĉ2(k−τ)+
a(k)γ‖ỹa(k−τ)‖

D(k − τ)
(26)

where 0 < γ < 1 and

D(k) = 1 + max
k′≤k
{‖z(k)‖}+ ‖[Φ(k)− Φ(lk)]‖2

ĉ1(0) = 0, ĉ2(0) = 0
Θ̂(0) = 0[(np+nb)×n] (27)

D. Control Law

The adaptive control law is given as

ŷa(k) +H0u(k) = Rr(k) (28)

or equivalently

u(k) = B−1
0 P−1

0 (Rr(k)− ŷa(k))

Combining (11), (15) and (28) together, the control can
be described as

G(q−1)y(k) +H(q−1)u(k) + νF (k) + dF (k)
=Rr(k)− ỹa(k) (29)

Substituting (29) into open loop system described in (7), we
obtain the closed-loop system as following

yp(k + τ) = Py(k + τ) = Rr(k)− ỹa(k) (30)
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where ỹa(k) is the estimation error defined in (19). It
is obvious that the closed-loop system (30) matches the
reference model (3) if the estimation error ỹa(k) converge
to zero.

The main results in this paper are summarized in the
following theorem.

Theorem 1: Consider the closed-loop system consisting
of system (1) under Assumptions 1, 2, 3 and 4, control
(28) with parameter adaptation law (24), (25), and (26).
Then there exist constant L∗ and λ∗, such that for the
nonparametric model uncertainty ν(k) in (1) with Lipschiz
coefficient L < L∗, if the tuning parameter γ and λ in
adaptation law (24), (25) and (26) are chosen to satisfy
0 < γ < 1 and L ≤ λ ≤ λ∗, then all the signals in the
closed-loop system are guaranteed to be bounded and the
output tracking error satisfy

lim
k→∞

sup{P (q−1)e(k)} = 2db, e(k) = y(k)− y∗(k)

which implies that y(k) will asymptotically converge to
y∗(k) in the absence of external disturbance d(k), i.e., db =
0.

IV. STABILITY ANALYSIS

To prove the boundedness of all the estimated parameters,
we choose a Lyapunov function candidate including all the
parameter estimation errors as following:

V (k)=
k∑

j=k−τ+1

[tr{Θ̃T (j)Θ̃(j)}+ 2c̃21(j) + 2c̃22(j)] (31)

The difference of V (k) is

∆V (k) = V (k)− V (k − 1)
= tr{Θ̃T (k)Θ̃(k)− Θ̃T (k − τ)Θ̃(k − τ)}
+2[c̃21(k)− c̃21(k − τ)] + 2[c̃22(k)− c̃22(k − τ)]

=
a2(k)γ2‖ỹa(k − τ)‖2‖Φ(k − τ)− Φ(lk−τ )‖2

D2(k − τ)

−tr{Θ̃T (k−τ)[Φ(k−τ)−Φ(lk−τ )]ỹTa (k − τ)} 2a(k)γ
D(k − τ)

+
2a2(k)γ2λ2‖ỹa(k−τ)‖2 maxk′≤k{‖z(k′−τ)‖}2

D2(k − τ)

+
4a(k)γλ‖ỹa(k−τ)‖c̃1(k−τ) maxk′≤k{‖z(k′−τ)‖}

D(k − τ)

+
2a2(k)γ2‖ỹa(k−τ)‖2

D2(k−τ)
+

4a(k)γc̃2(k−τ)‖ỹa(k−τ)‖
D(k−τ)

From (19) and (20), we have

−tr{Θ̃T (k − τ)[Φ(k − τ)− Φ(lk−τ )]ỹTa (k − τ)}
= −tr{[ỹa(k−τ)+∆vF (k−τ)+∆dF (k−τ)]ỹTa (k−τ)}
= −‖ỹa(k−τ)‖2−ỹTa (k−τ)[∆vF (k−τ)+∆dF (k−τ)]
≤ 2‖ỹa(k − τ)‖[c1Lmax

k′≤k
‖z(k − τ)‖+ c2]

− ‖ỹa(k − τ)‖2 (32)

From the definition of deadzone in (23), we have

a(k)[2ĉ(k − τ)‖ỹa(k − τ)‖ − 2‖ỹa(k − τ)‖2]
=−a(k)[2a(k)‖ỹa(k − τ)‖2] (33)

Noting (32), (33), and that L ≤ λ and

1 + max
k′≤k
{‖z(k−τ)‖}2+1

2
‖Φ(k−τ)−Φ(lk−τ )‖ ≤ D(k − τ)

Then, we have

∆V (k) ≤ 2a2(k)γ2‖ỹa(k−τ)‖2

D(k − τ)
− 2a(k)γ‖ỹa(k−τ)‖2

D(k − τ)

+
4a(k)γ‖ỹa(k − τ)‖[c1Lmaxk′≤k ‖z(k′ − τ)‖+ c2]

D(k − τ)

+
4a(k)γλc̃1(k − τ)‖ỹa(k−τ)‖maxk′≤k{‖z(k′ − τ)‖}

D(k − τ)

+
4a(k)γ‖ỹa(k − τ)‖c̃2(k − τ)

D(k − τ)

=
2a2(k)γ2‖ỹa(k − τ)‖2

D(k − τ)
− 2a(k)γ‖ỹa(k − τ)‖2

D(k − τ)

+
2a(k)γ‖ỹa(k − τ)‖ĉ(k − τ)

D(k − τ)

≤ −2γ(1− γ)a2(k)‖ỹa(k − τ)‖2

D(k − τ)
(34)

Noting that 0 < γ < 1, we can see from (32) that
the difference of Lyapunov function V (k), ∆V (k), is non-
positive and thus, the boundedness of V (k) is guaranteed. It
further results in the boundedness of Θ̂(k), ĉ1(k) and ĉ2(k).

Taking summation on both hand sides of (32), we obtain
∞∑
k=0

2γ(1− γ)a2(k)‖ỹa(k − τ)‖2

D(k − τ)
≤ V (0)− V (∞)

which implies

lim
k→∞

a2(k)‖ỹa(k − τ)‖2

D(k − τ)
= 0 (35)

Consider the closed-loop system in (30). According to the
boundedness of reference signal r(k) and Assumption 3, it
can be concluded that
‖z̄(k)‖ ≤ C1 + C2[maxk′≤k{‖ỹa(k′)‖}

+ maxk′≤k{‖ν(k′)‖}] + maxk′≤k{‖d(k′)‖}

Together with Lemma 3 and ‖z(k)‖ ≤ ‖z̄(k)‖, we have

‖z̄(k)‖≤C3+C2 max
k′≤k
{‖ỹa(k′)‖}+C2Lmax

k′≤k
{‖z̄(k′)‖} (36)

where C3 = C1 + C2‖ν(0)‖+ d̄.
It is equivalent to

max
k′≤k
‖z̄(k′)‖ ≤ C3 + C2 max

k′≤k
‖ỹa(k′)‖+C2Lmax

k′≤k
‖z̄(k′)‖

Thus, there exists a positive constant

L∗ = min{λ∗, 1
C2
} (37)

where λ∗ is defined in (44) such that

max
k′≤k
‖z̄(k′)‖ ≤ C3

1− C2L
+

C2

1− C2L
max
k′≤k
‖ỹa(k′)‖ (38)
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holds for a class of nonparametric uncertainty with Lipschiz
coefficient satisfying L < L∗.

Denoting C4 = C3
1−C2L

and C5 = C2
1−C2L

, we have

max
k′≤k
‖z̄(k′)‖ ≤ C4 + C5 max

k′≤k
‖ỹa(k′)‖ (39)

where C4 and C5 are some finite constants.
From (23), when ‖ỹa(k − τ)‖ ≥ ĉ(k − τ) we have

a(k)‖ỹa(k − τ)‖ = ‖ỹa(k − τ)‖ − ĉ(k − τ) ≥ 0

when ‖ỹa(k − τ)‖ < ĉ(k − τ), we have

a(k)‖ỹa(k − τ)‖ = 0

which implies that

a(k)‖ỹa(k − τ)‖ > ‖ỹa(k − τ)‖ − ĉ(k − τ)

In summary, the following inequality always holds

a(k)‖ỹa(k − τ)‖ ≥ ‖ỹa(k − τ)‖ − ĉ(k − τ) (40)

Then, the following inequality can be derived from (39)

max
k′≤k
‖z̄(k′−τ)‖≤C5[max

k′≤k
{‖ỹa(k′−τ)‖}−ĉ(k′−τ)

+ĉ(k′ − τ)] + C4

≤C4 + C5 max
k′≤k
{a(k′)‖ỹa(k′ − τ)‖}

+C4 max
k′≤k
{ĉ(k′ − τ)} (41)

Due to the boundedness of ĉ1(k) and ĉ2(k), there exists
constants C6 and C7 such that

ĉ(k − τ)≤C6 + C7λ{max
k′≤k

z(k′ − τ)}

≤C6 + C7λmax
k′≤k
{z̄(k′ − τ)} (42)

which together with (41) yields

maxk′≤k ‖z̄(k′−τ)‖≤C8 maxk′≤k{a(k′)‖ỹa(k′−τ)‖}
+ C9λmaxk′≤k{‖z̄(k′ − τ)‖}+ C10

(43)

where C8, C9 and C10 are some constants. It can be seen
that there exist positive constant

λ∗ =
1
C9

(44)

such that if 0 < λ < λ∗, we have

max
k′≤k
‖z̄(k′−τ)‖ ≤ C11+C12 max

k′≤k
{a(k′)‖ỹa(k′−τ)‖} (45)

where C11 = C10
1−λC9

and C12 = C8
1−λC9

. According to the
definition of Φ(k) in (12) and definition of z̄(k) in (13), and
m > max{ng, nh}, we have

max
k′≤k
‖Φ(k′ − τ)‖≤max

k′≤k
‖z̄(k′ − τ)‖

≤C11 + C12{max
k′≤k

a(k′)‖ỹa(k′ − τ)‖}

which leads to

D(k − τ) ≤ C13 + C14{max
k′≤k

a(k′)‖ỹa(k′ − τ)‖}

according to the definition of D(k) in (27), where C13 and
C14 are some finite constants.

Then, applying Lemma 2 to (35), we have

lim
k→∞

a(k)‖ỹa(k − τ)‖ = 0 (46)

which together with (45) guarantees the boundedness of
z̄(k) and Φ(k). Thus, the boundedness of y(k) and u(k)
is obvious. According to Lemma 1, we see limk→∞ ‖z̄(k)−
z̄(lk)‖ = 0 and according to Lemma 4, we have
limk→∞ ‖Φ(k) − Φ(lk)‖ = 0 and limk→∞∆νF (k) = 0.
Then, it can be seen from (19) that limk→∞ sup{ỹa(k)} ≤
2db. From (30) and (3) it is easy to derive

P (q−1)e(k + τ) =P (q−1)y∗(k + τ)− P (q−1)y(k + τ)
= ỹa(k)

which leads to limk→∞ sup{P (q−1)e(k + τ)} =
limk→∞ sup{ỹa(k)} ≤ 2db. This completes the proof.

V. SIMULATION RESULTS

The following system in [9] is used for simulation.

A(q−1)y(k + 1) = B(q−1)u(k) + ν(k) + d(k) (47)

where

A(q−1) = I + q−1I

B(q−1) =
[

1 1
0 2

]
+
[

0.5 0.5
0 1

]
q−1

the model uncertainty ν(k) is given by

ν1(k) =ν2(k) = 0.1 cos(0.05k)× (0.5u1(k) + u2(k)
+u1(k − 1) + 0.5u2(k − 1) + y1(k) + y2(k))

and the external disturbance is d1(k) = 0.01 cos(0.05k),
d2(k) = 0.01 sin(0.05k).

The reference model is simply chosen as y∗(k + 1) =
r(k), i.e., P = R = I . The reference input r(k) is given as
r1(k) = 0.5 + 0.25 cos(0.25πTk) + 0.25 sin(0.5πTk) and
r2(k) = 0.5+0.25 sin(0.25πTk)+0.25 sin(0.5πTk), where
T = 0.05. Then, the control objective is to make the output
y(k) track the desired reference trajectory y∗(k). The initial
condition is y(0) = [0, 0]T and u(−1) = [0, 0]T . The
tuning factor γ = 0.01 and λ = 0.1. The simulation results
are presented in Figures 1-3.
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Fig. 1. Output tracking errors
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Fig. 2. Control input signals
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VI. CONCLUSION

In this paper, based on the estimation of both parametric
and non-parametric uncertainties, a novel adaptive model
reference control has been synthesized for a class of MIMO
discrete-time systems with nonparametric model uncertainty
and external disturbance. The adaptive control guarantees
the boundedness of all the close-loop signals and completely
compensate the uncertain nonlinearity. The system output
exactly tracks the reference model output in the absence of
external disturbance.
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Appendix A: Proof of Lemma 1
Proof. We will prove it by seeking a contradiction in a
similar way as in [12]. Firstly, let us suppose that

¯limk→∞‖X(k)−X(lk)‖ = ε > 0 (48)

where ¯lim denote the upper limit. Then we can take from
X(k) a subsequence {X(kj), j ≥ 1} such that

‖X(kj)−X(lkj )‖ >
ε

2
, kj − lkj ≥ τ

According to the definition in (4), we have

‖X(kj)−X(k′)‖ > ε

2
, ∀0 ≤ k′ ≤ kj − τ

Noting that ki ≤ kj−τ , i < j, we have ‖X(kj)−X(ki)‖ >
ε
2 , or equivalently

‖X(kj)−X(ki)‖ >
ε

2
, i 6= j

which means that {X(kj), j ≥ 1} is unbounded. This
contradicts to sup{‖X(k)‖} <∞. Consequently (48) cannot
hold and thus we have

limk→∞‖X(k)−X(lk)‖ = ¯limk→∞‖X(k)−X(lk)‖ = 0

where lim denotes the lower limit. Then, we have

lim
k→∞

‖X(k)−X(lk)‖ = 0

This completes the proof.

Appendix B: Proof of Lemma 4
Proof. From the definition of z̄(k) in (13), the definition of
z(k) in (2), the definition of Φ(k) in (12) and the definition
of Euclidean norm, we see

0 ≤ ‖z(k)− z(lk)‖ ≤ ‖z̄(k)− z̄(lk)‖
0 ≤ ‖Φ(k)− Φ(lk)‖ ≤ ‖z̄(k)− z̄(lk)‖

Then, according to squeeze rule, the lemma can be easily
proved from limk→∞ ‖z̄(k)− z̄(lk)‖ = 0.
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