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Abstract—L1 adaptive control architecture introduced in [1]–
[4] ensures that the input and the output of an uncertain
linear system track the input and output of a desired linear
system during the transient phase, in addition to asymptotic
tracking. In this paper, we extend the L1 adaptive controller to
multi–input multi–output systems in the presence of unmatched
time-varying disturbances. Simulation results illustrate the
theoretical findings.

I. INTRODUCTION

The paper extends the results of [1]–[4] to a class of multi–

input multi–output (MIMO) uncertain systems in the pres-

ence of time-varying parameters, unknown high-frequency

gain, unmatched time-varying unknown disturbances that

cannot be attenuated by backstepping type controllers. The

control signal is defined as the output of a low-pass filter

that appropriately attenuates the high-frequencies in the

control signal typical for large adaptation rates. The L∞

norm bounds for the error signals between the closed-loop

adaptive system and the closed-loop reference system can be

systematically reduced by fast adaptation.

The paper is organized as follows. Section II states some

preliminary definitions, and Section III gives the problem

formulation. Section IV introduces the L1 adaptive control

architecture. Stability and uniform transient tracking bounds

of the L1 adaptive controller are presented in Section V.

Section VI discusses design details. In Section VII simulation

results are presented, while Section VIII concludes the paper.

All proofs are in the Appendix.

II. PRELIMINARIES

Throughout this paper, I indicates the identity matrix

of appropriate dimension, ||H(s)||L1
denotes the L1 gain

of H(s), ||x||L∞
denotes the L∞ norm of x(t), ||xt||L∞

denotes the truncated L∞ norm of x(t) at the time instant

t, and ‖x‖2 and ‖x‖∞ indicate the 2- and ∞- norms of the

vector x respectively. The next lemma extends the results of

Example 5.2 ( [6], page 199) to general MIMO systems.

Lemma 1: For a stable proper MIMO system H(s) with

input r(t) ∈ R
m and output x(t) ∈ R

n, we have ‖xt‖L∞
≤

‖H(s)‖L1
‖rt‖L∞

, ∀ t ≥ 0.

III. PROBLEM FORMULATION

Consider the following multi-input multi-output system:

ẋ(t) = Amx(t) + B(θ(t)x(t) + ωu(t)) + σ(t), (1)

y(t) = C⊤x(t) , x(0) = x0 ,
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where x ∈ R
n is the system state vector (measurable),

u ∈ R
m is the control signal, y ∈ R

m is the regulated output,

B,C ∈ R
n×m are known constant matrices, Am is a known

n×n Hurwitz matrix, (Am, B) is controllable, θ(t) ∈ R
m×n

is a matrix of time-varying unknown parameters, ω ∈ R
m×m

is a constant non-singular unknown matrix, and σ(t) ∈ R
n

is a vector of time-varying unmatched disturbances. We

assume conservative knowledge of unknown parameters and

uncertainties, i.e. there exist compact sets Ω, Θ, and ∆ such

that ω ∈ Ω, θ(t) ∈ Θ, σ(t) ∈ ∆, for all t ≥ 0. We

further assume θ(t) and σ(t) are differentiable with bounded

derivatives, i.e. there exist finite dθ and dσ such that
√

tr(θ̇⊤(t)θ̇(t)) ≤ dθ , ‖σ̇(t)‖2 ≤ dσ , ∀ t ≥ 0 . (2)

Let Ho(s) = C⊤H(s) , H(s) = (sI − Am)−1B .
Assumption 1: The poles of H−1

o (s) are located in the left

half plane.

The control objective is to design an adaptive controller

to ensure that y(t) tracks a given bounded continuous ref-

erence signal r(t) ∈ R
m both in transient and steady state,

following a given reference model

y(s) ≈ Ho(s)Kgr(s) , (3)

where Kg ∈ R
m×m is a constant matrix.

IV. L1 ADAPTIVE CONTROLLER

In this section, we develop a novel adaptive control archi-

tecture that permits complete transient characterization for

both system’s both input and output signals. We consider the

following state predictor (or passive identifier) for generation

of the adaptive laws:

˙̂x(t) = Amx̂(t)+B(θ̂(t)x(t)+ ω̂(t)u(t))+ σ̂(t), x̂(0) = x0.
(4)

The adaptive estimates ω̂(t), θ̂(t), σ̂(t) are defined as:

˙̂ω(t) = ΓProj(ω̂(t),−(x̃⊤(t)PB)⊤u⊤(t)) ,
˙̂
θ(t) = ΓProj(θ̂(t),−(x̃⊤(t)PB)⊤x⊤(t)) ,
˙̂σ(t) = ΓProj(σ̂(t),−(x̃⊤(t)P )⊤) , (5)

in which x̃(t) = x̂(t)−x(t) is the tracking error between the

system dynamics in (1) and the state predictor in (4), Γ > 0
is the adaptation gain, and P = P⊤ > 0 is the solution of the

algebraic Lyapunov equation A⊤
mP + PAm = −Q, Q > 0,

while Proj(·, ·) denotes the projection operator [8], defined

over the sets Θ, Ω and ∆. The control signal is generated

through gain feedback of the following system:

χ(s) = D(s)r̄(s) , u(s) = −Kχ(s) , (6)
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where K ∈ R
m×m,

r̄(t) = θ̂(t)x(t) + ω̂(t)u(t) + σ̄(t) − Kgr(t) ,

σ̄(s) = H−1
o (s)C⊤(sI − Am)−1σ̂(s) , (7)

while D(s) is a matrix of m by m transfer functions. Letting

F (s) = ωK(I + D(s)ωK)−1D(s) , (8)

the choice of D(s) and K needs to ensure that

(i) F (s) is strictly proper and stable with F (0) = I; (9)

(ii) F (s)H−1
o (s) is proper and stable; (10)

(iii) ‖Ḡ(s)‖L1
L < 1 , (11)

where

L = max
θ∈Θ

‖θ‖L1
= max

i
(
∑

j

|θij |) , (12)

Ḡ(s) = (sI − Am)−1B(I − F (s)) . (13)

The complete L1 adaptive controller consists of (4), (5), (6)

subject to (9)-(11).

A. Design of Control Law

In this section, we address how to choose D(s) and K
to satisfy (9)-(11). For simplicity, we consider the following

most common choice of D(s) as D(s) = (1/s)I, which leads

to

F (s) = ωK(sI + ωK)−1 . (14)

Hence, the requirement in (9) is equivalent to determining a

K that renders −ωK Hurwitz. Using (14), it can be derived

straightforwardly that the impulse response for I − F (s) is

Iδ(t)−ωKe−ωKt, where δ(t) denotes the impulse function.

Let λmax(−ωK) be the maximum eigenvalue of the Hurwitz

matrix −ωK. If K is chosen to have arbitrarily small

λmax(−ωK), then ωKe−ωKt can approximate the delta

function Iδ(t) arbitrarily closely. Hence, we have

lim
λmax(−ωK)→−∞

‖I − F (s)‖L1
= 0 . (15)

It follows from Lemma 1 that

‖Ḡ(s)‖L1
≤ ‖(sI − Am)−1B‖L1

‖I − F (s)‖L1
. (16)

Since ‖(sI − Am)−1B‖L1
and L are constants, it follows

from (15) and (16) that (11) can always be satisfied by

making λmax(−ωK) small via appropriate choice of K.

If ω is a diagonal matrix, the design of K is straightfor-

ward. Assuming that the signs of the diagonal elements ωi,

i = 1, ..,m are known, K is selected to be a diagonal matrix

with its ith element Ki having the same sign as ωi. Hence,

it follows from (14) that F (s) is a diagonal matrix with its

ith diagonal element being

Fi(s) = Kiωi/(s + Kiωi) . (17)

We notice that (9) is obviously satisfied, while (11) can be

verified if we increase |Ki|. Instead of the first order low-

pass filter in (17), we can increase the relative degree of F (s)
by choosing D(s) with larger relative degree as D(s) =

1
s2 I or D(s) = 3a2s+a3

s3+3as2 I, a > 0 . Hence, F (s)H−1
o (s)

can always be made proper via the choice of D(s). Once

F (s)H−1
o (s) is proper, its stability follows from Assumption

1 straightforwardly.

If m = 1, then F (s) = Kω/(s + ωK), where K is

scalar. We notice that in this case the condition in (11)

degenerates into the one for SISO systems stated in [1]–[4].

Also, Assumption 1 degenerates into conventional minimum

phase requirement for Ho(s).

V. ANALYSIS OF L1 ADAPTIVE CONTROLLER

The analysis of the above stated control architecture is an

extension of the results from [1]–[4]. The main difference

as compared to [1]–[4] is that the system in this paper has

multiple inputs and multiple outputs and unmatched time-

varying disturbances. Let

F1(s) = H(s)F (s)H−1
o (s)C⊤ , (18)

F2(s) = ω−1F (s)H−1
o (s)C⊤ . (19)

It follows from (10) that both F1(s) and F2(s) are proper

and stable and hence their L1 gains are finite.

A. Closed-loop Reference System

We consider the following closed-loop LTI reference sys-

tem with its control signal and system response being defined

as follows:

ẋref (t) = Amxref (t) + B(θ(t)xref (t) + ωuref (t))

+σ(t) , xref (0) = x0 (20)

yref (t) = C⊤xref (t) (21)

uref (s) = ω−1F (s)ηref (s) , (22)

where ηref (s) is the Laplace transformation of the signal

ηref (t) = −θ(t)xref (t) − σ̄ref (t) + Kgr(t) ,

σ̄ref (s) = H−1
o (s)C⊤(sI − Am)−1σ(s) . (23)

We note that the condition in (10) implies that the transfer

function between σ(t) and uref (t) is proper and stable,

and there is no singularity or differentiation involved in the

generation of uref (t). Since uref (t) uses unknown signals

and parameters ω, θ(t) and σ(t), this closed-loop reference

system is not implementable and is only used for analysis

purposes. The next Lemma establishes stability of the closed-

loop system in (20)-(22).

Lemma 2: If K and D(s) verify (9)-(11), the reference

system in (20)-(22) is stable.

B. Guaranteed Transient Performance of L1 Adaptive Con-

troller

Let

γ0 =
√

θm/(λmin(P )Γ) , (24)

where

θm , 4
λmax(P )

λmin(Q)

(

dθ max
θ∈Θ

tr
√

θ⊤θ + dσ max
σ∈∆

‖σ‖2

)

+4
(

max
θ∈Θ

tr(θ⊤θ) + max
ω∈Ω

tr(ω⊤ω) + max
σ∈∆

(σ⊤σ)
)

. (25)
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The performance of L1 adaptive controller is stated in the

following Theorem.

Theorem 1: Given the system in (1), the reference system

in (20)-(22), and the L1 adaptive controller defined via (4),

(5) and (6), subject to (9)-(11), we have:

‖x̃‖L∞
≤ γ0 , (26)

‖x − xref‖L∞
≤ γ1 , (27)

‖y − yref‖L∞
≤ ‖C⊤‖L1

γ1 , (28)

‖u − uref‖L∞
≤ γ2 , (29)

where γ0 is defined in (24) and

γ1 = ‖F1(s)‖L1
γ0/(1 − ‖Ḡ(s)‖L1

L) , (30)

γ2 = ‖ω−1F (s)‖L1
Lγ1 + ‖F2(s)‖L1

γ0 . (31)

Theorem 1 states that x(t), y(t) and u(t) follow xref (t),
yref (t) and uref (t) not only asymptotically but also during

the transient, provided that the adaptive gain is selected

sufficiently large. Thus, the control objective is reduced to

designing K and D(s) to ensure that the closed-loop refer-

ence system in (20)-(22) has the desired response specified

in (3).

VI. DESIGN OF L1 ADAPTIVE CONTROLLER

In this section, we address how to determine K and

D(s) to ensure that the reference system in (20)-(22) can

achieve the control objective stated in (3). Consider the

following desired system response ẋdes(t) = Amxdes(t) +
BKgr(t) , ydes(t) = C⊤xdes(t) , xdes(0) = x0 , which is

independent of uncertainties. Obviously

ydes(s) = Ho(s)Kgr(s) + C⊤(sI − Am)−1x0 . (32)

First we prove that for a step input the steady state error

between the reference system and this desired system is zero,

if the unknown parameters are constant.

Lemma 3: For the reference system in (20)-(22) and the

desired system in (32), subject to conditions (9)-(11), if r(t),
σ(t), θ(t) are constant, then

lim
t→∞

(yref (t) − ydes(t)) = 0 . (33)

Next, we characterize the performance bounds between the

reference system and the desired system during the transient.

Let F3(s) = Ho(s)(I − F (s)) and F4(s) = Ho(s)(I −
F (s))H−1

o (s)C⊤(sI−Am)−1. We note that both F3(s) and

F4(s) are proper and stable transfer functions. It follows

from Lemma 2 that ‖xref‖L∞
is finite for any bounded r(t).

Lemma 4: For the reference system in (20)-(22) and the

desired system in (32), subject to conditions (9)-(11), we

have:

‖yref − ydes‖L∞
≤ ‖F3(s)‖L1

(L‖xref‖L∞

+‖Kgr‖L∞
) + ‖F4(s)‖L1

‖σ‖L∞
. (34)

Theorem 1 and Lemma 4 imply that the output y(t) of the

system in (1) will follow ydes(t) both in transient and steady

state with quantifiable bounds, given in (28) and (34). Since

lim
F (s)→I

‖I − F3(s)‖L1
= 0 and lim

F (s)→I

‖I − F4(s)‖L1
= 0,

we have lim
F (s)→I

‖yref − ydes‖L∞
= 0. Using (15), we notice

that if we increase the bandwidth of F (s) to achieve arbi-

trarily close approximation of the identity matrix I, we can

ensure that yref (t) tracks ydes(t) arbitrarily closely both in

transient and steady state. However, increasing the bandwidth

of F (s) will lead to reduced time-delay margin and hurt the

robustness of the closed-loop system as proved in [4].

Remark 1: We notice that Assumption 1 and the condition

in (10) are new as compared to earlier results in [1]–[4].

These are required to compensate for the effects of the

unmatched disturbance σ(t) on the system output y(t). If the

disturbance σ(t) can be factored as Bσ(t), where σ(t) ∈ R
m

instead of σ(t) ∈ R
n, both Assumption 1 and condition (10)

can be dropped.

Remark 2: We notice that due to the unmatched nature of

the disturbance, its effect on the performance of the system

states cannot be compensated by the choice of the control

signal. The control signal will only compensate for the effect

of the disturbance on the system output. However, since the

control signal is defined as an output of a low-pass system

with appropriately banded frequencies, the large adaptive

gain required in the analysis will not lead to adverse effects

on the system states.

VII. SIMULATION RESULTS

Consider the system: ẋ(t) = Amx(t)+B
(

[

0
θ(t)x(t)

]

+
[

ω1 0
0 ω2

]

u(t)
)

+ σ(t), y(t) = C⊤x(t), x(0) = 0,

where Am =





−1 0 0
0 −3 0
0 0 −2



, B =





1 0
0 1
1 1



, C =





1 0
0 1
0 0



. We note here that θ(t) = [θ1(t) θ2(t) θ3(t)]

is a row vector. It can be derived straightforwardly that

Ho(s) =

[ 1
s+1 0

0 1
s+3

]

. We notice that the desired sys-

tem response is characterized by ydes(s) = Ho(s)Kgr(s)

with Kg = −C⊤A−1
m B =

[

1 0
0 3

]

, Ho(s)Kg =
[ 1

s+1 0

0 3
s+3

]

. The L1 adaptive controller is de-

signed based on (4), (5) and (6) as follows: ˙̂x(t) =

Amx̂(t) + B
(

[

0

θ̂(t)x(t)

]

+

[

ω̂1(t) 0
0 ω̂2(t)

]

u(t)
)

+

σ̂(t), ˙̂ωi(t) = ΓProj(ω̂i(t), [−(x̃⊤(t)PB)⊤u⊤(t))]{i,i},
˙̂
θ(t) = ΓProj(θ̂(t), [−(x̃⊤(t)PB)⊤x⊤(t))]{2,:}, ˙̂σ(t) =
ΓProj(σ̂(t),−(x̃⊤(t)P )⊤), where [X]{i,i} indicates the the

ith row ith column element of the matrix X , while [X]{2,:}

indicates the 2nd row vector of the matrix X . The con-

trol signal is given by: χ(s) = D(s)r̄(s) , u(s) =
−Kχ(s), where D(s) = 1/s, K = kI2×2, k >

0, r̄(t) =

[

0

θ̂(t)x(t)

]

+

[

ω̂1(t) 0
0 ω̂2(t)

]

u(t) +

σ̄(t) − Kgr(t), σ̄(s) = H−1
o (s)C⊤(sI − Am)−1σ̂(s) =
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Fig. 1. Performance of L1 adaptive controller for r = [20 20]
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Fig. 2. Performance of L1 adaptive controller for r = [40 40]
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σ̂(s). Let ω1 = 1, ω2 = 1.5, and

θ(t) = [0.5 sin(0.5t) sin(0.3t) 0.5], σ(t) = [1 +
sin(2t) sin(3t) sin(t)]⊤. We assume the following con-
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Fig. 3. Performance of L1 adaptive controller for r(t) = [10 +
10 sin(0.4t) 10 cos(t)]⊤.
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Fig. 4. Performance in the presence of disturbance defined in (35).

servative bounds for the unknown time-varying signals for

the implementation of the projection operator: ωi ∈ [1 1.5]
for i = 1, 2, and |θi(t)| ≤ 1, |σi(t)| ≤ 10, for i = 1, 2, 3. It
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can be derived straightforwardly that L = 3, while ‖Ḡ(s)‖L1

can be calculated numerically. Letting k = 15, it can be

verified numerically that the L1-gain upper bound is satisfied

for all possible ωi ∈ [1, 1.5].
The simulation results of the L1 adaptive controller are

shown in Figures 1 and 2 for constant reference inputs

r = [20 20] and r = [40 40], respectively. We note

that it leads to scaled control inputs and scaled system

outputs for scaled reference inputs. Figure 3 shows the

system response and the control signal for the reference input

r(t) = [10+10 sin(0.4t) 10 cos(t)]⊤, without any retuning

of the controller. In Fig. 4, we consider a different signal

σ(t) = [1 + 2 sin(10t) 2 sin(10t) 10 sin(10t)]⊤. (35)

We note that the L1 adaptive controller guarantees smooth

and uniform transient performance in the presence of differ-

ent unknown time-varying disturbances without any retuning

of the controller.

VIII. CONCLUSION

In this paper, we extend the L1 adaptive controller to

multi–input multi–output systems in the presence of un-

matched time-varying disturbances. By appropriate modifi-

cation of the control architecture, the L1 adaptive controller

compensates for the effects of the unmatched disturbances

on the system outputs.

REFERENCES

[1] C. Cao and N. Hovakimyan. Design and analysis of a novel L1 adaptive
control architecture, Part I: Control signal and asymptotic stability. In

Proc. of American Control Conference, pages 3397–3402, 2006.
[2] C. Cao and N. Hovakimyan. Design and analysis of a novel L1 adaptive

control architecture, Part II: Guaranteed transient performance. In Proc.

of American Control Conference, pages 3403–3408, 2006.
[3] C. Cao and N. Hovakimyan. Guaranteed transient performance with L1

adaptive controller for systems with unknown time-varying parameters:
Part I. American Control Conference, pages 3925–3930, 2007.

[4] C. Cao and N. Hovakimyan. Stability margins of L1 adaptive controller:
Part II. American Control Conference, pages 3931–3936, 2007.

[5] P. Ioannou and J. Sun. Robust Adaptive Control. Prentice Hall, 1996.
[6] H. K. Khalil. Nonlinear Systems. Prentice Hall, Englewood Cliffs, NJ,

2002.
[7] K. Zhou and J. C. Doyle. Essentials of Robust Control. Prentice Hall,

Englewood Cliffs, NJ, 1998.
[8] J.B. Pomet and L. Praly. Adaptive nonlinear regulation: Estimation

from the Lyapunov equation. IEEE Trans. Autom. Contr., 37(6):729–
740, June 1992.

APPENDIX

Proof of Lemma 2. The control law in (22) leads to the following
closed-loop dynamics:

xref (s) = G(s)r(s) + Ḡ(s)η1(s) − H(s)F (s)σ̄ref (s)

+(sI − Am)−1σ(s) + (sI − Am)−1x0, (36)

where G(s) = H(s)F (s)Kg , η1(s) is the Laplace transformation

of signal η1(t) , θ(t)xref (t). Since ‖η1t
‖L∞

≤ L‖xreft
‖L∞

, it
follows from (23) and Lemma 1 that

‖xreft
‖L∞

≤ ‖Ḡ(s)‖L1
L‖xreft

‖L∞
(37)

+‖η2t
‖L∞

+ ‖F1(s)(sI − Am)−1‖L1
‖σt‖L∞

,

where η2(t) has the following Laplace transformation: η2(s) =
G(s)r(s) + (sI − Am)−1σ(s) + (sI − Am)−1x0. We note that
the conditions (9)-(10) ensure that ‖F1(s)(sI − Am)−1‖L1

is

finite. The condition in (9) implies that G(s) and H(s) are stable,
which further implies that ‖η2‖L∞

is finite, since r(t), x0 and
σ(t) are bounded. Hence, it follows from (37) that ‖xref‖L∞

≤
‖η2‖L∞

+‖F1(s)(sI−Am)−1‖L1
‖σ‖L∞

1−‖Ḡ(s)‖L1
L

, which implies that xref (t) is

bounded and completes the proof. �

Proof of Theorem 1. Letting θ̃(t) = θ̂(t)−θ(t), σ̃(t) = σ̂(t)−
σ(t), ω̃(t) = ω̂(t)−ω, the following error dynamics can be derived
from (1) and (4)

˙̃x(t) = Amx̃(t) + B(θ̃(t)x(t) + ω̃(t)u(t)) + σ̃(t) (38)

with x̃(0) = 0. Consider the following candidate Lyapunov

function: V (x̃(t), θ̃(t), ω̃(t), σ̃(t)) = x̃⊤(t)P x̃(t)+Γ−1tr(θ̃⊤θ̃)+
Γ−1tr(ω̃⊤ω̃) + Γ−1(σ̃⊤σ̃). Using the projection based adaptation
laws from (5), one has the following upper bound:

V̇ (t) ≤ −x̃⊤(t)Qx̃(t) + 2Γ−1|tr(θ̃⊤(t)θ̇(t)) + σ̃⊤(t)σ̇(t)| . (39)

The projection algorithm ensures that θ̂(t) ∈ Θ, ω̂(t) ∈ Ω and
σ̂(t) ∈ ∆ for all t ≥ 0, and therefore

max
t≥0

(

tr(θ̃⊤(t)θ̃(t)) + tr(ω̃⊤(t)ω̃(t)) + σ̃⊤(t)σ̃(t)
)

≤

4
(

max
θ∈Θ

tr(θ⊤θ) + max
ω∈Ω

tr(ω⊤ω) + max
σ∈∆

(σ⊤σ)
)

. (40)

If V (t) ≥ θm/Γ at some t, then it follows from

(40) that x̃⊤(t)P x̃(t) ≥ 4 λmax(P )
Γλmin(Q)

(

dθ maxθ∈Θ tr
√

θ⊤θ +

dσ maxσ∈∆ ‖σ‖2

)

, and hence

x̃⊤(t)Qx̃(t) ≥ λmin(Q)x̃⊤(t)P x̃(t)/λmax(P ) ≥
4Γ−1(dθ max

θ∈Θ
tr
√

θ⊤θ + dσ max
σ∈∆

‖σ‖2) . (41)

The upper bounds in (2) along with the projection based adaptive
laws (5) lead to the following upper bound:

tr(θ̃⊤(t)θ̇(t)) + σ̃⊤(t)σ̇(t) ≤ 2(dθ max
θ∈Θ

tr
√

θ⊤θ + dσ max
σ∈∆

‖σ‖2) .

(42)
Hence, if V (t) ≥ θm/Γ, then it follows from (39), (41), (42) that

V̇ (t) ≤ 0 . (43)

Since we have set x̂(0) = x(0), we can verify that

V (0) ≤ 4
(

max
θ∈Θ

tr(θ⊤θ) + max
ω∈Ω

tr(ω⊤ω) + max
σ∈∆

(σ⊤σ)
)

/Γ <

θm/Γ. It follows from (43) that V (t) ≤ θm/Γ for all

t ≥ 0. Since λmin(P )‖x̃(t)‖2 ≤ x̃⊤(t)P x̃(t) ≤ V (t), then

||x̃(t)||22 ≤ θm

λmin(P )Γ
, which along with (24) implies that

||x̃(t)||2 ≤ γ0 , ∀ t ≥ 0 (44)

and proves (26).
Let

r̃(t) = ω̃(t)u(t) + θ̃(t)x(t) , ξ1(t) = θ(t)x(t) . (45)

It follows from (6) that χ(s) = D(s)(ωu(s) + σ̄(s) + ξ1(s) −
Kgr(s) + r̃(s)) , where r̃(s) and ξ1(s) are the Laplace trans-
formations of signals r̃(t) and ξ1(t) respectively. Consequently
χ(s) = (I + D(s)ωK)−1D(s)(ξ1(s) + σ̄(s) − Kgr(s) + r̃(s)),
u(s) = −K(I+D(s)ωK)−1D(s)(ξ1(s)+ σ̄(s)−Kgr(s)+ r̃(s)).
Using the definition of F (s) from (8), we can write

ωu(s) = −F (s)(ξ1(s) + σ̄(s) − Kgr(s) + r̃(s)) , (46)

and the system in (1) consequently takes the form:

x(s) = G(s)r(s) + Ḡ(s)ξ1(s) − H(s)F (s)r̃(s)−
H(s)F (s)σ̄(s) + (sI − Am)−1σ(s) + (sI − Am)−1x0. (47)
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Let e(t) = x(t) − xref (t). Then, using (36) and (47), we have

e(s) = Ḡ(s)ξ2(s) − ξ3(s) − ξ4(s) , (48)

where ξ3(s) = H(s)F (s)r̃(s), ξ4(s) = H(s)F (s)(σ̄(s) −
σ̄ref (s)), and ξ2(s) is the Laplace transformation of the signal
ξ2(t) = θ(t)e(t). ¿From (7) and (23), we have ξ4(s) = F1(s)(sI−
Am)−1σ̃(s), where F1(s) is defined in (18). The definition of ξ3(s)
implies that ξ3(s) = H(s)F (s)(C⊤H(s))−1C⊤H(s)r̃(s) =
H(s)F (s)H−1

o (s)C⊤H(s)r̃(s) = F1(s)H(s)r̃(s). ¿From the
relationship in (38) we have

x̃(s) = H(s)r̃(s) + (sI − Am)−1σ̃(s) , (49)

which leads to ξ3(s) + ξ4(s) = F1(s)x̃(s). Using (44), we can
upper bound

‖ξ3 + ξ4‖L∞
≤ ‖F1(s)‖L1

‖x̃‖L∞
≤ ‖F1(s)‖L1

γ0 . (50)

For the error dynamics in (48), Lemma 1 implies that

‖et‖L∞
≤ ‖Ḡ(s)‖L1

‖ξ2t
‖L∞

+ ‖(ξ3 + ξ4)t‖L∞
. (51)

Using the definition of L in (12), one can verify easily that
‖ξ2t

‖L∞
≤ L‖et‖L∞

, which along with (50) and (51) implies
that

‖et‖L∞
≤ ‖Ḡ(s)‖L1

L‖et‖L∞
+ ‖F1(s)‖L1

γ0 . (52)

It follows from (11) and (52) that ‖et‖L∞
≤ ‖F1(s)‖L1

γ0

1−‖Ḡ(s)‖L1
L

for all

t ≥ 0, which proves (27). The upper bound in (28) follows from
Lemma 1 and the definition of y(t) and yref (t) directly.

To prove the bound in (29), we notice that from (22) and (46)
that u(s) − uref (s) = −ω−1F (s)(ξ2(s) + η4(s) + r̃(s)), where
r̃(t) is defined in (45), η4(t) = σ̄(t) − σ̄ref (t). Hence, we have

‖u − uref‖L∞
≤ ‖ω−1F (s)‖L1

L‖e‖L∞
+ ‖η5‖L∞

, (53)

where η5(s) = −ω−1F (s)(η4(s) + r̃(s)). ¿From (7) and (23), we
have

η5(s) = −ω−1F (s)r̃(s) −
ω−1F (s)H−1

o (s)C⊤(sI − Am)−1σ̃(s)

= −ω−1F (s)(C⊤H(s))−1C⊤H(s)r̃(s) −
ω−1F (s)H−1

o (s)C⊤(sI − Am)−1σ̃(s)

= −ω−1F (s)H−1
o (s)C⊤(H(s)r̃(s)

+(sI − Am)−1σ̃(s))

which along with (49) implies that

η5(s) = −ω−1F (s)H−1
o (s)C⊤x̃(s) . (54)

It follows from (44) and (54) that

‖η5‖L∞
≤ ‖ω−1F (s)H−1

o (s)C⊤‖L1
γ0. (55)

Hence, the relationships in (27), (53), (55) and the definition of
F2(s) in (19) imply that

‖u − uref‖L∞
≤ ‖ω−1F (s)‖L1

Lγ1 + ‖F2(s)‖L1
γ0 ,

which proves (29). �

Proof of Lemma 3. If θ, r and σ are constant, it follows from
(23) and (36) that

xref (s) = G(s)r/s + Ḡ(s)θxref (s)

−H(s)F (s)H−1
o (s)C⊤(sI − Am)−1σ/s

+(sI − Am)−1σ/s + (sI − Am)−1x0,

and hence

xref (s) = (I − Ḡ(s)θ)−1
(

G(s)r/s

−H(s)F (s)H−1
o (s)C⊤(sI − Am)−1σ/s

+(sI − Am)−1σ/s + (sI − Am)−1x0

)

. (56)

It follows from the end value theorem that

lim
t→∞

ydes(t) = lim
s→0

sydes(s)

= lim
s→0

sHo(s)Kgr/s = Ho(0)Kgr , (57)

lim
t→∞

yref (t) = lim
s→0

syref (s) . (58)

Eq. (56) and the definition of yref = C⊤xref imply that

lim
t→∞

yref (t) = lim
s→0

syref (s) = C⊤(I − Ḡ(0)θ)−1
(

G(0)r

+(−Am)−1σ − H(0)F (0)H−1
o (0)C⊤(−Am)−1σ

)

. (59)

Since (9) implies that F (0) = I, we have G(0) = H(0)Kg and

Ḡ(0) = 0. Using the definition of Ho(0) = C⊤H(0) and the
relationship in (59), we can write:

lim
s→0

syref (s) = C⊤H(0)Kgr + C⊤(−Am)−1σ −

Ho(0)H−1
o (0)C⊤(−Am)−1σ

)

= Ho(0)Kgr. (60)

The limiting expression in (33) follows from (57) and (60) directly.
Proof of Lemma 4. It follows from (23) and (36) that

xref (s) = G(s)r(s) + Ḡ(s)η1(s)

−H(s)F (s)H−1
o (s)C⊤(sI − Am)−1σ(s)

+(sI − Am)−1σ(s) + (sI − Am)−1x0 ,

and hence

yref (s) = Ho(s)F (s)Kgr(s) + Ho(s)(I − F (s))η1(s)

−Ho(s)F (s)H−1
o (s)C⊤(sI − Am)−1σ(s)

+C⊤(sI − Am)−1σ(s) + C⊤(sI − Am)−1x0 ,

= ydes(s) − Ho(s)(I − F (s))Kgr(s) +

Ho(s)(I − F (s))η1(s) +

Ho(s)(I − F (s))H−1
o (s)C⊤(sI − Am)−1σ(s) .

It follows from Lemma 1 and the definitions of F3(s), F4(s) that

‖yref − ydes‖L∞
≤ ‖F3(s)‖L1

(L‖xref‖L∞
+ ‖Kgr‖L∞

)

+‖F4(s)‖L1
‖σ‖L∞

, (61)

which concludes the proof. �
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