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Abstract— In the paper we study the properties of a sampling
method for stochastic signals corrupted by a wide-band stochas-
tic noise where samples are taken as average values of the signal
over the sampling interval to diminish the influence of noise.
We also study possible improvement attained by discrete-time
Kalman filtering applied to the sampled signal. We compare
the results with two competitive methods: classical point-wise
sampling followed by discrete-time filtering, and continuous-
time Kalman filtering prior to sampling possibly followed by
digital filtering. The study is performed for a wide range
of sampling periods and noise-to-signal ratios and leads to
important practical conclusions.

I. INTRODUCTION

In the paper we consider sampling of a signal corrupted

by a wide-band noise, whose model is depicted in Fig. 1

where s(t) denotes the signal of interest,and n(t) denotes a

wide-band noise, Ks(s) and Kn(s) denote forming filters,

and ξ̇s(t) and ξ̇n(t) are white noises. The literature, e.g. [1],

[3], [5] requires that the measured signal y(t) = s(t) + n(t)
is passed through a so called anti-aliasing filter before being

sampled. In the paper we assume that y(t) is sampled in

such way that average values of y(t) are calculated over a

constant sampling interval. This method is used by certain

analog-to digital converters and is supposed to diminish the

influence of noise. It is obvious that for appropriately chosen

sampling interval the averaged samples can be closer to the

samples of the original signal s(t) than the instantaneous

samples of y(t). The results can further be improved using

an appropriately designed Kalman filter. Competitive to this

method is the use of a continuous-time Kalman filter to

the signal y(t) prior to sampling, possibly followed by a

discrete-time Kalman filter. The simplest approach consists

in applying discrete-time Kalman filter directly to point-wise

samples of y(t). These configurations are shown in Fig. 2.

The aim of the paper is to compare these methods and to

give practical recommendations to their use.

II. MODELS OF SAMPLING

A. State-space model of signal contaminated by noise

To analyse the properties of sampling we will use state-

space models of the system in Fig. 1 consisting of signal

ẋs(t) = Asxs(t) + csξ̇s(t), (1)

s(t) = d′
sxs(t), (2)
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Fig. 1. a) Model of signal s(t) corrupted by noise, and b) Simplified
model with white noise

Fig. 2. Configurations of filters and samplers

and noise model

ẋn(t) = Anxn(t) + cnξ̇n(t), (3)

n(t) = d′
nxn(t), (4)

where dim xs = ns, dim xn = nn, xs(t), xn(t) are state

vectors, As, An are matrices, cs, cn, ds, and dn are

vectors of appropriate dimensions. The initial conditions

xs(0) and xs(0) are assumed to be a normal random vectors,

xs(0) ∼ N (0,Qs,0), xn(0) ∼ N (0,Qn,0). Processes ξ̇s(t)

and ξ̇s(t) are independent continuous-time white noises with

zero means and covariance functions defined as unit Dirac

pulse functions, i.e.:

E [ξ̇s(t)] = 0, E [ξ̇s(t)ξ̇s(τ)] = δ(t − τ); (5)

E [ξ̇n(t)] = 0, E [ξ̇n(t)ξ̇n(τ)] = δ(t − τ). (6)
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The disturbed signal y(t) is the sum of the signal of interest

s(t) and noise n(t):

y(t) = s(t) + n(t). (7)

System (1)-(4) with (7) can be aggregated to:

ẋ(t) = Ax(t) + Cξ̇(t), (8)

s(t) = d′
0x(t), (9)

y(t) = d′x(t), (10)

where:

A =

[

As 0

0 An

]

, C =

[

cs 0

0 cn

]

,

d0 =

[

ds

0

]

, d =

[

ds

dn

]

,

x(t) =

[

xs(t)
xn(t)

]

, ξ̇(t) =

[

ξ̇s(t)

ξ̇n(t)

]

.

B. Instantaneous sampling

Simple instantaneous sampling with sampling period h
consists in taking the values of the sampled signal at discrete

time instants ti = ih, i = 0, 1, . . .. Available measurements

zi are expressed as

zi = y(ti). (11)

Then the problem defined by measurement equation (11) and

state equation (8) is equivalent with the following discrete-

time system:

xi+1 = Fxi + wi, (12)

zi = d′xi, (13)

where:

F = eAAAh, (14)

and wi is a zero mean vector Gaussian noise with

E {wiw
′
i} = W , and

W =

h
∫

0

eAAAsCC ′eAAA′sds. (15)

Vectors x0 and wi are independent for all i ≥ 0.

The limiting Kalman filter, [2], that provides (x̂i|i =
E [xi|~zi]) for the discrete-time system in (12)-(13) as i → ∞
has the form:

x̂i+1|i+1 = x̂i+1|i + kf (zi+1 − d′x̂i+1|i), (16)

x̂i+1|i = F x̂i|i, x0|−1 = 0, (17)

ŝi|i = d′
0x̂i|i, (18)

where

kf =
Σd

d′
Σd

, Σ = W + F

(

Σ −
Σdd′

Σ
′

d′
Σd

)

F ′. (19)

The limiting variance σ2(∆s) = lim
i→∞

var {∆s(i)} of the

estimation error

∆s(i) = si − ŝi|i = d′
0(xi − x̂i|i), (20)

can be calculated from

σ2(∆s) = d′
oV

odo + d′
oV

fdo − 2d′
oV

ofdo, (21)

where V o, V f , end V fo are submatrices of matrix V

V = E

{[

xi

x̂i|i

]

[

x′
i x̂′

i|i

]

}

=

[

V o V of

V fo V f

]

(22)

which is a solution of the following matrix Lyapunov equa-

tion:

V = ΦV Φ
′ + JWJ ′, (23)

with

Φ =

[

F 0

kfd′F (I − kfd′)F

]

, J =

[

I

kfd′

]

.

Indeed, inserting (17) into (16) gives

x̂i+1|i+1 = (I − kfd′)F x̂i|i + kfzi+1 =

= (I − kfd′)F x̂i|i + kfd′Fxi + kfd′wi, (24)

which together with (12) leads to (23). Finally, (19) and (22)

give (21).

C. Averaging sampling

Let us denote

dz (t)

dt
=

1

h
y(t) =

1

h
d′x(t). (25)

Then the mean value of y(t) over the sampling interval h
between the sampling times ti and ti+1 is

zi+1 =
1

h

ti+1
∫

ti

y(t)dt =

ti+1
∫

ti

z(t)dt. (26)

The state equation (8) can be extended as follows

d

dt

[

x(t)
z(t)

]

=

[

A 0
d′

h
0

]

[

x(t)
z(t)

]

+

[

C 0
0 0

] [

ξ̇

0

]

. (27)

Integrating it between the i-th and (i+1)-th sampling instants

yields

xi+1 = Fxi + wi, (28)

zi+1 = f ′xi + vi, (29)

with

F = eAAAh, f ′ =
1

h
d′

h
∫

0

eAAAsds, (30)

and

E

[

wiw
′
j wivj

viw
′
j vivj

]

=

[

W γ

γ′ ρ2

]

δij , (31)

where

[

W γ

γ′ ρ2

]

=

h
∫

0

eĀ̄ĀAs

[

CC ′
0

0 0

]

eĀ̄ĀA′sds, Ā̄ĀA =

[

A 0
1

h
d′ 0

]

.
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Let us denote ∆s∗(i) = si − zi the difference between

samples of average values zi and signal si, and σ2(∆s∗) =
lim

i→∞
var {∆s∗(i)}, where

∆s∗(i + 1) = (d′
0F − f ′)xi + d′

0wi − vi. (32)

We then have

σ2(∆s∗) = (d′
0F − f ′)V o(F ′d0 − f) + d′

0Wd0 − 2d′
0γ,
(33)

where

V o = FV oF ′ + W . (34)

D. Discrete-time Kalman filter for averaging sampling

The results of averaging sampling can further be improved

by using a discrete-time Kalman filter. We have the follow-

ing:

Lemma 1: Denote

d̄ =
γ

ρ2
, F̄ =

(

F − d̄f ′
)

, W = W −
γγ′

ρ2
. (35)

Then the Kalman filter for (28)-(29) that provides (x̂i|i =
E [xi|~zi]) has the following form

x̂i|i+1 = x̂i|i + kf (zi+1 − f ′x̂i|i), (36)

x̂i+1|i+1 = F̄ x̂i|i+1 + d̄zi+1, x̂0|0 = 0 (37)

ŝi = d′
0x̂i|i, (38)

where

kf = Σf
(

f ′
Σf + ρ2

)−1
, (39)

and Σ is a solution of the matrix Riccati equation

Σ = W + F̄

(

Σ +
Σff ′

Σ

f ′
Σf + ρ2

)

F̄
′
. (40)

Proof Since wi and vi are correlated, we can introduce

w̄i defined as

w̄i = wi −
γ

ρ2
vi, (41)

such that w̄i and vi are independent, and

cov {w̄i, vj} = E

[

w̄iw̄
′
j w̄ivj

viw̄
′
j vivj

]

=

[

W 0

0
′ ρ2

]

δij . (42)

Inserting

wi = w̄i +
γ

ρ2
vi, (43)

from (42), and

vi = zi+1 − f ′xi, (44)

from (29) into (27) results in

xi+1 = F̄ xi + d̄zi+1 + w̄i. (45)

From (45), Kalman filter equations (36)-(38) follow.

Equation (37) together with (36) give:

x̂i+1|i+1 = F̄ (I − kff ′)x̂i|i + (d̄ + F̄ kf )zi+1, x̂0|0 = 0.
(46)

Limiting Variance of the filtration error at sampling points

results from:

σ2(∆s) = d′
0V

od′
0 + d′

0V
fd0 − 2d′

0V
ofd0, (47)

where matrices V o, V f , and V of are blocs constituting

matrix V as in (22), being a solution of

V = ΦV Φ
′ + JWJ ′ + JγD′ + Dγ′J ′ + DD′ρ2, (48)

with:

Φ =

[

F 0

δf ′
Γ

]

, J =

[

I

0

]

, D =

[

0

δ

]

,

Γ = F̄ (I − kff ′), δ = (d̄ + F̄ kf ).

III. SIMPLIFIED MODELS

Very often the power spectrum Sn(ω) of noise n(t)
defined by equations (3)-(4), or by transfer function Kn(s),
is much wider than that of the signal of interest s(t). In such

case it can be modeled as white noise n(t)

E [n(t)] = 0, E [n(t)n(τ)] = η2δ(t − τ), (49)

with constant spectral density η2 independent of frequency

ω.

The model in (8)-(10) simplifies to

ẋs(t) = Asxs(t) + csξ̇s(t), (50)

y(t) = d′
sxs(t) + ηξ̇n(t), (51)

s(t) = d′
sxs(t), (52)

and the model presented in Fig. 1a) simplifies to that of

Fig. 1b), with

η = |Kn(0)| = |d′
nA−1

n cn|. (53)

While appropriate for continuous-time signal processing

modeling, it is completely inadequate for discrete-time mod-

els. This is because sampling of physically nonexisting

continuous-time white noise with infinite variance can not

be defined reasonable. To this end, we propose a discrete-

time model of instantaneously sampled noisy signal

xs
i+1 = F sx

s
i + ws

i , (54)

zi = d′
sx

s
i + ni, (55)

si = d′
sx

s
i , (56)

with

F s = eAAAsh, W s =

h
∫

0

eAAAsvcsc
′
seAAA′

s
vdv, (57)

in which noise is presented as discrete-time white noise ni

whose variance ρ2 equals to the variance of n(t) of the

original system, i.e. ρ2 = var {ni} = var {n(t)}, and can

be calculated as

ρ2 = d′
nQndn, (58)

where Qn fulfills the following Lyapunov equation:

AnQn + QnA′
n = −dnd′

n. (59)
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A. Discrete-time Kalman filter

Kalman filter equations for system in (54)–(55) have

formally the same for as in (16)-(18), except for dim xs
i|i =

ns, and

kf = Σds

(

d′
sΣds + ρ2

)−1
, (60)

where Σ is a solution of

Σ = W s + F s

(

Σ −
Σdsd

′
sΣ

′

d′
sΣds + ρ2

)

F ′
s. (61)

When applying this filter to the system in (12)-(13) then the

variance σ2(∆s∗) = lim
i→∞

var {si − ŝi|i} of the estimation

error can be calculated from

σ2(∆s∗) = d′
0V

od0 + d′
sV

fds − 2d′
0V

ofds + ρ2. (62)

where V o, V f , end V fo are, as in (22) submatrices of

matrix V being a solution of

V = ΦV Φ
′ + JWJ ′, (63)

with

Φ =

[

F 0

kfd′F (I − kfd′
s)F s

]

, J =

[

I

kfd′

]

.

Consider an exemplary system defined by

Ks(s) =
1

(1 + 3s)2
, Kn(s) =

kn

T 2
ns2 + 2ζnTns + 1

(64)

ζn = 0.2, Tn = 0.1, (65)

Figure 4 shows that there is almost no difference between the

exact and the approximate discrete Kalman filters, perhaps

except for very small sampling periods.

Fig. 3. Models of signals and CT filters assumed for DT Kalman filter
design
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Fig. 4. Comparison of exact and approximate DT Kalman filter

B. Averaging Sampling

Let us denote

dz (t)

dt
=

1

h
y(t) =

1

h
d′

sxs(t) +
η

h
ξ̇n, (66)

and

zi+1 =
1

h

ti+1
∫

ti

y(t)dt =

ti+1
∫

ti

z(t)dt. (67)

Then equation (66) together with (50) form the system:

d

dt

[

xs(t)
z(t)

]

=

[

As 0
d′

s

h
0

]

[

xs(t)
z(t)

]

+

[

cs 0
0 η

h

] [

ξ̇s(t)

ξ̇n(t)

]

. (68)

Solving equation (68) on the interval ih ≤ t < (i + 1)h
gives:

xs
i+1 = F sx

s
i + ws

i , (69)

zi+1 = f ′
sx

s
i + vs

i , (70)

where:

F s = eAAAsh, f ′
s =

1

h
ds

′

h
∫

0

eAAAsudu, (71)

and ws
i i vs

i are discrete-time white noise signals such that

E

[

ws
i w

s′
j ws

i v
s
j

vs
i w

s′
j vs

i v
s
j

]

=

[

W s γs

γ′
s ρ2

s

]

δij , (72)

[

W s γs

γ′
s ρ2

s

]

=

h
∫

0

eĀ̄ĀAsu

[

csc
′
s 0

0
η2

h2

]

eĀ̄ĀA′

s
udu, (73)

with:

Ās =

[

As 0

d′

s

h
0

]

. (74)

Similar results, expressed in δ-operator, are derived in [3].

Unfortunately there is an error in calculating the matrix in

(72). Equations (69)–(70) have formally the same form as

those in equations (28)–(29). In [4] a model similar to (69)-

(70) is presented, however with zi instead of zi+1 in output

equation (70), and simplified covariance matrix (73) with

W s = c′scs · h, ρ2
s = η2/h and γs = 0.
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Fig. 5. Avaraging sampling + DT Kalman: exact vs approximate

C. Kalman filter for averaging sampling

Since equations (69)-(70) modeling averaging sampling

for simplified noise model have the same form as those for

the exact noise model, (28)-(29), the Kalman filter equations

are formally the same as those in (36) - (40), i.e.

x̂s
i|i+1 = x̂s

i|i + kf (zi+1 − f ′
sx̂

s
i|i), (75)

x̂s
i+1|i+1 = F̄ sx̂

s
i|i+1 + d̄szi+1, x̂s

0|0 = 0 (76)

ŝi = d′
sx̂

s
i|i, (77)

with

kf = Σfs

(

f ′
sΣfs + ρ2

s

)−1
, (78)

and Σ being a solution of the matrix Riccati equation

Σ = W s + F̄ s

(

Σ +
Σfsf

′
sΣ

f ′
sΣfs + ρ2

s

)

F̄
′
s, (79)

where

d̄s =
γs

ρ2
s

, F̄ s =
(

F s − d̄sf
′
s

)

, W s = W s −
γsγ

′
s

ρ2
s

, (80)

with values of W s, γs and ρ2
s taken from (73).

Variance of the filtration error at sampling points is

determined by:

σ2(∆s) = d′
oV

od′
o + d′

sV
fds − 2d′

oV
ofds, (81)

where the covariance matrix V i of the form Eq.(22) is a

solution of

V = ΦV Φ
′ + JWJ ′ + JγD′ + Dγ′J ′ + DD′ρ2, (82)

with:

Φ =

[

F 0

δsf
′

Γs

]

, J =

[

I

0

]

, D =

[

0

δs

]

,

Γs = F̄ s(I − kf f̄
′
s), δs = (d̄s + F̄ sk

f ).

Fig. 5 displaying results for exemplary system in (64) shows

that the simplified Kalman filter gives almost the same results

as the exact one.

D. Continuous-time Kalman filter

The Kalman filter for system in (51) - (52), displayed in

Fig. 1b), is defined as follows:

˙̂x(t) = Asx̂(t) + kf
c

[

y(t) − d′
sx̂(t)

]

, (83)

with:

kf
c =

Pds

η2
and AsP +PA′

s−
Pdsd

′
sP

η2
+csc

′
s = 0 (84)

The filtered value ŝ(t) of s(t) is determined by

ŝ(t) = d′
sx̂(t). (85)

Samples zi of the signal in (85) can be further processed by

a discrete-time Kalman filter.

IV. PROPERTIES OF AVERAGING SAMPLING

In this section we will study the properties of averaging

sampling based on our example.

Comparison of purely discrete Kalman filter with aver-

aging sampling displayed in Fig. 6 shows that while DT

Kalman behaves more regularly when changing sampling pe-

riod h and noise level std {n(t)} than the averaging sampling

itself. In particular, for very small sampling periods there is

no use of AS, while DT exhibits very good performance.

Increasing sampling period worsens the quality of DT and

improves that of AS but only for noise level great enough.

For small noise levels AS behaves rather badly.
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Fig. 6. Discrete-time Kalman vs averaging sampling

Fig. 7 shows that performance of sampled output from ana-

log Kalman filter does not depend on h, and that this limiting

performance is gradually attained by discrete Kalman filter

when increasing sampling frequency.
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Fig. 7. Discrete-time vs continuous-time Kalman
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Decreasing quality of AS for h smaller than certain

optimal value depending on noise level is seen in Fig. 8.

It is interesting to note that for optimal h the quality of AS

is similar to that of CT Kalman. For h higher than optimal

the quality of AS degrades due to ”smoothing” signal s(t).
For small levels of noise this can overweight, making the

filtration error greater than the noise itself. As seen from

Fig. 9–10, things get improved for h smaller than optimal

when AS is followed by DT Kalman filter but, unfortunately,

this filter does not help for larger values of h.
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Fig. 8. Averaging sampling vs continuous-time Kalman
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Fig. 9. AS + DT Kalman vs CT Kalman + DT Kalman
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Fig. 10. AS vs AS + DT Kalman

Superiority of DT Kalman filter over AS for small h is

seen in Fig. 11, and Fig. 12 shows that even the combination

of AS and DT Kalman is not better than purely discrete-time

Kalman filter for h small enough. Exemplary realizations

of noisy signals and their samples after averaging and

additionally discrete-time filtering are shown in Fig. 13.
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Fig. 11. AS vs DT Kalman
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a) AS b) AS + DT Kalman
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Fig. 13. Signal, noise, AS, and AS + DT Kalman

V. CONCLUSION

The range of reasonable sampling periods for averaging

sampling is rather small, and stretches around optimal value

that depends on the noise level. Augmenting the sampler

with a discrete Kalman filter improves the results for smaller

sampling periods bringing the filtration error close to the

lower limit provided by an analog Kalman filter. It does

however almost not help for sampling periods greater than

optimal. Small noise level results in a small value of optimal

sampling period which makes averaging sampling useless.
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