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Abstract–We propose a one-step lookahead rollout policy
in closed-loop with a health state estimator to ensure ef-
fective cooperation among unmanned combat teams despite
intermittent wireless communications breakdowns. To ensure
effective cooperation despite network faults, the proposed
scheme relies on dual networks. On the one hand, a Sensory
Information Management Network (SIM-Net) provides the
most probable distribution on the location and classification
of the adversarial ground units by fusing mobile sensor
measurements obtained by a team of surveillance vehicles. On
the other hand, a Routing and Munitions Management Net-
work (RMM-Net) enables unmanned combat vehicle (UCV)
communications, which are required for their effective path
planning and for the distribution of the rollout decision
policy over the formations. Simulation results demonstrate
the effectiveness of the proposed health state estimator and
decision policy.

I. Introduction

In [1], we proposed a decision policy for the routing
and munitions management (RMM) of multiple UCVs
evolving in an imperfectly known and adversarial en-
vironment. Intermittent wireless communications break-
downs were not addressed in [1], despite the facts such
events are bound to occur in urban environments and
have the potential to adversely affect mission success
if not handled correctly. In this paper, we propose to
remedy this situation. We study the following scenario.
A blue team is composed of surveillance vehicles (SVs)
and UCVs. The SVs are remote from the battlefield
whereas the UCVs are engaged in the urban theatre. The
blue team faces a red team, which consists of ground
units distributed over the urban area. The blue team
is deployed from a base as a set of UCV formations
having to reach a tactical target within a specific time
window. To achieve this mission objective, a base policy
for the (blue) team is calculated prior to mission and
embedded onboard the vehicles. Yet, during mission, the
actual ground units location and classification (GULC)
may change, and hence may differ from that assumed
prior to mission. Therefore, an online policy improvement
step is performed during the course of the mission by
utilizing the most likely GULC, as obtained from a
recursive Bayesian filter (RBF). The expected cost-to-go
function of the policy improvement step is approximated,
by means of Monte-Carlo simulations, and the decision-
making is then updated [1]. To carry out the online
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computations required to solve the RMM problem, the
health state must be exchanged among the formations
through the wireless network connecting the UCVs,
labeled as RMM-Net. In the RMM problem, the health
state refers to the amount of munitions available onboard
the UCVs. No matter how reliable is the network, it
is subject to failures, delays and information loss due
to urban obstacles. Failure to transmit the health state
through RMM-Net is expected to significantly reduce the
effectiveness of the decision-making.
In this paper, we assume that the sensors found

onboard the SVs and the UCVs are part of a second
network, denoted as SIM-Net. Furthermore, we assume
that SIM-Net is available at times when the RMM-
Net may be down, thereby providing a certain level
of redundancy. We thus assume that the probability of
information loss between the SVs and the UCVs is likely
to be smaller than that characterizing information loss
among the UCVs. We propose to leverage the availability
of SIM-Net to calculate a probabilistic distribution on
the possible number of healthy UCVs in each formation
of the blue team through the design of a RBF-based
health state estimator which feeds the RMM computing
nodes, in each formation, in case of intermittent losses
of RMM-Net communications. Numerical simulations
show that the RBF-based health state estimator is
capable of handling intermittent communication losses
while resulting in performances that are close to those
achieved by the policy in the idealized case when RMM-
Net communications are exempt from failures.

II. Modeling, Definitions and Assumptions

A. Urban theater

The urban theater is composed of the red (R) and
blue (B) teams. R comprises ground units and decoys
located along urban routes with objective of protecting
a strategic target location T . B is made up of UCVs and
SVs. UCVs have for objective to reach T , simultaneously,
from a common deployment base (Ba). Synchronous
arrival at T is required to maximize weapons effects
on T . For the same reason, maximizing the number of
available munitions of B at the time the UCVs reach
T is desired. A set of SVs (O) collects observation data
from their onboard sensors. Sensing is also performed by
the UCVs. The urban terrain is meshed by a m1 ×m2

grid (GUT ), whose nodes are numbered from 1 to m1m2.
A path is defined as a set of connected edges that link
Ba to T . The time is discretized as tk = kTs, k ∈ N+,
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with period Ts = e/vν between two successive discrete
time instants, where e denotes the edge length of each
mesh and vν is vehicle speed.
Definition 1 (Blue team) At the onset of mission, B =
{1, ..., p} is composed of p ∈ N homogeneous formations.
Each formation ν ∈ B comprises np UCVs. A UCV
carries mp ∈ N munitions. Every vehicle of a formation ν
is assumed to move with constant speed vν along paths
of GUT . B is able to divide into p smaller formations
or into groups of formations. Conversely, grouping into
larger formations, or into B itself, is allowed. Formation
motion occurs along paths from Ba to T . Each formation
can fire at most 1 munition, or salvo, per edge. If pe ≤ p
formations are engaged in the same edge, a maximum
of pe munitions, or salvo, can be shot. O = {1, ..., p0} is
composed of p0 homogeneous SVs with onboard sensors.
SV o is assigned to a subset Po of GUT , defined such
that Area(Poi) = Area(Poj) and Poi ∩ Poj = ∅ for all
oi, oj ∈ O and ∪p0i=1Poi = GUT .
Definition 2 (Red team) There is a maximum of one
ground unit or decoy between any two adjacent nodes in
the urban theater. Whenever pe formations, pe ∈ [1, p],
are engaged along an edge where there is a ground unit,
the latter is allowed to shoot at most one munition. The
firing of the ground unit can destroy v ≥ 0 vehicles of
the pe formations.
Each ν ∈ B is characterized by state {Nν

k ,X
ν
k} ∈

{0, 1, ..., np}×{1, ...,m1m2} = Eν , which expresses, at tk,
the number of vehicles remaining and the assigned node.
One vehicle of ν destroyed by a red unit that is located
between two adjacent nodes over [tk, tk+1) corresponds
to Nν

k+1 − Nν
k = −1. The control signal of ν ∈ B is

Uν
k = (Uν

1,k, U
ν
2,k) ∈ {j ∈ {1, ...,m1m2}} × {0, 1} = Uνk ,

where Uν
1,k = X

ν
k+1 and U

ν
2,k ∈ {0, 1} denote the location

of ν at tk+1 and the choice of one vehicle of ν to
attack by using one munition over [tk, tk+1), or not
to attack (Uν

2,k = 0), respectively. Let Nk, Uk, U1,k,
U2,k and Uk denote the p-tuple (N1

k , ..., N
p
k ), (U

1
k , ..., U

p
k ),

(U11,k, ..., U
p
1,k), (U

1
2,k, ..., U

p
2,k), and (U1k , ...,Upk ), respec-

tively. A red unit located on (i, j), i, j ∈ {1, ...,m1m2},
is characterized at tk by Yij,k ∈ {0, 1}, where 0 stands for
a destroyed status whereas 1 denotes an operational unit.
The control signal for a red unit at (i, j) is Vij,k ∈ {0, 1},
where 0 corresponds to the unit not attacking and 1
stands for an attack. See [1] for a detailed presentation
of the MDP modeling of the problem.

B. Measurement Process to Estimate GULC

Assumption 1 (GULC) Although the actual urban the-
ater is characterized by a fixed GULC, the knowledge
of the adversarial team configuration by the command-
and-control center (C3) is defined, at t1, by a number of
γ0 configurations sγ , γ ∈ [1, γ0]. It is assumed that the C3
does not have sufficient information to derive a reliable
distribution over the set of GULC {sγ , γ ∈ [1, γ0]}.
Each ground unit or decoy is located along anyone of
the σ edges of the m1 × m2 grid GUT , where σ =

2m1m2+m1+m2. A configuration sγ thus represents, at
any tk, a σ-tuple sγ = {sγ,ij ; i 6= j, 1 ≤ i ≤ m1, 1 ≤ j ≤
m2, sγ,ij = sγ,ji}, where i and j denote all possible nodes
of GUT . sγ,ij characterizes the occupancy status of edge
(i, j) by an element of R. More precisely, let sγ,ij = 1, 2,
or 3 when there is a ground unit, a decoy, or no unit,
respectively, along (i, j). Note that card sγ = σ.
Definition 3 (Observation, detection and classification)
SVs have the capability to observe GUT , while UCVs can
observe only the local area; i.e., a UCV νl, l ∈ {1, ..., p},
which is located along (i, j), can detect and classify, over
[tk, tk+1), ground units and decoys located on edges that
are ahead of νi and along the axis determined by (i, j).
Denote NV eh as the set of edges that can be sensed by
V eh ∈ {B,O}; in particular, No = GUT . Let NPoi be
the sensory set of SV oi restricted to Poi. Let δij,k be
the distance between V eh ∈ {B,O} and the element of
R, if any, located on (i, j) and characterized by sγ,ij .
The ability of V eh to achieve a correct detection and
classification (zV ehij,k = sγ,ij) of an element of R, if any,
is specified by probabilities pV ehd (δij,k) and pV ehc (δij,k),
respectively, which are decreasing functions of δij,k.
The observation variable ZV ehij,k of V eh ∈ {B,O}

along (i, j) can be assigned, at tk, one of four values
zV ehij,k = 1, 2, 3, and nd, where the first three values
have the same meaning as that of sγ,ij . However, nd
indicates that the detection process has failed. The
measurement model of V eh ∈ {B,O} is defined by means
of the detection probability pV ehd (δij,k), the classification
probability pV ehc (δij,k), and the sensor likelihood function
L(zV ehij,k | sγ,ij) and can be expressed, at tk, as
p(ZV ehij,k = z

V eh
ij | Sij,k = sγ,ij) = p(zV ehij,k | sγ,ij)

=

½
pV ehd (δij,k)L(z

V eh
ij,k | sγ,ij) if zV ehij,k 6= nd,

1− pV ehd (δij,k) if zV ehij,k = nd,

L(zV ehij,k | sγ,ij) =
(
pV ehc (δij,k) if zV ehij,k = sγ,ij ,
1−pV ehc (δij,k)

2 if zV ehij,k 6= sγ,ij .
(1)

Let ZV ehk = {ZV ehij,k ; i 6= j, 1 ≤ i ≤ m1, 1 ≤ j ≤
m2, Z

V eh
ij,k = ZV ehji,k } and Zk = {ZV ehk ;V eh ∈ {B,O}.

zV ehk and zk are defined similarly with zV ehij,k replacing
ZV ehij,k . Finally, let Zk and zk denote {Z1, ..., Zk} and
{z1, ..., zk}, respectively. In the sequel, Sk stands for the
configuration state-space variable at tk. Based on (1), the
information state vector, subsequently used by the policy,
is represented by the distribution P (Sk = sγ | Zk = zk)
expressed over all possible configurations sγ , γ ∈ [1, γ0].
Unless specified otherwise, the short notation P (Sγ,k |
zk) is used in the sequel.

III. Impact of Information Loss on Policy

In [1], we presented one-step lookahead rollout policies
πu1,Pi = {μ1,Pi , ...,μN−1,Pi} that optimally control the
blue team formations despite the adversarial environ-
ment for the scenario at hand. The stochastic game
was solved in such a way that policies for B and R
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play the role of minimizer and maximizer, respectively,
(πu∗1,Pi ,π

v∗
1,Pi

) = arg min
πu1,Pi

max
πv1,Pi

J(N1, Pi, Sγ+,1), of

J(N1, Pi, Sγ+,1) = E{
P

ν∈B(
Pk=N−1
k=1 Uν

2,k

+
Pk=N
k=2 mpI(N

ν
k |Nν

k−1)−mpnp)},
I(Nν

k |Nν
k−1) =

½
1 if Nν

k < N
ν
k−1,

0 if Nν
k = N

ν
k−1.

(2)

Sγ+,1, discussed in the sequel, is the GULC utilized
at t1 to derive and to implement the policy. J in
(2) represents the negative of the expected number of
remaining munitions at T . The policy derived in [1] can
be symbolically expressed as

Uk = μk,Pi(Nk,Xk, P (Sγ,k | zk)) (3)

where μk,Pi is a function from {E1 × ... × Ep, P (Sγ,k |
zk)}, with i ∈ [0,κ] and γ ∈ [1, γ0], to Uk. The policy
is obtained in three steps. First, the GULC estimator
yields the GULC-information state P (Sγ,k | zk), k > 1,
which constitutes a distribution over all possible GULCs
conditioned to the observations. Second, base policy
(πu+1,Pi ,π

v+
1,Pi

) is computed offline by considering Sγ+,1
that is the most harmful to B. This worst-case scenario
is obtained when the uncertain state characterizing the
occupancy of an edge is consistently assigned a ground
unit. The base policy serves as a reference at subsequent
tk, k ∈ [2, i − 1]. Finally, for all tk, k > 1, a one-
step lookahead policy improvement is carried out over
[tk, tk+1) w.r.t. π

u+
1,Pi

because the estimate of Sγ,k may
evolve from Sγ+,1. The cost-to-go function is approxi-
mated by utilizing, over [tk, tk+1), the maximum a priori
(MAP) estimate of Sγ+,k,

γ+ = argmax
γ∈[1,γ0]

P (Sγ,k | zk). (4)

The implementation of the policy is described as follows.
P (Sγ,k | zk), is obtained from data communicated
through SIM-Net. The computing node of SIM-Net
collects measurement data from other SVs and from the
UCVs, and manages the sensor allocation in order to
compute the multisensor-multitarget joint Bayes filter.
The implementation of the policy is computed in a
decentralized fashion over B through RMM-Net. The
formations are networked so that they may communicate
to each other their state Nν

k . Expand (3) in [1] as

μk,Pi(Nk,Xk) = argminUk∈Uk max
Vk
(
P

ν∈B U
ν
2,k+

1
p

Pp
j=1

1

ηl

ηlX
i=1

W 0
k,Pi,γ+,νj

(Nk,Xk, Uk, Vk)[i])| {z }gW 0
k,Pi,γ

+,νj
(Nk,Xk,Uk,Vk)

, (5)

where the double summation represents the Monte-
Carlo-simulation-based approximation of the expectation
of the cost-to-go function. [i] denotes the realization
of the cost-to-go function, W 0

k,Pi,γ+
(Nk,Xk, Uk, Vk), at

the ith step, which is determined by means of the base
policy (πu+k+1,Pi ,π

v+
k+1,Pi

) and of MDPs. Each formation

νj ∈ [1, p] can thus compute fW 0
k,Pi,γ+,νj provided

that νj can access (Nk,Xk). Once fW 0
k,Pi,γ+,νj , νj ∈

[1, p], are obtained, a consensus computation is required
(Fig. 1), so that each formation agrees on a single
value, 1p

Pp
j=1

fW 0
k,Pi,γ+,νj (Nk,Xk, Uk, Vk), which repre-

sents the multiformation approximation of the expected
cost-to-go function. Such consensus can be obtained
by sharing fW 0

k,Pi,γ,νj through the UCV formations
communication links. When the number of formations
is large, the average in (5) can be computed, e.g., with
a consensus algorithm for multiagent networked systems
[4]. Once the agreement is reached, each formation can
compute from (5) the policy μk,Pi = [U

1
k , ..., U

p
k ], which

means that each formation v knows the policy, Uv
0

k ,
applied to any other formation v0 ∈ B\v.
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Fig. 1. Computing task scheduling over the set of formations.
As suggested in Fig. 1, intermittent losses of data, due

to RMM-Net communications breakdowns, will impede
sharing Nν

k , ν ∈ B, and fW 0
k,Pi,γ+,νj (Nk,Xk, Uk, Vk),

among the formations, at tk+δ and tk+δ0 , respectively.
Consequently, the rollout policy will be computed from
an erroneous team health state, and performance will
suffer. Note that cc,k in fW 0 , which represents the position
of the formations at tk, is known from each formation
at tk since Xk = U1,k−1 is computed by each formation.
The timely knowledge of Nν

k is critical since destruction
of UCVs can occur at anytime over [tk, tk+1), and has
to be known by each formation at tk+δ. We propose in
the sequel to exploit the ability of the SVs to detect and
classify ground units to estimate Nν

k , for all ν ∈ B.
This task is carried out by designing an additional
RBF, denoted as the Nk-information state RBF. For
this purpose, consider the following assumption.
Assumption 2 (Available information to SIM-Net) Con-
sider any tk. SVs are assumed to access Nk−1 and
Vk−1 prior to an RMM-Net breakdown occurring over
[tk, tk+1]. Uk−1 is also available to SVs from the mea-
surements; i.e., SVs can determine the number of healthy
vehicles of the formations at tk using a graph modeling
the authorized discrete-time trajectories to be followed
by the formations [5].

IV. SIM-Net-Based Estimation of Nk

The actual GULC is estimated by means of the GULC-
information state RBF. A second RBF, labeled as Nk-
information state RBF, yields the Nk-information that
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is sent to each formation connected through RMM-Net
(Fig. 2). The Nk-information state RBF depends on the
GULC-information state estimate at tk, and on the last
available “true” GULC, assumed to be Nk−1 (Fig. 2). A
preliminary step to obtain the GULC-information state
estimate consists of solving a multisensor-multitarget
allocation problem. The approach presented in the sequel
aims at shaping the posterior distribution to minimize
the estimate error.

A. GULC-Information State Estimate

The measurement model in (1) allows one to express
the likelihood P (zk | Sγ,k) as follows

P (zk | Sγ,k) =
Y

V eh∈{B,O}

Y
(i,j)∈NV eh

p(zV ehij,k | sγ,ij). (6)

Assuming that sensor likelihoods are statistically in-
dependent,the posterior probability, at tk, of a GULC,
Sγ,k, given observation zk is obtained from the RBF

P (Sγ,k | zk) = P (zk | Sγ,k)P (Sγ,k | zk−1)Pγ0
g=1 P (zk | Sg,k)P (Sg,k | zk−1)

, (7)

where the prior probability at t1 is set to P (Sγ,1), as
stated in Assumption 1. The conditioned distribution
P (Sγ,k | zk) obtained for all γ ∈ [1, γ0] constitutes the
information state from which the MAP estimate in (4) is
obtained. A possible drawback with the above formula-
tion comes from the fact that the likelihood is a function
of measurements obtained from sensors onboard every
V eh ∈ {B,O} about every possible target and decoy
that lies within the sensing set NV eh. To solve this sensor
allocation problem, define the sensory vector as follows.
Denote εk, for all tk, as the list (εB,k, εO,k), where εB,k =
(εν1,k, ..., ενp,k), ενi,k = (ενi,1,k, ..., ενi,σνi ,k), ενi,.,k ∈
Nνi,k, and σνi,k = card(Nνi,k) for all i ∈ [1, p]. εo,k,
εoi,k, and σoi,k are defined similarly. Associate to εk the
sensory vector Σk ∈ {0, 1}nk , where nk =

Pp
i=1 σνi,k +Pp0

i=1 σoi,k. The ith entry of Σk is 1 whenever the ith
entry of εk is retained in the computation of P (zk | Sγ,k).
The entry is 0 otherwise. The content of Σk indicates
which sensor is used to compute

P (zk | Sγ,k) =
nkY
uk=1

pΣk(uk)(zuk | sγ,ij), (8)

where Σk(uk) stands for the ukth entry of Σk. zuk
corresponds to zV ehij,k where (i, j) ∈ NV eh,k and V eh
represents the vehicle, SV or UCV, that is associated to
the ukth entry of εk. Σk(uk) is determined by minimizing
a measure of the degree of error of bSγ,k, which is accom-
plished by minimizing the Kullback-Leibler divergence

[6]

I(zk,Σk) =
Pγ0

g=1 P (Sg,k|zk) log P (Sg,k|zk)
P (Sg,k|zk−1)

=
Pγ0

g=1

P (zk|Sg,k)P (Sg,k|zk−1) log P(zk|Sg,k)
P(zk|zk−1)

γ0X
g=1

P (zk|Sg,k)P (Sg,k|zk−1)| {z }
P(zk|zk−1)

,
(9)

where P (zk|zk−1) depends on Σk through P (zk | Sγ,k)
given in (8). As zk is not known ahead of time, the
worst-case maximizer of (9) is selected as

Σ∗k = arg max
Σk

min
zk
I(zk,Σk). (10)

B. Nk-Information State Estimate

Assume that RMM-Net is down over [tk, tk+δ], thus
necessitating an estimate of Nk. This task is carried
out by SIM-Net, which observes the formations, updates
the RBF, and sends a distribution about Nk to the
formations, by virtue of Assumptions 1 and 2. For
the SVs, the measurement model used to estimate the
number of healthy UCVs that are within a formation νi
at tk+δ is defined similarly to the process in (1). The only
characterization of νi available at tk+δ is N

νi
k−1, which

is assumed known. Here, one aims to estimate Nνi
k . At

tk+δ, N
νi
k ∈ {0, 1, 2, ..., Nνi

k−1} and the measurement ζsvk ,
by sv ∈ O of νi ∈ B engaged along (i, j) belongs to
{Nνi

k , nd}. The measurement model of νi is thus
p(ζνik | Nνi

k )

=

½
psvd (δij,k)L(ζ

νi
k | Nνi

k ) if ζνik 6= nd,
1− psvd (δij,k) if ζνik = nd,

L(ζνik | Nνi
k ) =

(
psvc (δij,k) if ζνik = Nνi

k ,
1−psvc (δij,k)

N
νi
k−1

if ζνik 6= Nνi
k .

(11)

where psvd and psvc denote the probability of detection
and classification of νi by sv. By classification, it is
meant the process by which a value is assigned to the
observation variable ζνik given the actual state of νi being
Nνi
k . δij,k is the distance that separates νi, engaged along

(i, j), from sv. The following notation is adopted in the
sequel: ζk = {ζ1k , ..., ζνpk }, ζ1,k = {ζ1, ..., ζk}. Following a
Bayesian approach similar to that of the last subsection,
the probability that the state Nj,k, at tj ∈ [tk, tk+δ), be
equal to eNj,k ∈ Πpi=1{0, 1, 2, ..., Nνi

k−1} given ζ1,j , which
have been collected over [tk, tj ], is given by

P ( eNj,k|ζ1,j) =
P (ζj | eNj,k)P ( eNj,k|ζ1,j−1)P

Nj,k∈Π
p
i=1

{0,1,2,...,Nνi
k−1}

P (ζj |)P (Nj,k|ζ1,j−1) ,
(12)

where the joint likelihood is expressed as P (ζj | eNj,k) =
Πpi=1p(ζ

νi
j | Nνi

j,k). The recursion in (12) is initialized by
selecting P ( eN1,k|ζ1,1) = P ( eN1,k) from Uk−1, Nk−1, and
the worst-case value of Vk−1, which are known by virtue
of Assumption 2. From MDPs in [1] the probability that
di ≥ 0 vehicles of νi, which is part of l formations
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engaged along (i, j), be destroyed can be expressed
as a probability function Pνi(di, l, γ, Uk−1, Vk−1), with
γ ∈ [1, γ0]. Summing with respect to γ yields from (7),
the marginal distribution

Pνi(di, l, Uk−1, Vk−1 | zk) =P
γ∈[1,γ0] P (Sγ,k | zk)Pνi(di, l, γ, Uk−1, Vk−1), (13)

which is selected to initialize (12); i.e.,

P ( eN1,k) = [P ( eNν1
1,k), ..., (

eNνp
1,k)],

P ( eNνi
1,k) = Pνi(di, l, Uk−1, Vk−1 | zk),

(14)

where eNνi
1,k = Nνi

k−1 − di for di ∈ {0, 1, ..., Nνi
k−1}.

Once P ( eNj,k|ζ1,j) is obtained, the estimate bNk uti-
lized in (5) has to be selected. The MAP estimate,bNk = argmaxeNj,k∈Πpi=1{0,1,2,...,N

νi
k−1}

P ( eNj,k|ζ1,j), j > 1, is one

solution. A more advanced although still suboptimal
approach consists in considering a risk-averse stochastic
control perspective [2]. The MAP estimate is utilized
to constrain the computational load. The closed-loop
dynamics, composed of the MDPs [1], (4)-(5), and (6)-
(10) is now augmented with the RBF (12)-(13) (Fig.
2). The Nk-information state RBF is utilized whenever
RMM-Net breakdown prevents from communicating Nν

k ,
ν ∈ B. Although not directly applicable to our work,
[7] provides an interesting analysis of the number of
iterations needed so that RBF-based estimate achieves
a given confidence level.
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Fig. 2. Block diagram of proposed RBF-based rollout policy
when Nν

k cannot be communicated through RMM-Net

V. Distributed Computation of fW 0
k,Pi,γ+,νj

Intermittent communication losses may also
prevent from agreeing on a single value
1
p

Pp
j=1

fW 0
k,Pi,γ+,νj (Nk,Xk, Uk, Vk) as mentioned

in Section III. fW 0 represents the cost-to-go function,
which depends on the state of MDPs that model
B and R [1]. fW 0 is a linear combination of terms
mpI(N

ν
k |Nν

k−1)p
ν
i,j , where p

ν
i,j (Fig. 3) is the transition

probability from Nν
k to N

ν
k+1 of the formation engaged

along (i, j). pνi,j depends on U
ν
k and Vij,k.

First note that each ν ∈ B utilizes the same weighted
graph such as that shown in Fig. 3. Then to avoid
discrepancy about fW 0 , which is computed by the leader
of each formation ν, an algorithm should be implemented

in each ν such that the set of probabilities {pνi,j , ν ∈ B},
yields at tk and at a given iteration of the Monte-
Carlo simulation the same state transition, Nk → Nk+1,
regardless of the formation that computes this transition.
We propose that such an algorithm be composed of a

uniform pseudorandom number generator (PRNG), such
as the Mersenne twister [8], combined with the inverse
transform sampling. The internal state so of PRNG must
be the same in every ν ∈ B so that each formation
provides by computation the same state transition,Nk →
Nk+1. Suppose, e.g., that, at tk and at the ith iteration of
the Monte-Carlo simulation, PRNG(so) provides in each
formation the following pseudorandom number sk[i] ∈
[0, 1]. Then, sk[i] is compared to values that {pνi,j , ν ∈ B}
can adopt. Assume, e.g., that P (Nν

k+1 = Nν
k ) = pν0,i,j ,

P (Nν
k+1 = Nν

k − 1) = pν1,i,j , ..., P (N
ν
k+1 = Nν

k − dν) =
pνdν ,i,j . Then, every formation computes from sk[i] the
state Nk+1 = {N1

k+1, ...,N
ν
k+1, ..., N

p
k+1} such that

Nν
k+1 =

⎧⎪⎪⎨⎪⎪⎩
Nν
k if sk[i] ∈ [0, pν0,i,j),

Nν
k − 1 if sk[i] ∈ [pν0,i,j , pν0,i,j + pν1,i,j),

...
Nν
k − dν if sk[i] ∈ [1− pνdν ,i,j , 1].
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Fig. 3 Possible routes for formations ν1,ν2, and ν3 from
nodes (7,13,19) to 22. The weights found on the edges are
conditional probabilities of MDPs.

VI. Numerical Examples

The information-state-estimator-based RMM strategy
is applied to a group of three formations, which has
to reach three targets sequentially in an adversarial
environment. Each formation comprises three UCVs.
The number of munitions per vehicle is 3 at onset of
mission. It is assumed that up to three vehicles can be
destroyed by a single ground unit, when in proximity.
Numerical values for the MDPs are given in [5]. The
theater (Fig. 4) is characterized by six uncertain ground
unit classifications and location; i.e., there are three
possibilities for each uncertainty: decoy, true ground
unit or no ground unit. The closed-loop dynamics (Fig.
2) is therefore excited by an initial GULC estimation
error since the computation of the base policy relies
on a worst-case scenario, where a ground unit replaces
each uncertainty in the imperfectly known GULC. The
communication breakdowns occur within [t3, t3+δ), when
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B moves from the base to the first target.
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Fig. 4. Blue team evolution over the battlefield. Case of
imperfect information (uncertainties).
Peformances are evaluated by carrying out 500 simu-

lation runs. Five policies are tested. The lookup-table-
based policy, denoted as PI [5], is applied to the ideal
case of a perfectly known, time-invariant environment
with RMM-Net exempt of communications breakdowns.
The closed-loop rollout policy proposed in [1], denoted as
PII, is implemented under the conditions of incomplete
and partially known information on the GULC and
breakdown-free RMM-Net communications. PIV corre-
sponds to PII augmented with an estimator of Nk,
which takes the last available data as the estimate;
i.e., bNk = Nk−d if communication breakdowns last d
consecutive time intervals. The proposed dual-network
health state estimator and decision policy (4)-(5), (6)-
(10), and (12)-(13) is denoted as PIII and is simulated for
the case of incomplete and imperfect information, and
intermittent communication losses. The single-formation,
single-route policy, denoted as PV, is simulated under
imperfect information, although perfect communications.
The results are given in Table 1. The first three columns
indicate the average number (avr) of munitions and the
standard deviation (std) on the number of munitions
available at Ti. The last column gives the percent of total
simulation runs for which no vehicle of B is capable of
reaching T3.
Table 1. Simulation results

T1
avr

T2
avr

T3
avr/std

T3 not
reached

PI 17.8 12.8 9.7/4.4 1.8%
PII 17.7 11.9 8.5/4.3 4.6%
PIII 17.5 11.6 8.5/4.5 5.0%
PIV 17.5 11.4 7.5/3.9 8.5%
PV 13.6 7.7 3.8/3.9 28.4%

The number of remaining munitions at each target is
greater when the multiformations of B are given the
opportunity to divide and to aggregate (PI-PIV) as
opposed to being constrained to follow a single route
(PV). As shown in the rightmost column of Table 1, the
third target is very likely to be reached by at least one
vehicle when equipped with either PI, PII, PIII, or PIV.
PI incurs the fewest number of losses. This makes sense
as it is the optimal policy executed under ideal conditions
of operation. The realistic scenario characterized by the
combination of imperfect information about GULC and

of intermittent communication losses, incurs a slight
decrease of performance in PIII when compared to that
obtained with PII. However, closing the loop with PIII
provides superior performance than those obtained with
PIV, which handles information loss in Nk by utilizing a
d-step hold device, and with the single-formation, single-
route policy PV. Finally, Fig. 5 shows the number of
simulation runs, in percent of total number of runs, for
which the number of munitions of B available at T3 is
greater than or equal to a prescribed threshold, denoted
as tN . For a given tN , PIII allows reaching T3 with
a greater empirical frequency than that obtained with
PIV and PV, and with an empirical frequency that is
relatively close to that of PI and PII.
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Fig. 5. Number of simulations yielding at T3 a number of
remaining munitions greater than or equal to tN .
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