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Abstract— This paper suggests a method for autonomous
wheeled mobile robots navigation under the nonholonomic
constraint. The suggested method uses navigation functions that
are based on the polar kinematics equations, where the steering
angle and the orientation angle of the robot are included in an
exponential function of the line of sight angle. Another control
law is suggested for the robot’s linear velocity to drive the robot
to a desired position with a desired final orientation angle. The
exponential navigation functions depend on various navigation
parameters that allow to change the robot’s path. This approach
is combined with the collision cone technique to avoid collision.
A Q-learning algorithm is suggested to select automatically the
appropriate values of the navigation parameters. Simulation is
used to illustrate the method.

I. INTRODUCTION

Autonomous robot navigation and path planning are
among the most important topics in robotics. The topic
of navigation is widely discussed, since navigation is an
elementary task that is necessary to accomplish various other
tasks. Based on different criteria, navigation methods can
be divided into various families, such as (1) model-based
methods; (2) behavioral–based methods; and (3) sensor-
based methods. Potential field methods ([1], [2]) are among
the most discussed methods. In these methods, the robot
navigates in a field that is the sum of an attractive force
resulting from the goal and repulsive forces resulting from
the obstacles. These methods suffer from the local minima
problems, where the robot can be trapped without reaching
the goal. In many situations, the local minima problems are
inevitable when the robot moves in an unknown environment,
and cannot predict the position of the obstacles. Various
methods have been suggested to improve the classical po-
tential field method, and therefore solve the local minima
problems. In [3], the relationship between potential field–
based navigation and dynamic constraints optimization is
discussed. Numerical potential fields are discussed in [4].
Here, the potential fields are constructed numerically, rather
than analytically; this allows to reduce the computation time.
A vector–based approach to the potential field method is also
suggested in [2]. In [5], an electrostatic potential field is sug-
gested. It is proven through the classical laws of electrostatics
that the derived potential field is a global navigation function,
and that the field is free of all local minima and that all paths
necessarily lead to the goal position.

The behavioral control paradigm was introduced in [6].
In behavioral control methods, the control problem is de-

composed based on the task instead of the function. Unlike
the classical approach, behavioral modules are connected
in parallel. This provides better robustness to the system.
Various works have been suggested in this direction. One
example is given in reference [7], where a behavioral ap-
proach integrated architecture is suggested for mobile robots
navigation.

Sensor-based methods represent another important family
of navigation methods. Different types of sensors such as
sonar-sensors ([8], [9]), infra–red sensors, and vision sensors
are used. Vision sensors are of a particular interest, since
they provide a more comprehensive overview to the scene.
In vision, the perception of the environment is accomplished
through image processing. A nice survey can be found in
[10]. Note that artificial vision is also used in intelligent
transportation ([11], [12], [13]). In [14], monocular vision
is used to develop a navigation algorithm. In [15], global
vision is combined with Voronoi roadmaps. The global vision
system is mainly used for obstacles detection. In [10], an in-
tegrated inertial navigation system is suggested for unmanned
air vehicles. The algorithm is illustrated through simulation.
Vision is also used in [16] for small robot agents. Other
sensors are also used. A sensor-based method is suggested in
[17] to replace the traditional planned architectures. Another
sensor–based algorithm that uses generalized Voronoi graph
is discussed in [18]. Qualitative vision is used in [19], where
a teach–replay approach is used. An evolutionary approach
to visual sensing for vehicle navigation is discussed in [20].
The main drawback of vision-based navigation methods is
the prolonged processing time of the huge amount of data
coming from the camera.

In the last decade, machine learning has become an im-
portant research topic. An increasing number of algorithms
use different learning techniques to improve autonomous
behavior for mobile robots. Navigation, localization, and
mapping are widely considered ([21], [22], [23], [24]). The
goal of machine learning is to increase the autonomy of the
robot.

In this paper, we introduce a new method for autonomous
robot navigation. Our method is based on the kinematics
equations, where the robot navigates according to exponen-
tial navigation functions. These navigation functions depend
on navigation parameters. They are different from classical
navigation functions, which are mainly based on the potential
field idea. Kinematics–based navigation functions that are
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based on a linear formulation are discussed in previous
work ([25], [26], [27]). Linear navigation functions present
interesting properties. However, they have restrictions on the
values of the navigation parameters. Exponential navigation
functions allow to solve this problem. Q-learning is used
to plan the path of the robot by choosing the appropriate
values for the navigation parameters. This paper is organized
as follows: In section II, the model of the robot and other
definitions are introduced. In section III the control law
is introduced and discussed. In section IV, the learning
algorithm is suggested. Simulation is carried out in section
V.

II. MODELING AND POSITION OF THE PROBLEM

The workspace is attached to a reference frame of coordi-
nates, and is clustered with obstacles Bi, i = 1...N, where
N is the total number of obstacles. We refer to the simplified
model of the car-like robot depicted in figure 1. The distance
between the reference point P and the middle point of the
driving wheels is h. In this paper, the robot moves according
to the kinematics model given by

ẋp

ẏp

hθ̇

φ̇

=




cos φ cos θ
cos φ sin θ
sin φ
0


 v +




0
0
0
1


 ω (1)

where (xp, yp) denote the coordinates of point P . The
configuration of the car-like robot is given by four variables:
X = (x, y, θ, φ). The model given by (1) presents an
nonholonomic constraint. The orientation angle of the car-
like robot is denoted by θ. The steering angle is φ. The
configuration space of this system is four dimensions, i.e.,
C = R2 × S2, where S represents the unit circle. v is the
linear velocity of the driving wheels. ω is the time derivative
of the steering angle, it represents the angular velocity. The
kinematics model given by (1) is expressed in terms of the
coordinates of the reference point P . However, in our model,
we use the kinematics equations written in terms of point
Q. This is accomplished by a transformation of coordinates.
From figure 1, the relationship between the coordinates of
the reference points P and Q is given as follows:

xq = xp + h cos θ
yq = yp + h sin θ

(2)

The time derivative of (2) allows us to get the following
velocities

ẋq = v cos (θ + φ)
ẏq = v sin (θ + φ) (3)

Point G (xg, yg) is the goal of the robot. We define the line
of sight angle α as follows

tan α =
yg − yq

xg − xq
(4)

Fig. 1. An illustration of the geometry of the navigation problem

when xg 6= xq . The relative range between point Q and the
goal is given by

l =
√

(yg − yq)
2 + (xg − xq)

2 (5)

Consider the relative velocity between the robot (point Q)
and the goal (G) given by

ẋrel = ẋg − ẋq

ẏrel = ẏg − ẏq
(6)

The relative velocity can be expressed as follows

ẋrel = −v cos (θ + φ)
ẏrel = −v sin (θ + φ) (7)

Based on this model, it is easy to determine whether the
robot is approaching, or moving away from the goal. It is also
possible to obtain the relative velocity in polar form. This
task is accomplished by considering the following change of
variables x = l cos α, y = l sinα. Under these conditions,
we obtain

l̇ = −v cos (θ + φ− α)
lα̇ = −v sin (θ + φ− α)

(8)

This is a simple model that is equivalent to (7). However,
this model gives more information concerning the navigation
process, since the first equation allows to determine the range
robot—goal. A negative range rate implies that the robot is
approaching from the goal. The second equation allows to
determine the rate of turn of the robot with respect to the
goal.

III. CONTROL LAW

Our control law is based on exponential navigation func-
tions with deviation terms. As we mentioned previously, our
navigation laws are based on the kinematics equations, and
thus, they are different from classical navigation laws, which
are based mainly on the potential field method. Under our
control law, the relationship between the orientation angle,
the steering angle, and the line of sight angle is given by

θ + φ = α + A exp
( α

A

)
+ cf + ci exp (−bt) (9)
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where A is a real number called the navigation parameter,
ci, cf and b are also navigation parameters satisfying certain
conditions. The term ci exp (−bt) is a heading regulation
term that goes to zero with time. It will be proven that under
this control law, the robot will reach the goal successfully. By
taking the derivative in (9) we obtain the following equation

θ̇ + φ̇ = α̇
(
1 + exp

( α

A

))
− bci exp (−bt) (10)

which is equivalent to

θ̇ + ω = α̇
(
1 + exp

( α

A

))
− bci exp (−bt) (11)

By replacing θ by its value, we obtain

v
sin φ

h
+ φ̇ = α̇

(
1 + exp

( α

A

))
− bci exp (−bt) (12)

Clearly, the implementation of the control law requires the
knowledge of the line of sight angle and its rate. The
expression of α under our control law is given by

lα̇ = −v sin
(
A exp

( α

A

)
+ cf + ci exp (−bt)

)
(13)

A second law is derived for the robot’s linear velocity. In
this case, we put

v = kl (14)

where k is a positive real number. The robot slows down near
the goal and stops when it reaches the goal. The following
result concerns the navigation under our control law.

Proposition 1: Under the control laws given by 9 and 14,
the robot reaches its goal from any initial position.

Proof: After the heading regulation phase, the range
rate equation under our control law is given by

l̇ = −lk cos
(
A exp

( α

A

)
+ cf

)
(15)

The equation for the line of sight rate is given by

α̇ = −k sin
(
A exp

( α

A

)
+ cf

)
(16)

The equilibrium position for the dynamical system given by
equations (15, 16) is given by (leq, αeq) =

(
0, A ln

(− cf

A

))
.

Clearly, A and cf have opposite signs and cf 6= 0. By taking
the Jacobian of the system, we obtain

J =
[ −k cos (Af + cf ) klf sin (Af + cf )

0 −kf cos (Af + cf )

]
(17)

with
f = exp

( α

A

)
(18)

The Jacobian matrix at the equilibrium position is given by

J =
[ −k 0

0 −k

]
(19)

Both the eigenvalues are real and negative, which implies
that the equilibrium positions are asymptotically stable, thus
α → αeq and l → 0.

The navigation law given by (9), depends on various
parameters. The main advantage of this method is the
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Fig. 2. An illustration of the right and left detours

possibility to obtain different paths for different navigation
parameters, and also change the path on-line by changing the
values of the navigation parameters. For collision avoidance,
a simple collision cone is used, where the aim is to keep
θ + φ outside the collision cone. In fact when an obstacle
is within a given distance from the robot, the robot deviates
towards an intermediary goal by changing the value of the
navigation parameters.

The path of the robot in the (l, α) plane (polar coordinates)
is given by

dl

l
=

dα

tan
(
A exp

(
α
A

)
+ cf

) (20)

which gives

ln l − ln l0 =
dα

tan
(
A exp

(
α
A

)
+ cf

) (21)

where l0 is the initial range. Clearly, the robot’s path does
not depend on the linear velocity.

A. Left and right deviations

Exponential navigation functions offer a very important
flexibility for robot navigation. One possibility is the left
and right detour around an obstacle. By simply changing the
value of A and the other navigation parameters, the robot can
deviate to the left or the right. This is illustrated in figure
2, where for A = −5, cf = 2.75, ci = 1.52, the robot turns
right, and for A = 5, cf = −4, ci = 1.85, the robot turns
left.

B. Turning under the nonholonomic constraint

The heading regulation phase allows to take the nonholo-
nomic constraint into account. The radius of curvature can be
fixed by using the parameter ci and b. Long turns correspond
to smaller values of b, and short turns correspond to larger
values of b. Figure 3 shows the robot turning at different
turning radii.
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Fig. 3. Different paths for different navigation parameters

(1) A=5, cf= -4, ci= -1.85

(2) A=5, cf= -4.5, ci= -1.35

(3) A=5, cf = -5, ci= -0.85

0 10 20

0

10

20

y

x

(1)

(2)

(3)

(1) A=5, cf= -4, ci= -1.85

(2) A=5, cf= -4.5, ci= -1.35

(3) A=5, cf = -5, ci= -0.85

0 10 20

0

10

20

y

x

(1)

(2)

(3)

Fig. 4. Robot reaching its final destination using different values of ci and
cf ; A = 5

C. Final value for the robots steering and orientation angles

As we have seen previously, the final value for the line of
sight angle is given by

αf = A ln
(
−cf

A

)
(22)

Thus the final value of the line of sight angle depends on A
and cf . A and cf always have opposite signs. From equation
(9), we can write

βf = θf + φf = A ln
(
−cf

A

)
(23)

Thus, the final value for βf can be fixed by the choice of
A and cf . In general A is chosen to avoid collision; and
therefore, cf is chosen to fix the final value of βf . In this
case the formula for cf is given by

cf = −A exp
(

βf

A

)
(24)

An example is shown in figure 4, where the final value of
βf is π/2.
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Fig. 5. Robot reaching its final position (20,20,βf = π/2) from different
initial positions using different navigation parameters

IV. Q-LEARNING OF NAVIGATION FUNCTIONS

Initially, the robot navigates using the control law given by
equation (9). The Q–learning algorithm is used for learning
navigation functions by choosing the appropriate values for
the navigation parameters that allow to avoid obstacles. In
Q-learning, the values of state-action pairs are defined and
estimated on-line. Let Q (s, a) be the expected discounted
reinforcement of taking action a in the state s. The general
algorithm works as follows

1) Q (s, a) is initialized arbitrarily
2) repeat:
3) Initialize s
4) Repeat for each step:
5) Choose a from s using policy derived from Q
6) Take action a, observe r and s′

7) Q (s, a) ← Q (s, a) +
µ [r + γ maxa′ Q (s′, a′)−Q (s, a)]

8) s ← s′

9) until s is terminal

The state consists of the robot’s position with respect to the
nearby obstacles. The algorithm learns a value function that
maps states to action. The reward function is determined by
the robot’s orientation angle and the position of the obstacles.
With reference to figures 6 and 7, we define four states based
on which the reward function is derived:
A

θ + φ ∈ [α0 − ε1, α0 + ε1] (25)

B
θ + φ ∈ [α0 − ε1 − ε2, α0 − ε1]
θ + φ ∈ [α0 + ε1, α0 + ε1 + ε2]

(26)

C

θ + φ ∈ [α0 − ε1 − ε2 − ε3, α0 − ε1 − ε2]
θ + φ ∈ [α0 + ε1 + ε2, α0 + ε1 + ε2 + ε3]

(27)

D
θ + φ ∈ [0, α0 − ε1 − ε2 − ε3]
θ + φ ∈ [α0 + ε1 + ε2 + ε3, 2π] (28)
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Fig. 6. Zone partition around the obstacle

In the presence of more than one obstacle near the robot,
the same approach is used for each robot. A simple collision
cone test allows to detect the state of the robot. Clearly, state
A corresponds to collision. The initial reward matrix is given
by

r =

state\action A B C D
A
B
C
D




−1000 50 NA NA
−1000 25 −100 NA
NA 20 15 −100
NA NA 10 5




(29)
The negative numbers in the matrix indicate negative re-
wards, i.e., punishment. The robot learns through many
episodes, and the Q-matrix converges to the following matrix

Q =

state\action A B C D
A
B
C
D




−880 150 NA NA
−880 125 −100 NA
NA 120 111 −15
NA NA 106 90




(30)
Let AA, AB , AC and AD be the values of the navigation pa-
rameter corresponding to states A,B, C, and D, respectively.
The values of the navigation parameters change as follows:
AD → AC → AB , and AA → AB . When A reaches AB ,
the robot continues using the same value until it passes the
obstacle. The process is repeated whenever the robot is in a
collision course with the obstacle.

V. SIMULATION

Simulation of the previous algorithms is suggested in this
section. The working space has four obstacles as shown in
figure 8 . The robot starts from the origin and aims to reach
point (50, 50). Figure 8 shows the different paths. Deviation
from obstacles in path 1 and path 2 is accomplished by
changing the value of A. In path 3, the value of A is kept
constant, and deviation from the obstacles is accomplished
by changing the value of cf and ci. The dots in figure 8 show
the different segments of the path where the robot changes
its navigation parameters. The values of the navigation
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B C

C
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Obstacle

A

B

B C

C

D

Fig. 7. Zones around an obstacle

TABLE I
PATH 1 (4 SEGMENTS)

seg. 1 seg. 2 seg. 3 seg. 4
A -2 2 3 -1
cf 1 -2 -2 1.0114
ci 0.35 -1.35 -1.0119 1

parameters for each path and each segment are shown in
tables I and II.

VI. CONCLUSION

In this paper, we presented a method for robot navigation
under the nonholonomic constraint; our method is based on
exponential navigation functions that are derived based on
the kinematics of the robot. The method depends on various
parameters. These parameters can be changed in real time to
adjust the path of the robot and avoid possible collisions. The
method allows reaching a desired final position with a desired
orientation angle from any initial position. The turning rate is
taken into account. A Q–learning algorithm is used in order
to learn the navigation parameters. The method is illustrated
via a simulation example.

TABLE II
PATH 2 (4 SEGMENTS)

seg. 1 seg. 2 seg. 3 seg. 4
A -2 -3 3 -1
cf 1 0.96 -3 0.36
ci 0.35 1 -2.45 1

TABLE III
PATH 3 (5 SEGMENTS)

seg. 1 seg. 2 seg. 3 seg. 4 seg. 5
A -1 -1 -1 -1 -1
cf 0 2 1 -0.25 1
ci 0 -2 0.72 1.25 -1.25
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Fig. 8. Navigation in the presence of obstacles
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