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Abstract— Input and state estimation of a dynamic system
can find many applications in fault detection and diagnosis,
target tracking, and so on. This paper presents a new simultane-
ous input and state estimation scheme. A recursive algorithm is
developed based on the idea of achieving minimum mean square
error and minimum error variance. The convergence property
of the proposed algorithm is also analyzed. Numerical examples
are provided to illustrate the effectiveness of the algorithm.

I. INTRODUCTION

The problem of simultaneous input and state estimation for

dynamic systems has wide applications in fault detection and

diagnosis [1], maneuvering target tracking [2], geophysics

and environmentology [3], in which cases inputs are often

unmeasurable or inaccessible. It is also potentially useful

in networked control systems with unknown input package

delays and even losses [4]. Due to its practical applications,

simultaneous input and state estimation has received much

attention during the past several decades.

For different applications, related research in the existing

literature can be mainly classified into three types:

• State estimation subject to unknown inputs: Kitanidis

develops an unbiased minimum-variance linear state

filter that has the state estimation independently with the

unknown inputs [5]. Darouacha et. al. extend Kitanidis’s

design by giving a more general filter structure and the

convergence conditions for the time-invariant case [6].

Further, in [7], Darouacha et. al. consider the same

problem for a system with direct feedthrough, and

present an optimal filter design as well as stability

conditions. Without much optimization involved, matrix

calculations are also popular in state observer design

with unknown inputs, see [8], [9], [10]. Sliding mode

observer is another promising way to estimate states of

a system subject to unknown inputs. In [11], it is proven

that the proposed sliding mode observer can converge

asymptotically or in finite time.

• Unknown input estimation: In many cases, it is prac-

tically demanding to determine the unknown inputs of

a dynamic system, e.g., in fault detection and diagnosis.

In literature there exist numerous works on this topic,

see [12]–[15] and the references therein.

• Simultaneous input and state estimation: It is worth

noting that state and input estimations are inherently
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interconnected and coupled. In [16], a two-stage Kalman

filter and an input filtering technique are combined to

achieve joint estimation. Gillijns and Moor propose a

set of multi-step recursive filters to jointly estimate

inputs and states by minimizing the error variance

for discrete-time linear systems without and with the

direct feedthrough [17] [18], respectively. However,

convergence analysis of the proposed algorithms is not

discussed in [17] [18].

The goal of this paper is to present an estimator design

to simultaneously predict the input and state variables for an

LTI system. An algorithm for input and state co-estimation

for linear discrete-time systems is developed. The estimation

algorithm is unbiased and minimizes both mean square

errors and error variances. Comparing the approach given

in [18] for the similar problem, the approach in this paper

is completely different and gives a more straightforward

solution.

The rest of the paper is organized as follows. In Section II,

we briefly formulate the problem of interest. Section III

presents the algorithm, providing the proof of optimality and

some insights into convergence properties. Section IV gives

illustrative examples to demonstrate the effectiveness of the

proposed algorithm. Finally, some concluding remarks are

offered in Section V.

II. PROBLEM FORMULATION

The problem setting is shown in Fig. 1. Consider the linear

time-invariant dynamic system

{
xk+1 = Axk +Buk +wk,

yk = Cxk +Duk + vk,
(1)

where xk ∈ R
n denotes the system state at time instant k,

uk ∈ R
m is the unknown input and yk ∈ R

p is the measure-

ment. The transition matrices, A, B, C and D, are assumed

observable and have compatible dimensions. The process

noise wk and measurement noise vk are mutually uncorrelated

zero-mean white noises with known covariances, i.e.,

E{wkwT
l } = Rwδk−l , E{vkvT

l } = Rvδk−l , E{wkvT
l } = 0,

where δ k is the Kronecker delta function.

This paper is to build recursive input and state estimators

for the system in (1). The estimators are expected to be

convergent and as optimal as possible. Here the optimality is

defined in the sense of both MMSE and MV. According to

the theory of input and state observer design for deterministic

linear systems [23], we assume that the input and state
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Fig. 1. Blockdiagram for simultaneous input and state estimation.

estimators have the following form

ûk = Hk (yk −Cx̂k) , (2)

x̂k+1 = Ax̂k +Bûk +Lk (yk −Cx̂k −Dûk) , (3)

where x̂k represents the state estimate and ûk the input

estimate. Hk and Lk are estimators’ gain matrices that are

needed to be defined later. The mean square errors of input

and state estimation are defined, respectively, as

Ju
k = E

{
ũT

k ũk

}
, (4)

Jx
k+1 = E

{
x̃T

k+1x̃k+1

}
, (5)

where ũk and x̃k+1 are estimation errors:

ũk = uk − ûk, x̃k+1 = xk+1 − x̂k+1.

We also define some estimation covariance matrices

Pu
k = E{ũkũT

k }, (6)

Pux
k = E{ũkx̃T

k }, (7)

Px
k+1 = E{x̃k+1x̃T

k+1}, (8)

where Pu
k and Px

k+1 are symmetric and positive definite.

Centered around developing the algorithm for simultane-

ous input and state estimation with MMSE and MV, this

paper focuses on three tasks:

1. Design the optimal input estimator given in (3) by

determining Hk that simultaneously minimizes Jx
k+1

and Px
k+1.

2. Design the optimal state estimator given in (2) by

determining Lk that simultaneously minimizes state

estimation error and variance, i.e., Ju
k and Pu

k ;

3. Analyze the convergence properties of the proposed

algorithm.

III. MAIN RESULTS

This section begins with some preliminary lemmas, fol-

lowed immediately by development of the state and input

estimators. An algorithm will then be presented and its

convergence will be analyzed.

A. Preliminaries

Some facts about matrix traces will be used in this section

and stated as follows.

Lemma 1: [22] For matrices X ∈ R
q×l and Y ∈ R

l×q, we

have

tr(XY ) = tr(Y X),
∂ tr(XY )

∂X
= Y T

,

∂ tr(Y XT )

∂X
= Y,

∂ tr(XY XT )

∂X
= X(Y T +Y ),

where tr represents the trace of a matrix.

The following property of nonnegative definite matrices

will also be used.

Lemma 2: If matrix X ∈ R
q×q is nonnegative definite, for

any matrix Y ∈ R
l×q , Y XY T is also nonnegative definite,

namely, Y XY T ≥ 0.

We are looking for an input and state estimation scheme

that minimizes both mean square error and error variance. A

necessary condition is that the estimates are unbiased.

Lemma 3: For the considered system (1), in order for the

state and input estimators in (2) and (3) to be unbiased,

D must be of full column rank, and the following initial

condition must be satisfied:

E(x̂0) = E(x0). (9)

Proof: Substituting equations in (1) to (2) and (3), we

obtain

ũk = −Hk (Cx̃k + vk)+(I −HkD)uk, (10)

x̃k+1 = (A−LkC) x̃k +(B−LkD) ũk −Lkvk +wk, (11)

where I is the identity matrix. Recursively using the above

dynamics until k = 0, it is then straightforward to obtain that

the estimates are unbiased, that is, E(ũk) = 0 and E(x̃k) =
0, when both (9) and the following input unbiasedness

constraint is satisfied

HkD = I, (12)

where Hk ∈ R
m×p and I ∈ R

m×m. Only when D has a full

column rank, there exists an Hk such that (12) holds. Proof

of Lemma 3 is complete.

With (12) satisfied, (10) becomes

ũk = −Hk (Cx̃k + vk) . (13)

B. Input Estimation

The optimal Hk – H∗
k – can be found by solving the

following constrained simultaneous optimization problem on

Ju
k and Pu

k :

minHk
{Ju

k ,Pu
k } ,

s.t. HkD = I.

Theorem 1 in the following presents a solution that mini-

mizes Ju
k subject to (12). Theorem 2 further shows that, with

the proposed solution H∗
k , Pu

k will be minimized as well.

Theorem 1: Assume that input estimation is unbiased.

Then if Hk is designed as

H∗
k =

(
DTQ−1

k D
)−1

DTQ−1
k , (14)

where Qk = CPx
k CT + Rv, the mean square error Ju

k is mini-

mized.

Proof: Using (13), Ju
k can be expanded as

Ju
k = E

{
(Cx̃k + vk)

T
HT

k Hk (Cx̃k + vk)
}

= E
{

x̃T
kC

THT
k HkCx̃k

}
+E

{
vT

kHT
kHkvk

}

= tr
{

HkCPx
k CTHT

k

}
+ tr

{
HkRvHT

k

}

= tr
{

HkQkHT
k

}
.
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The Lagrange multipliers with an equality constraint can be

applied here. Let λ be a matrix of appropriate dimensions,

and rewrite the expression of Ju
k equivalently as

Ju
k = tr

{
HkQkHT

k +λ (I −HkD)
}

. (15)

Since Ju
k is wanted to be minimal, we equate its partial

derivative with respect to (w.r.t.) Hk to 0. Then from Lemma

1 it follows that

∂Ju
k

∂Hk

= 2HkQk −λ TDT = 0. (16)

Combining (16) with (12), we can easily get the final solution

Hk =
(
DTQ−1

k D
)−1

DTQ−1
k . (17)

This proves Theorem 1.

Let us consider the input estimation covariance, Pu
k . From

the definition of Pu
k and (13), it follows that

Pu
k = HkQkHT

k . (18)

The next theorem indicates that Pu
k has a lower bound, which

can be achieved with Hk = H∗
k .

Theorem 2: For any Hk satisfying the unbiasedness con-

straint, the following relation holds true:

Pu
k ≥

(
DTQ−1

k D
)−1

, (19)

where the equality is held if and only if Hk = H∗
k .

Proof: Using (12), (14), (18) and Lemma 2, we obtain

[Hk −H∗
k ]Qk [Hk −H∗

k ]T = HkQkHT
k −

(
DTQ−1

k D
)−1

= Pu
k −

(
DTQ−1

k D
)−1

≥ 0.

Hence (19) is proven. The two sides obviously are equal

when Hk = H∗
k . The uniqueness of H∗

k comes directly from

the fact that Qk is positive definite.

C. State Estimation

Now consider the state estimation problem. Likewise we

define L∗
k by

L∗
k = argminLk

{
Jx

k+1,P
x
k+1

}
.

The equation above indicates that L∗
k is the optimal Lk

for minimization of Jx
k+1 and Px

k+1 produced by the state

estimator in (3).

Denote M = [A B] and N = [C D] and define the following

matrices

Sk = MOkMT
,

Tk = MOkNT −BH∗
k Rv,

Uk = NOkNT +Rv −DH∗
k Rv −RvH∗T

k DT
,

where

Ok =

[
Px

k (Pux
k )T

Pux
k Pu

k

]
.

We are now ready to show the optimal state estimation design

in the following two theorems in order.

Theorem 3: If the state estimator gain Lk is designed as

L∗
k = TkU

−1
k . (20)

then the mean square error of state estimation, Jx
k+1, achieves

its minimum value.

Proof: The proof is analogous to that of Theorem 1.

From (5) and (11) it follows that

Jx
k+1 = E

{
x̃T

k [A−LkC]T[A−LkC]x̃k

}

+E
{

ũT
k [B−LkD]T[B−LkD]ũk

}

+2E
{

x̃T
k [A−LkC]T[B−LkD]ũk

}

−2E
{

ũT
k [B−LkD]TLkvk

}

+E
{

vT
k LT

k Lkvk

}
+E

{
wT

k wk

}

= tr
{
[A−LkC]Px

k [A−LkC]T
}

+tr
{
[B−LkD]Pu

k [B−LkD]T
}

+2tr
{
[B−LkD]Pux

k [A−LkC]T
}

−2tr
{

LkvkũT
k [B−LkD]T

}

+tr
{

LkRvLT
k

}
+ tr(Rw)

= tr
{

Sk −TkLT
k −LkT T

k +LkUkLT
k +Rw

}
.

We note that the partial derivative of Jx
k+1 w.r.t Lk is

∂Jx
k+1

∂Lk

= −2Tk +2LkUk.

Replacing Lk with L∗
k , the partial derivative above will be

equal to 0. This shows that L∗
k minimizes Jx

k+1 and concludes

the proof.

Theorem 4: Assume that Lk = L∗
k holds. Then the variance

of state estimation, Px
k+1, is minimized.

Proof: Using (8) and (11), we expand Px
k+1 as follows:

Px
k+1 = Sk −LkT T

k −TkLT
k +LkUkLT

k +Rw,

which can be written equivalently as

Px
k+1 = Sk−TkU

−1
k T T

k +
(
Lk −TkU

−1
k

)
Uk

(
Lk −TkU

−1
k

)T
+Rw.

Because Uk is positive definite, if setting Lk = L∗
k = TkU

−1
k ,

Px
k+1 will achieve minimum

Px
k+1 = Sk −TkU

−1
k T T

k +Rw = Sk −L∗
kT T

k +Rw. (21)

This completes the proof.

It is noteworthy that the calculation of Ok involves updat-

ing Pux
k . From its definition, we have

Pux
k = E

{
−Hk [Cx̃k + vk] x̃

T
k

}
= −HkCPx

k . (22)

Theorems 3 and 4 establish an optimal design procedure

for the state estimator. However, the proposed state estimator

has two potential problems: 1) its convergence is hard to

analyze with a complex structure; and 2) Uk may be singular

in numerical simulation. Thus we would introduce slight

modifications to Tk and Uk:

Tk = MOkNT
,

Uk = NOkNT +Rv.

With new Tk and Uk, the proofs of Theorems 3 and 4 still

proceed identically if the loose correlation between ũk and

vk is ignored.
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D. Algorithm summary

The input and state estimation scheme is summarized in

Algorithm 1.

Algorithm 1: The simultaneous input and state estima-

tion algorithm

Initialization: E(x̂0) = E(x0), Px
0 = p0I, where p0 is a

large positive value

for k = 1 to N do

Qk = CPx
k CT +Rv

H∗
k =

[
DTQkD

]−1
DTQ−1

k

ûk = H∗
k [yk −Cx̂k]

Pu
k = H∗

k QkH∗T
k ,

if k < N then
Pux

k = −H∗
k CPx

k

Ok =

[
Px

k (Pux
k )T

Pux
k Pu

k

]

Sk = [ A B ]Ok[ A B ]T

Tk = [ A B ]Ok[ C D ]T

Uk = [ C D ]Ok[ C D ]T +Rv

L∗
k = TkU

−1
k

x̂k+1 = Ax̂k +Bûk +L∗
k [yk −Cx̂k −Dûk]

Px
k+1 = Sk −L∗

kT T
k +Rw

end

end

Remark 1: We can extend conveniently Algorithm 1 to

linear time-varying discrete-time systems just by replacing

A, B, C and D with their time-varying counterparts Ak, Bk, Ck

and Dk. The proof can be done in analogy to the above. Note

that the new system matrices are required to be observable

for any k.

E. Convergence Analysis

The convergence properties of the proposed Algorithm 1

can be done by formulating a Riccati-like matrix equation

and by analyzing its solutions. It is found that the conver-

gence of both the state and input estimation depends on Px
k+1.

Therefore, convergence analysis of Algorithm 1 is reduced

to that of Px
k+1.

To analyze the convergence property of Px
k+1, we first

rewrite (21) as

Px
k+1 = MOkMT −MOkNT

(
NOkNT +Rv

)−1
NOkMT

+Rw, (23)

where Ok can be considered a generalized function of Px
k .

From (23) we can define a generalized algebraic Riccati

equation (GARE) as follows:

g(X) = MO(X)MT −MO(X)NT
(
NO(X)N′ +Rv

)−1

NO(X)MT +Rw. (24)

Here O(X) has exactly the same structure as Ok, with Px
k

replaced by X . As Px
k is positive definite, we assume that X

is also positive definite. From (24) and (23) it follows that

Px
k+1 = g(Px

k ).

Theorem 5: Consider the Riccati operator φ(K,X) =
FO(X)F ′+V , where F = M+KN, V = KRvK′+Rw. Assume

that there exits a K̃ and a P̃ > 0 such that

P̃ > φ(K̃, P̃).

Then, for any Px
0 > 0, the sequence from Px

k+1 = g(Px
k )

converges:

lim
k→∞

Pk = P,

where P satisfies

P = g(P).
Proof: The proof is omitted because of limited space,

and will be included in an extended version.

IV. NUMERICAL EXAMPLES

In this section, we illustrate Algorithm 1 through two

numerical examples.

Example 1: Consider an LTI system described by

A =

[
0.6 0

0 0.8

]
, B =

[
1

0.5

]
;

C =

[
0.3 1

0 0.5

]
, D =

[
0.4

0.3

]
,

Rw =

[
0.082 0

0 0.082

]
, Rv =

[
0.072 0

0 0.072

]
.

In this example, the input {uk} is taken as a uniformly-

distributed sequence that satisfies:

E(uk) = 0, E(u2
k) = 10, E (ukul) = 0 for k 6= l.

No information about {uk} is available. Present to us is only

{yk}, from which Algorithm 1 is applied to estimate simul-

taneously the system inputs and states. The input estimation

results are shown in Fig 2. It is seen that the input estimates

are close to the original inputs. We also make a comparison

between the state estimates and their true values in Figs. 3(a)

and 3(b), and observe that only trivial differences exist.

50 60 70 80 90 100
−6

−4

−2

0

2

4

6

k

u
k

v
s
.

û
k

 

 

uk

ûk

Fig. 2. Example 1: Comparison between the original input uk and input
estimates ûk .

On certain occasions such as in maneuvering target track-

ing, some information can be determined a priori or assumed
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s
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x2k

x̂2k
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Fig. 3. Example 1: Comparisons between the true state values and their
estimates. (a) x1k and state estimate x̂1k . (b) x2k and state estimates x̂2k .

about the input, then it is likely to help improve estimation

performance.

Example 2: We use the same system as in Example 1.

Instead of assuming the random binary-value signal as the

input, we assume that the two values, −10 and 10, are

known. It is shown in Fig 4 that the inputs and their

estimates are accurately superimposed. The state estimation

also becomes more accurate in accordance, as illustrated in

Figs. 5(a) and 5(b).

V. CONCLUSION

Simultaneous estimation of system inputs and states is

a challenge. This paper considers the problem in view of

both MMSE and MV and develops optimal estimator design

procedures. Theoretical analysis of the optimality is carried

out. Further, we propose an input and state co-estimation

algorithm and analyze its convergence. Simulation results

demonstrate the effectiveness of the proposed algorithm..
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