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Abstract— The three dimensional PPN guidance against a
high speed-nonmaneuvering target is analyzed. A necessary and
sufficient conditions for the missile to capture the target are
obtained. The result is more general than those which presented
previously. Furthermore, the capture region and criterion of
finite LOS turn rate are found and shown in three-dimensional
plots for a clear view.
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I. INTRODUCTION

Capturing ballistic targets has been a challenge for missile

guidance. It has been worked out by intensive simulation

studies that the near-head-on scenery is the best way for

a missile to capture a high speed target [1]. Therefore,

there are several works that proposed missile guidance to

achieve “head-on-attack” [2, 3]. However a question arises:

what is the capturability of PPN, one of the most general and

practical guidance law, to capture an extremely high speed

target? We are going to answer the question in this work.

In the literature, there are many remarkable works stud-

ied the PPN, such as [4–7]. Guelman gave the qualitative

analysis of PPN and Becker solved the closed-form solution

for nonmaneuvering target. In addition, Ghose extended the

analysis of Guelman to time-varying maneuvering target.

While above works analyzed the capturability of two dimen-

sional PPN, Ha and Tyan [8] worked on three dimensional

ones. Ha, et al. [6] studied the performance of 3D PPN law

against a high speed maneuvering target by introducing a

Lyapunov-like approach. The analysis is performed in a so-

called LOS plane. The result, however, is quite limited with

the assumption that the target has a speed lower than that

of the missile. The “high speed target” therein referred to a

target that has a speed greater than 1/
√

2 times the speed

of missile. Furthermore, the capturability (interceptibility)

concluded from Lyapunov-like approach is conservative;

since Lyapunov function tells about only sufficiency instead

of necessity. A more general study of 3D PPN has been

proposed by Tyan [8]. With the aid of a modified polar co-

ordinate, 3D missile guidance laws have been studied under

an unified approach. For a missile guided by PPN to capture a

target from any initial aspect, having a speed higher than that

of target is one of the sufficient conditions. Recently, several
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works used the Frenet apparatus to formulate the guidance

problem by the notion of differential geometry and proposed

geometric guidance [9, 10]. By using Frenet apparatus, the

equations describing relative dynamics of guidance problem

become simple and the closed-form solution can be obtained.

Above works, however, held the assumption that the target

has a speed smaller then that of the missile.

We are, therefore, going to analyze the capturability of

PPN against extremely high speed target by taking advantage

of Frenet frame. Both necessary and sufficient conditions are

explained by using a simple geometry; thus the result is more

general than that of a Lyapunov-like approach. Specifically,

while the target has a speed higher than that of the missile,

the navigation constant of PPN should be at least greater than

4 for the missile to capture the target with finite LOS turn

rate. Furthermore, the capture region as well as criterion of

finite LOS turn rate are sketched in three dimensional plots

for a concise view.

This paper is organized as follows. Section II reviews

the relative dynamics of PPN in 3D space via the uni-

fied approach proposed in [8]. In the presence of a LOS

fixed coordinate [11], equations demanded to implement 3D

PPN law are derived. Having materials in hand, section

III studies the capturability of PPN law against a high

speed-nonmaneuvering target. The analysis is concluded as a

necessary and sufficient condition of the capture region given

in the main theorem. In addition, the capture region and the

criterion of finite LOS turn rate are also revealed therein.

II. PRELIMINARIES
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Fig. 1. LOS Fixed Coordinate

The relative dynamics of guidance problem can be ex-

pressed in a line-of-sight (LOS) fixed coordinate [11] as
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shown in Fig. 1. Assuming that missile and target are

particles in the space, LOS vector can be defined as

r , rT − rM , ρer, (1)

where vectors rT and rM are position vectors of target and

missile, respectively, in the reference frame. Range between

target and missile is denoted by ρ, and er is the unit vector

in the direction of LOS. Relative velocity and acceleration

can be represented as

ṙ = ρ̇er + ρėr = vT − vM , (2)

r̈ = ρ̈er + 2ρ̇ėr + ρër = aT − aM , (3)

where vT , aT , vM and aM are velocity and acceleration

vectors of target and missile, respectively. Assuming that the

angular velocity vector of LOS, Ω, is orthogonal to LOS and

Ω = er × ėr, (4)

then a coordinate system (er, et, eΩ) can be defined, where

et ,
ėr

‖Ω‖ , eΩ ,
Ω

‖Ω‖ . (5)

By using the (er, et, eΩ) frame (Frenet frame), a set of

three scalar differential equations

d

dt
ρ̇ = ρ‖Ω‖2 + (aTr

− aMr
) , ρ̇(t0) = ρ̇0,

d

dt
ρ‖Ω‖ = −ρ̇‖Ω‖ + (aTt

− aMt
) , ρ‖Ω‖(t0) = ρ‖Ω‖0,

d

dt
ρ = ρ̇ , ρ(t0) = ρ0,

is obtained to describe the relative dynamics of guidance

problem in three dimensional space. Note that the subscript

indices of aM and aT denote representations in (er, et, eΩ)
frame. For more details of above approach, reader may refer

to [11]. To save space only brief review is mentioned.

The PPN law [8] is given as

aM = βΩ × VMevM , (6)

where β is the navigation constant, VM the speed of missile

and evM the unit velocity vector of missile. With assumption

that target has no maneuver, namely aT = 0; definition of

variables

u , ρ̇ v , ρ‖Ω‖ w ,
1

ρ
; (7)

transformation of independent variable from t to τ by dτ =
wdt; dynamic equations of PPN law are given as

du

dτ
= [v + βVM (eT

vMet)]v , u(τ0) = u0 , (8a)

dv

dτ
= [−u − βVM (eT

vMer)]v , v(τ0) = v0 , (8b)

dw

dτ
= −uw , w(τ0) = w0 , (8c)

and

d

dτ
(eT

vMer) = −(β − 1)(eT
vMet)v ,

(eT
vMer)(τ0) = (eT

vMer)0, (9a)

d

dτ
(eT

vMet) = (β − 1)(eT
vMer)v ,

(eT
vMet)(τ0) = (eT

vMet)0, (9b)

d

dτ
(eT

vMeΩ) = 0, (eT
vMeΩ)(τ0) = (eT

vMeΩ)0. (9c)

Note that u is constant when v goes to zero; since v = 0
implies du/dτ = dv/dτ = 0. Equations (9) reveals that

[

(eT
vMer)(θ)

(eT
vMet)(θ)

]

= R[(β − 1)(θ − θ0)]

[

(eT
vMer)0

(eT
vMet)0

]

, (10)

where θ is defined by dθ = vdτ , and

R[·] ,

[

cos(·) − sin(·)
sin(·) cos(·)

]

. (11)

Note that direction cosines (eT
vMer), (eT

vMet) and (eT
vMeΩ)

satisfy

(eT
vMer)

2(θ) + (eT
vMet)

2(θ) + (eT
vMeΩ)2(θ) = 1 . (12)

Together with equation (10) and the facts

u = VT (eT
vT er) − VM (eT

vMer),

v = VT (eT
vT et) − VM (eT

vMet),
(13)

where evT is unit velocity vector of target, (8a) and (8b) can

be solved to obtain
[

u(θ)
v(θ)

]

= R[−(θ − θ0)]

[

VT (eT
vT er)0

VT (eT
vT et)0

]

(14)

+ R[(β − 1)(θ − θ0)]

[

VM (eT
vMer)0

VM (eT
vMet)0

]

,

where (eT
vT er)(θ0) , (eT

vT er)0, (e
T
vT et)(θ0) , (eT

vT et)0.
Therefore, equations (10), (13) and (14) yield that

[

(eT
vT er)(θ)

(eT
vT et)(θ)

]

= R[−(θ − θ0)]

[

(eT
vT er)0

(eT
vT et)0

]

. (15)

Reader may refer to [8] for more details of above results.

These equations will be used in the analysis of next section.

III. CAPTURABILITY ANALYSIS OF PPN AGAINST HIGH

SPEED-NONMANEUVERING TARGET

Define the normalized variables

ū ,
u

VT

, v̄ ,
v

VT

, (16)

then equation (14) can be written as
[

ū(θ)
v̄(θ)

]

= R[−(θ − θ0)]

[

(eT
vT er)0

(eT
vT et)0

]

+ R[(β − 1)(θ − θ0)]

[

µ(eT
vMer)0

µ(eT
vMet)0

]

,

(17)

where

µ , VM/VT .
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Since this work concerns with high speed target; reader may

keep in mind that µ ≤ 1 in the following analysis. By

defining

x ,

√

(eT
vMer)20 + (eT

vMet)20 =
√

1 − (eT
vMeΩ)20,

y ,

√

(eT
vT er)20 + (eT

vT et)20 =
√

1 − (eT
vT eΩ)20,

(18)

and

cos(θvT0) =
(eT

vT er)0
y

, cos(θvM0) =
(eT

vMer)0
x

,

sin(θvT0) =
(eT

vT et)0
y

, sin(θvM0) =
(eT

vMet)0
x

,

(19)

ū and v̄ can be written as

ū = y cos(θvT0 − ∆θ) − µx cos(θvM0 + (β − 1)∆θ),

v̄ = y sin(θvT0 − ∆θ) − µx sin(θvM0 + (β − 1)∆θ),
(20)

where ∆θ denotes θ − θ0 for terseness. The capture region

of PPN law against a high speed-nonmaneuvering target is

defined as follows.

Definition 3.1: Capture region CRPPN of PPN law is the

set of initial conditions such that there exist a θf satisfies (21)

the following capture condition [8],

ūf , ū(θf ) < 0 , v̄f , v̄(θf ) = 0 . (21)

It is reasonable to find CRPPN with the aid of differential

geometry since differential forms of ū and v̄ are involved to

determine what direction and trajectory will be traversed by

ū and v̄ on the (ū, v̄) plane. Trajectories of ū and v̄ on (ū, v̄)
plane is realized as Cycloids as shown in figures 2 and 3 with

variations of β, θvT0 and θvM0. As we can tell from Fig. 2,

distinct β renders distinct type of cycloid while different set

of (θvT0, θvM0) renders different attitude and initial point of

the same cycloid. Note that v̄ ≥ 0 by definition while the

part v̄ < 0 is drawn to give a whole view of trajectories.

In general, there is no simple way to analyze CRPPN by

differential geometry due to the complexity comes from

variations of β, θvT0 and θvM0.

However, (ū(θ), v̄(θ)) can also be realized as the subtrac-

tion of evT and µevM (realizations on (ū, v̄) plane), whose

trajectories traverse two circles centered at the origin with

radii y and µx. Equation (20) gives these two circles

CevT
, (y cos(θvT0 − ∆θ), y sin(θvT0 − ∆θ))

CevM
, (µx cos(θvM0 + (β − 1)∆θ),

µx sin(θvM0 + (β − 1)∆θ)) .

Accordingly, going to zero of v̄ is equivalent to arriving at

the same horizontal line of evT and µevM , to achieve this,

y sin(θvT0 − ∆θ) = µx sin(θvM0 + (β − 1)∆θ) . (22)

The radii of CevT
and CevM

determine the possible region

satisfies (22) on (ū, v̄) plane. To see this, first consider a

fact that having no component in eΩ direction of aM and ṙ

implies that

(eT
vMeΩ)(θ) = (eT

vMeΩ)(θ0) , ∀θ ,

(eT
vT eΩ)(θ) − µ(eT

vMeΩ)(θ) = 0 , ∀θ .
(23)
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Fig. 2. Trajectories of (ū, v̄) with Variation of β
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Fig. 3. Trajectories of (ū, v̄) with Variation of θvT0 and θvM0

Then the relation

µ2 − 1 = µ2x2 − y2 , (24)

which indicates that y ≥ µx as µ ≤ 1, is drawn. Conse-

quently, as µ < 1, the radius of CevT
is greater than that of

CevM
. By using of simple geometry, it can be concluded that

v̄ = 0 occurs only if evT is in the possible region shown

in Fig. 4. Since ūf < 0 is required by capture condition

(21), only the left-hand part of possible region is acceptable,

which in turn implies that (eT
vT er)(θf ) , (eT

vT er)f < 0.

As ∆θ > 0 by definition, there are two cases of β under

consideration. For β > 1, evT traverses CevT
clockwise

while µevM traverses CevM
counterclockwise. To satisfy

(21) in this case, going to zero of v̄ comes before crossing

through positive v̄ axis of µevM , otherwise ūf > 0 when

v̄f = 0. For β < 1, both evT and µevM traverse the circles

clockwise. Again to satisfy (21), going to zero of v̄ comes

before crossing through positive v̄ axis of evT and µevM ,

otherwise ūf > 0 when v̄f = 0. In the later case that β < 1,
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(eT
vMer)f < 0 when v̄f = 0, which is unfeasible in reality.

Therefore, β < 1 will no longer be considered in this work.

In short, for existence of a θf such that condition (21) is

satisfied, it is necessary that

−µx < (eT
vT et)0 < µx , (eT

vT er)0 < 0 , (25)

or equivalently

π − sin−1(rPPN ) < θvT0 < π + sin−1(rPPN ) , (26)

where rPPN ,
µx
y

=
√

µ2+y2
−1

y2 . Note that for rPPN to

exist, µ and y must satisfy µ2 + y2 ≥ 1, which is equivalent

of µ ≥ |(eT
vT eΩ)0|.

Definition 3.2: Given µ and y; S1 is defined as

S1 ,

{

θvT0

∣

∣

∣
π − sin−1(rPPN ) < θvT0 < π + sin−1(rPPN )

}

.

Equations (12), (13) and (23) can be used to conclude that

ū, v̄, (eT
vT er) and (eT

vT et) satisfy

[

ū − (eT
vT er)

]2
+

[

v̄ − (eT
vT et)

]2
= µ2 − (eT

vT eΩ)20 . (27)

By introduction of

(eT
vT er)(θ) = y cos(θvT0 − ∆θ) , (28a)

(eT
vT et)(θ) = y sin(θvT0 − ∆θ) , (28b)

equation (27) can be rearranged to yield

[

ū

y
− cos(θvT0 − ∆θ)

]2

+

[

v̄

y
− sin(θvT0 − ∆θ)

]2

= r2
PPN .

(29)

Definition 3.3: Given µ and y; S2 is defined as

S2 ,

{

(ū, v̄, θvT0)
∣

∣

∣
v̄ ≥ 0 , µ2 + y2 ≥ 1 , r2

PPN =
[

ū

y
− cos(θvT0 − ∆θ)

]2

+

[

v̄

y
− sin(θvT0 − ∆θ)

]2
}

Note that y represents initial aspect in third dimension,

eΩ, instead of er and et.

Remark 3.1: If target has an extremely high speed rela-

tive to the speed of missile such that µ ∼ 0; consequently

θvT0 ∼ π and y ∼ 1 are necessary for capture, which in

turn is near head on scenario. Furthermore, the necessity

that µ ≥ |(eT
vT eΩ)0| implies that 3D PPN will degenerate to

a two dimensional one.

With definitions 3.2 and 3.3 in hand, capturability for PPN

law can be summed up as follow.

Theorem 3.1: Consider a missile commanded by PPN

law

aM = −βVMevM × Ω . (30)

To capture a high speed-nonmaneuvering target, it is neces-

sary and sufficient that

CRPPN = {(ū0, v̄0, θvT0)| S1 ∪ S2} (31)

and

β ≥
π
2
± 2kπ − θvM0

θvT0 + sin−1(rPPN ) − π
+ 1 , (32)

where the choice of k depends on θvM0.

Furthermore, with definitions

z1 , sin−1

√

(β̄ − 2)2r2
PPN − 4

β̄(β̄ − 4)
,

z2 , sin−1

√

(β̄ − 2)2r2
PPN − 4

β̄(β̄ − 4)r2
PPN

;

(33)

if β > β̄ where β̄ satisfies

θvT0 − π + z1 =
1

β̄ − 1
(z2 − θvM0) , (34)

finite LOS turn rate is retained.

Proof: The necessity is given previously. We are going

to show the sufficiency. The last θ for v̄f = 0 and ūf < 0
is given by

µx sin(θvM0 + (β − 1)(θ̄ − θ0)) = µx , (35a)

y sin(θvT0 + (θ̄ − θ0)) = µx . (35b)

Equation (35) give

θ̄ − θ0 =
π
2
± 2kπ − θvM0

β − 1
, (36a)

θ̄ − θ0 = θvT0 + sin−1(
µx

y
) − π . (36b)

Equating and rearranging of equations (36a) and (36b) yield

β =
π
2
± 2kπ − θvM0

θvT0 + sin−1(rPPN ) − π
+ 1 . (37)

Given β satisfies (37), there exists a θf < θ̄ such that v̄f = 0
and ūf < 0, as shown in Fig. 5. Because the larger β is, the

smaller θf − θ0 will be, inequality (32) is concluded.

Now finite LOS turn rate is shown with assumption that

initial conditions are in CRPPN . When v̄f = 0, equation

(29) degenerates to
[

ūf

y
− cos(θvT0 − ∆θf )

]2

+ sin2(θvT0 − ∆θf ) = r2
PPN ,

(38)
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where ∆θf = θf − θ0. After some arrangements, equation

(38) is rearranged into

ūf = y cos(θvT0 − ∆θf ) − y
√

r2
PPN − sin2(θvT0 − ∆θf ) ,

(39)

where the facts ūf < 0 and y cos(θvT0−∆θf ) < 0 have been

applied. It has been shown that −2ūf − βµ(eT
vMer)f ≤ 0

implies that ||Ω||(tf ) ≤ ||Ω||(t0) [8]; since

ρ||Ω||
−2ūf −βµ(eT

vM
er)f

−ūf = constant , for ρ||Ω|| → 0 . (40)

By using of equations (13) and (39), −2ūf − βµ(eT
vMef )f

can be written as

−2y cos(θvT0−∆θf )−(β−2)y
√

r2
PPN − sin2(θvT0 − ∆θf ) .

(41)

Suppose that β̄ satisfies (32) then there is a δ such that

y cos(θvT0 − ∆θf ) = −
√

1 − µ2 − δ , δ > 0. (42)

Thus (41) can be written as

2(
√

1 − µ2 + δ) − (β − 2)

√

δ2 + 2δ
√

1 − µ2 . (43)

For (43) to be semi-negative, it is necessary and sufficient

that

δ ≥ −
√

1 − µ2 +
(β̄ − 2)

√

1 − µ2

√

β̄(β̄ − 4)
, β̄ ≥ 4 . (44)

By introducing minimum δ into equation (42), it can be

shown that

y2 sin2(θvT0 − ∆θf ) = y2 − y2 cos2(θvT0 − ∆θf )

= y2 − (β̄ − 2)2(1 − µ2)

β̄(β̄ − 4)
.

(45)

By solving

y2 sin(θvT0 − ∆θf ) = y2 − (β̄ − 2)2(1 − µ2)

β̄(β̄ − 4)

µ2x2 sin(θvM0 + (β̄ − 1)∆θf ) = y2 − (β̄ − 2)2(1 − µ2)

β̄(β̄ − 4)

and eliminating ∆θf , it can be concluded that β̄ satisfies

equation (34). Therefore, inequality (44) is satisfied by

choosing a β > β̄, which in turn implies that (43) is semi-

negative and hence, finite LOS turn rate is retained.

0 1 2 3 4 5 6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

θ − θ0

 

 y sin(θvT0 + (θf − θ0))

µx sin(θvM0 + (β − 1)(θf − θ0))

µx

θ − θ0 = θ̄ − θ0

θ − θ0 = θf − θ0

Fig. 5. Existence of θf

Fig. 6 shows capture region of PPN with y = 0.8. As we

can tell, the larger µ is, the larger capture region will be.

Fig. 7 shows capture region of µ = 0.8 with distinct y. Fig.

8 shows level contours of β satisfy equation (37). Note that

the figure is divided by v̄0 = 0 (dashed line) into two parts

v̄0 > 0 and v̄0 < 0. Part v̄0 < 0 is unacceptable. Only the

range of θvT0 such that θvT0 ∈ S1 is drawn. It can be seen,

from this figure, large β is required when θvT0 is closed to

π − sin−1(rPPN ) and θvM0 is small, which confirms the

geometric view in Fig. ??. Fig. 9 shows admissible region

of finite LOS turn rate. It can be seen that when θvT0 is

closed to π − sin−1(rPPN ), a larger β is demanded; on the

contrary, if θvT0 is closed to π + sin−1(rPPN ), a smaller β
is enough to achieve finite LOS turn rate.

Concluding Remarks 3.1: For a missile commanded by

PPN to capture a high speed-nonmaneuvering target:

• The sufficiency is guaranteed by a β satisfies (32).

• The necessity is that the initial aspect of target on

(er, et) plane, θvT0, must be in the range of π ±
sin−1(rPPN ), and the range is limited by the speed

ratio, µ.

• To capture the high speed target with finite LOS turn

rate, the navigation constant should be at least greater

than 4.

• The admissible region for finite LOS turn rate is found

as shown in Fig. 9.

In brief, capture region of PPN is quite limited if target has

a speed higher than that of missile. And for a missile to

capture a target that has an extremely high speed relative to

that of missile; namely, µ ∼ 0, three dimensional space PPN

degenerates to a two dimensional one; since µ ≥ |(eT
vT eΩ)0|

is necessary.

−1

−0.5

0

0

0.5

1

0.8

1

1.2

 

ū0/y

y = 0.8

v̄0/y
 

θvT0

π

µ = 0.9
µ = 0.8
µ = 0.7

Fig. 6. Capture Region of PPN

IV. CONCLUSIONS

In this work, the capturability of a 3D PPN guidance

law against a high speed-nonmaneuvering target has been

worked out. A necessary and sufficient condition for capture

is concluded. In the next challenge, we are going to analyze

the capturability of PPN in the presence of aerodynamic drag.
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