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Abstract— This paper presents a method for extension of
matrix model of manufacturing system in order to provide an
efficient tool for analysis of systems with various dispatching
sequences of shared resources. Proposed method is used for
transformation of system matrices in linear max-plus model.
Once the linear model is determined sequence feasibility can
be checked. Furthermore, the method provides a straightfor-
ward procedure for production cycle calculation and resource
utilisation. Efficiency of presented technique is demonstrated
on a manufacturing system example at the end of the paper.

I. INTRODUCTION

There are many approaches to modeling, simulation and

control design for manufacturing systems (MS), including

automata [1], Petri Nets [2], alphabet-based approaches, per-

turbation methods, expert system design, and so on. In this

paper a matrix based model of flexible manufacturing system

(FMS) that is a part of a detailed design of manufacturing

systems is used [3]. This matrix framework is very conve-

nient for computer simulation, as well as for supervisory

control design [4], [5]. It is straightforward to write down

the matrix description for a specific manufacturing system,

since the matrices of the model are given by the bill of

material [6], Steward’s sequencing matrix [7], the resource

requirements matrix, assembly trees and existing dispatching

algorithms. In addition, the matrix based formulation can be

easily modified if there are changes in product requirements

or resources available, making workcell control more flexible

and reconfigurable.

In the paper the following three assumptions that define

the sort of discrete-part manufacturing systems are made:

No pre-emption - once assigned, a resource cannot be

removed from a job until it’s completed,

Mutual exclusion - a single resource can be used for only

one job at a time,

Hold while waiting - a process holds the resources already

allocated to it until it has all the resources required to perform

a job.

In addition to these assumptions, it is assumed that there

are no machine failures.

When a multitude of jobs requesting the same shared

resource are simultaneously activated, a conflict is said to

have occurred and a decision is needed as to which job

the resource should be allocated to. This type of priority

assignment in resource allocation constitutes the problem of

dispatching. In the paper this problem is solved by introduc-

ing the repeatable sequence of operations of shared resource,

called dispatching sequence, that is given and fixed during

the operating time of the manufacturing system. Performance

analysis based on matrix model is done by using simulation.

In order to provide a more efficient method for analysis

of dispatching sequence of shared resources, an extension

of the matrix model is proposed. The proposed method

transforms the matrix model in max-plus framework, and

thereby provides determination of a) feasibility of particular

sequence and b) production cycle and resource utilisation.

This paper is organised in the following way: first the

system matrices and equations in and/or algebra that fully

describe an MS are introduced. In order to be able to

investigate dynamic phenomena in an MS, time is included

into the matrix model. Then the procedure for matrix model

to max-plus model transformation is described, followed by

an example of sequence analysis based on the proposed

method.

II. DISCRETE EVENT SYSTEMS MODEL IN MATRIX FORM

Given a set of jobs and a set of resources that compose a

manufacturing system, the system activities can be presented

in the form of IF-THEN rules. Each rule corresponds to a

component of the logical state vector, denoted x. A job is

said to be activated (started) when all the preconditions (IF

part) for its execution are satisfied.

All matrix operations are defined to be in and/or algebra,

denoted ∆ and ∇, where standard multiplication is replaced

by logical and, and standard addition by logical or. Given

a natural number vector a =
[

a1 a2 . . . an

]T
, its negation

ā =
[

ā1 ā2 . . . ān

]T
is such that āi = 0 if āi > 0 and 1

otherwise.

A. System matrices

A system is fully described with the following matrices:

Fv is a job sequencing matrix: Fv(i, j) = 1 if job j

contributes to construction of the i-th component of the

logical state vector, otherwise Fv(i, j) = 0;
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Fr is a resource-requirements matrix: Fr(i, j) = 1 if

resource j contributes to construction of the i-th component

of the logical state vector, otherwise Fr(i, j) = 0;

Fu is an input matrix: Fu(i, j) = 1 if an input (raw

parts entering the system) j contributes to the construction

of the i-th component of the logical state vector, otherwise

Fu(i, j) = 0

Sv is a job-start matrix: Sv(i, j) = 1 if the j-th

component of the logical state vector is a prerequisite to

start job i, otherwise Sv(i, j) = 0.

Sr is a resource-release matrix: Sr(i, j) = 1 if the j-th

component of the logical state vector is a prerequisite to

start the release of resource i, otherwise Sr(i, j) = 0. It

should be noted that for a shared resource at least two rules

exist that release it.

Sv is an output matrix: Sv(i, j) = 1if j-th component

of the logical state vector is a prerequisite for output i.

Otherwise Sv(i, j) = 0.

B. Recursive matrix Model

Generally, the complete task plan could be given by the

system matrices Fv,Sv,Fr,Sr, defined above. Denoting the

discrete event iteration number with k, the logical state vector

is calculated each time an event takes place, i.e. a job is

completed, resource becomes idle or part enters the system:

x̄(k) = Fv∆v̄c(k−1)∇Fr∆r̄c(k−1)∇Fu∆ū(k−1), (1)

where vc is job completed vector, rc is idle resource

vector and u is input vector (representing raw parts entering

the cell).

The system vector m(k) is introduced as:

m(k) = [u(k) vc(k) rc(k) y(k)] , (2)

where y is output vector (representing parts leaving the cell).

Then, the recursive matrix model can be written in the

following form:

x̄(k) = F∆m̄(k − 1), m(0) = m0

(3)

m(k) = m(k − 1) +
[

S − FT
]

x(k)

with

S =
[

ST
u ST

v ST
r ST

y

]T
,

F =
[

FT
u FT

v FT
r FT

y

]

,

where Su = [0], Fy = [0] are null-matrices required for

keeping matrix dimensions consistent.

Hybrid matrix model (3) does not capture the system

dynamics. By tracking m(k) only logical activities of the

system are reconstructed. To make the performance analysis

of the system possible, the operational times should be

incorporated in model (3).

C. Modeling System Dynamics

To keep track of job time duration, the system dynamics is

incorporated into the matrix model in the form of a lifetime

[8], [9]. An integer number ni, called a lifetime, is associated

with each task i in an MS. A shift (delay) operator q is

introduced: y(q) = q−nx(q) corresponds to y(k) = x(k−
n), i.e. y is delayed n sampling intervals after x.

The dynamic matrix model of an MS is obtained by

including the shift operator q and operations lifetimes in

recursive matrix model (3):

x̄(q) = F∆q−1m̄(q), m(0) = m0

(4)

m(q) = q−1m(q) +
[

T(q) − FT
]

x(q)

where

T(q) =
[

ST
u TT

v (q) TT
r (q) ST

y

]T

Tv and Tr are operation and resource release delay

matrices with elements representing operations lifetimes.

Delay matrices are obtained by replacing each entry ”1”

in Sv and Sr with a shift operand representation of the

corresponding lifetime.

D. Max-Plus model

The implicit max-plus model of the system is given with:

x(k) = A0 ⊗ x(k) ⊕ A1 ⊗ x(k − 1), (5)

where x(k) denotes k-th occurrence of events included in

vector x. Symbols ⊗ and ⊕ stand for max-plus multiplication

and addition, respectively. Once matrices A0 and A1 are

know, system matrix A of an explicit max-plus model

x(k) = A⊗ x(k − 1) is obtained as A =

(

n
⊗

i=0

Ai
0

)

⊗A1.

Once the explicit system model is determined, production

cycle, resources utilisation and other system performance

properties can be easily calculated [3].

E. Deriving max-plus framework from matrix model

Determining the max-plus model of the manufacturing

system with no shared resources that is initially given in

matrix form is straightforward, i.e.

x(k) = Dv ⊗ x(k) ⊕ Dr ⊗ x(k), (6)

where Dv is obtained by multiplication FvTv where q−n

is replaced with n, and 0 with ε = −∞. Matrix Dr is

determined in the same way by multiplication FvTv .Vector

x(k) in (6) includes both implicit and explicit relations

between system events.
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III. SEQUENCING IN MATRIX FORM

Since the max-plus representation is feasible only for

decision-free discrete event systems (event graphs), for sys-

tems with shared resources, a control strategy that pro-

vides conflict-free dispatching should be determined prior

to transformation of the matrix model to max-plus. In the

matrix formulation, the closed loop system including both

the workcell and the controller has the following form:

x̄(q) = F∆q−1m̄(q)∇Fd∆ūd(q), (7)

where Fd is the dispatching matrix, and ud is the dispatching

vector. The structure and the value of dispatching vector

depend on applied dispatching policy. Generally, vector ud

is determined as a function of feedback signals comprised in

vector m.

For a particular form of Fd and ud, the sequence of

operations, executed by shared resource repeats, hence,

the manufacturing system demonstrates cyclic behaviour.

The question is how efficient is the resources utilisation

for different sequences of operations? Furthermore, is a

particular sequence, chosen by the production manager,

feasible at all?

To point out this subject more clearly let us examine

simple workcell shown in Fig.1. The cell consist of two

machines - A and B and one robot - R. Two types of parts,

a and b, are processed in two flowlines in the following

way. Both parts are brought into the cell by input conveyers.

Entering the cell, part a is picked up by the robot (operation

RP1) and transported to the machine A. When processing in

the machine A is finished, the robot removes the part from

the machine and leaves it on the output conveyer (operation

RP2). Upon arrival, part b is processed in the machine B

and then taken by the robot to its output conveyer (operation

RP3).

Fig. 1. An example of simple workcell

Evidently, the robot is a shared resource that executes

three tasks: RP1, RP2 and RP3. Let machine B operational

time be much larger than operational time of machine A.

Then, regarding resource utilisation and production cycle,

the system performances would be better when more parts

a then parts b are produced in one production cycle. When

feasibility of sequences in the given workcell is analysed,

it is apparent that sequence {RP1, RP1, RP2, RP3} is not

feasible since its execution leads the system into deadlock

caused by the overload of parts in machine A.

Although derived conclusions are obvious due to the fact

that the workcell in example comprises only three resources,

in case of complex manufacturing systems with tens of

various resources, these phenomena are observable only

through a firm mathematical framework.

Dispatching policy defined as a sequence of operations for

each shared resource. In the paper, two types of sequences

are distinguished: sequences with no repetition (where each

operation appears in a defined sequence exactly once ) and

sequences with repetition. Methods for deriving max-plus

models for these two types of sequences differ and are

described in the text that follows.

A. Sequence with no repetition

Sequence matrix Φ is defined as a binary square matrix

with element Φ(i, j) = 1 if shared resource operation

vj follows immediately after shared resource operation vi,

otherwise Φ(i, j) = 0. Matrix Φ is a square matrix whose

dimensions equal the number of operations of a shared

resource. For the system in Fig.1. and sequence {RP1, RP2,

RP3} the sequence matrix is:

Φ =





0 1 0
0 0 1
1 0 0





To obtain an implicit max-plus model in form of (5), the

sequence matrix is first split into two parts, Φ0 and Φ1, with

Φ0 describing inner part of the sequence, and Φ1 connecting

the last and the first operation of the sequence (Φ1(i, j) = 1
if i is the last and j the first operation in the sequence). For

sequence in the example one gets:

Φ0 =





0 1 0
0 0 1
0 0 0



 Φ1 =





0 0 0
0 0 0
1 0 0





Matrices A0 and A1 are obtained from system matrices

as:

A0 = Dv ⊕
[

Dr ⊙
(

Fd ·
(

Φ0 · F
T
dr

))]

(8)

A1 = Dr ⊙
(

xd · xT
dr + Fd ·

(

Φ1 · F
T
dr

)

)

,

where ⊙ denotes matrix element by element standard mul-

tiplication. Vector rsh is a shared resource vector, rsh(i) = 1
if resource i is a shared resource. In the example resource

vector r =
[

A R B
]T

and rsh =
[

0 1 0
]T

. Vector

xdr and xd are determined according to: xdr = ST
r ∆rsh and

xd = Fr∆rsh. Elements of matrix Fdr (Fd) are calculated

from xdr (xd) as:

fdr(i, j) =

{

1 if xdr = 1 and j =
∑i

k=1
xdr(k)

0 otherwise
(9)
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Matrix A0, determined according to (8), describes implicit

relations between system events, i.e. duration of all opera-

tions and resource releases in inner part of the sequence.

Matrix A1, determined according to (8), includes explicit

relations between system events, i.e. releases of non-shared

resources and release of shared resource after the last oper-

ation in the sequence.

Feasibility of predetermined sequence can be checked by

system matrix A0. In case:
(

A0 ⊕ A2
0 ⊕ . . . ⊕ An

0

)

ii
�= ε, ∀ i, (10)

the sequence is feasible. Matrix A0 represents places in event

graph with no initial marking. If there is a circle of places

with no markings in the initial state then the system will end

up in deadlock [10].

B. Sequence with repetition

To be able to use the previously given procedure for

determining the max-plus model in form of (6), the matrix

model of the system should be modified. First, each flowline

in the system is described with a separate matrix model. For

the system in Fig.1., that consists of two flowlines, one has

(matrices Sv and Sr are omitted):

1) part a production line

Fv1 =









0 0 0
1 0 0
0 1 0
0 0 1









Fr1 =









0 1
1 0
0 1
0 0









Tv1(q) =





q−n1 0 0 0
0 q−n2 0 0
0 0 q−n3 0





Tr1(q) =

[

0 0 q−r2 0
0 q−r1 0 q−r3

]

2) part b production line

Fv2 =





0 0
1 0
0 1



 Fr2 =





1 0
0 1
0 0





Tv2(q) =

[

q−n4 0 0
0 q−n5 0

]

Tr2(q) =

[

0 q−r4 0
0 0 q−r5

]

Flowline subsystems matrices Fvi,Fri,Svi,Sri,Tvi,Tri

are used to form the extended matrix model of the system.

The number of times each flowline is added in extended

matrix model equals the number of repetitions of a particular

flowline in predefined sequence. For system shown in Fig.1.

sequence with repetition is, for example, { RP1, RP2, RP1,

RP2, RP3 }. In given sequence, part a flowline appears twice

and part b flowline once, hence, part a flowline is added in

extended matrix model twice and part b flowline once.

Elements of extended matrix model matrices are deter-

mined as follows. Let Fk
v be m1 x n1 extended system matrix

obtained by adding together k flowlines, and let Fvj be

m2 x n2 flowline matrix that should be added to the extended

system matrix as (k +1)-st. Then, matrix Fk+1
v is calculated

as:

fk+1
v (i, j)=















fk
v (i, j) for i ≤ m1 and j ≤ n1

fvj(i−m1, j−n1) for m1 < i ≤ m1 + m2

and n1 < j ≤ n1 + n2

0 otherwise

(11)

The same principle is used for calculation of matrices Sv

and Tv .

Let Fk
r be m1 x n1 extended system matrix obtained by

adding together k flowlines, and let Frj be m2 x n2 flowline

matrix that should be added to the extended system matrix

as (k + 1)-st. Then, matrix Fk+1
r is calculated as:

fk+1
r (i, j)=























































fk
r (i, j) for i ≤ m1 and j ≤ n1

frj(i−m1, j−n1) for m1 < i ≤ m1 + m2

and n1 < j ≤ n1 + n2

fk
r (i, j) if l and j are

the same resource

0 otherwise

(12)

Transpose of matrices Sr and Tr can be calculated by

using (12) as well.

Once extended system matrices are determined, the pro-

cedure for deriving the max-plus model is the same as for

sequences with no repetition, having in mind that more then

one operation in extended model belongs to one operation

in the original model. The procedure for determining the

feasibility of the sequence is the same as well and given

with (10).

IV. IMPLEMENTATION RESULTS

The proposed sequence analysis method will be validated

on the system shown in Fig.2.

Fig. 2. An example of simple workcell with three flowlines
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The system contains three flowlines with two shared

resources, robot R, working on parts a and b, and machine

M5, having tasks on parts b and c. Parts visit resources

in the following order: part a : R(a1)-M1-R(a2), part b :

M2-R-M5, part c : M3-M4-M5. Three different sequences

for each shared resource have been analysed:

1) Seq. 1 robot R ⇒ {a1 , a2, a3}
machine M5 ⇒ {b, c}

2) Seq. 2 robot R ⇒ {a1, a2, a1, a2, a1, a2, b}
machine M5 ⇒ {b, c, c}

3) Seq. 3 robot R ⇒ {a1, a2, a1, a2, a1, a2, a1, a2, b}
machine M5 ⇒ {b, c, c, c}

Operations lifetimes have been the same for all three

sequences. Fig. 3. shows the number of produced parts per

system cycle for predetermined sequences. It can be seen

that machine M2 is the system bottleneck, since the shortest

flowline cycles are obtained in case of sequence 3, i.e. in

that case 5 parts a and 3 parts c have been processed while

only 1 part b left the system during one cycle.

part a part b part c
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Part type
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m
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e
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o
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p
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rt
s

Sequence a)
Sequence b)
Sequence c)

Fig. 3. Number of produced parts per system cycle for predetermined
sequences
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Fig. 4. Resource utilisation for predetermined sequences

Resource utilisation for all three sequences is shown in

Fig.4. These results clearly show improvement in work-

in-progress in case of sequence 3 since average resources

utilisation increased from 40.4 % for sequence 1 to 79.6 %

for sequence 3.

V. CONCLUSIONS

In this paper an extension of the matrix model is proposed,

in order to provide a method for analysing dispatching

sequences of shared resources. As we demonstrate, the

proposed method transforms matrix models in max-plus

framework, thus providing determination of a) feasibility of

particular sequence, and b) flowline production cycle and

resource utilisation.

Based on sequence analysis one is able to decide which

one of predetermined sequences for shared resource schedul-

ing is optimal in the sense of work-in-progress.

Results presented herein are the first step in the devel-

opment of a dispatching controller synthesis technique that

should provide mechanisms for optimal sequence determi-

nation (in the sense of resources utilisation) once structural

properties of manufacturing system are given in matrix form.
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