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By applying output feedback controller in the following 

form: 
 

                                                    2  

 
to (1), the closed loop system will be: 
 

∆ ∆
                                             

   3  

 
where 
 

,    

,    
 
and the closed loop uncertainties ∆  and ∆  are: 
 
∆  ,                ∆  
 
where 
 

0 0 ,                   0
0  

0 ,     0  

 
Lemma 1: Suppose that system (4) is asymptotically 

stable. 
 

                                                           4  

 
let  denote its transfer function. if 

0 then the following statements are equivalent: 
 

. γ 
 

.There exists 0 and  such that: 
 

0, 0, 

 
                                                                             5  

 
Lemma 2 (Bounded Real Lemma): For system (4), ∞ 

performance, with 0 is equivalent to the existence of 
0 satisfying: 

 

0                                              6  

Lemma 3 (Schur Complement): The Linear inequality: 
 

 0  

with , 0 and S is an affine function of  , 
is equivalent to: 
 

0
X 0                                          

 
Lemma 4: Let Σ,Ω,Γ be matrices with appropriate 

dimensions which Ω  is a symmetric matrix Then for every 
matrix F with , Ω Γ Σ Γ Σ 0 is 
equivalent to the Ω  ΓΓT Σ Σ 0 , if and only if  
there exist a constant 0 [6]. 
 

III. MAIN RESULTS 

A. Robust Stability via Output Feedback 
The following theorem proposes an LMI for designing 
output feedback controller satisfying robust stability. 

Theorem 1: consider the change of controller variables 
as follows [3]:  

 

 
 

                                                               7  
 

 
where  and  are invertible and should be chosen such 
that: 
 

                                                                         8  
 
For system (1), there exists an output feedback controller in 
the form of system (2) such that closed loop system (3) for 
every admissible uncertainties, satisfies robust stability, if 
the following system of LMI's is feasible. 

Find , , , , ,  and 
scalar 0 such that: 

0                                                                                 9  
and 

0 0                                             10  

where: 

 ,  

,         

The state matrices of the controller ( , ,   ) can 
be recoverd from (7). Note that  is used to show 
symmetric terms. 
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Proof: The system (3) is said to be stable for 
perturbations ∆ if there exists a matrix 0 such 
that: 

 
∆ ∆ 0                   11  

 
By separating uncertain part of inequality (11) and using 
lemma 4, the following inequality is obtained: 
 

0                12  
 
Using Schur complement for inequality (12), yields: 
 

0 0                                     13  

 
Since matrices  and  are multiplied in inequality (13), 
it is non convex. Therefore   and are partitiond as 
follow: 
     

,                                      14  
 
It is readily verified that  satisfies the identity 
 
Π Π  , Π = 0 , Π = 0                          15   
 
with pre-and post multiplying inequality 0 by Π   and 
Π  respectively, inequality (9) is obtained. Similarly, the last 
LMI condition (10) is derived from (13) by pre- and post 
multiplication by diag(Π  , , ) and diag(Π , , ) 
respectively. 

B. Robust ∞ Control via Output Feedback 
The following theorem proposes an LMI for designing 

output feedback controller satisfying ∞ performance. 
Theorem 2: For system (1), there exists an output 

feedback controller in the form of system (2) such that 
closed loop system (3) for every admissible uncertainties, 
satisfies ∞ performance with 0, if the following system 
of LMI's is feasible. 

Find , ,  , , ,  and 
scalar 0 such that: 

 
0                                                                           16  

 
and 
 

  
           0

0 0
                   
                  

 0
0          17  

 

where 
 

 ,  

                               18  

,     

 
where , , ,  are defined in (7). 
 

Proof: By considering (6) for closed loop system (3), 
following inequality is obtained: 

 
∆ ∆

0         19  

where  denotes the Hermitian transpose. 
By separating uncertain part of inequality (19) and using 

lemma 4, the following inequality is obtained: 
 

0 
(20) 

Using Schur complement for inequality (20), yields: 
 

      
     

         0
0 0

                  
                        

   0
0  21   

 
Since matrices  and  are multiplied in inequality (21), 
it is non convex. Therefore   and are partitioned the 
same as (14) and Π  and Π  are defined similar to (15). 
With pre-and post multiplying inequality 0 by Π   
and Π  respectively, inequality (16) is obtained. Similarly, 
the last LMI condition (17) is derived from (21) by pre- and 
post multiplication by diag(Π  , , , , ) and 
diag(Π , , , , ) respectively. 

Remark: Since  and  are multiplied in (17), this 
inequality is non convex, but according to that  is a scalar, 
this inequality can be easily solved by line search on . 
Suppose an arbitrary positive scalar, then if the problem 
was infeasible, change it with respect to this fact that the 
problem is feasible. 

 

C. Robust  Control via Output Feedback 
The following theorem proposes an LMI for designing 

output feedback controller satisfying   performance. 
Theorem 3: For system (1), there exists an output 

feedback controller in the form of system (2) such that 
closed loop system (3) for every admissible uncertainties, 
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satisfies  performance, if the following system of LMI's is 
feasible. 

Find , , matrices , ,  , 
scalar 0 and  such that: 

 

0

T

C

C

R I
I S

Z

ψ

ψ

⎡ ⎤
⎢ ⎥

>⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                            (22) 

  
           0
           
             

0
0                            (23) 

,   0 
 
where , , , ,  are defined in (18) and 

, , ,  are defined in (7). 
 

Proof: By considering (5) for closed loop system (3), 
following inequalities is obtained: 

 
∆ ∆ 0, 

 0 

                                                                          24  
 

By separating uncertain part of inequality (24) and using 
lemma 4, the following inequality is obtained: 

 
  0 

0,  

                                                                         25  
 
Using Schur complement for inequality (25), yields: 
 

           0
           
             

0
0                        26  

 

0,    

 
Since matrices  and  are multiplied in inequality (26), 
it is non convex. Therefore   and are partitiond the 
same as (14) and Π  and Π  are defined similar to (15). 

With pre-and post multiplying inequality 0 

by Π ,   and Π ,  respectively, inequality (22) is 
obtained. Similarly, LMI condition (23) is derived from 
(26) by pre- and post multiplication by diag(Π  , , , ) and 
diag(Π , , , ) respectively. 

IV. APPLICATION TO MAGNETIC BEARING 

A. Problem  Formulation 
A dynamical mathematical model for the AMB shown in 

Fig. 1, can be established as follows: 
 

  
             (27) 

where 
        Mass of the rotor (kg); 

         Position displacement of the rotor (m); 
        Nominal air gap (m); 

        Permeability of free space H/m; 
         Total pole-face area of each electromagnet (m ); 
         Number of turns on each electromagnet coil; 
,     Electromagnet coil currents (A); 
         An unknown disturbance (N); 
         Some known force acting on the rotor (N). 

 
When (1) is linearized at the equilibrium point, 

    , 0 
and augmented with the control structure shown in Fig. 2, 
the linearized model is obtained as the following second-
order system: 

                                       (28) 
where 

                                         (29) 
 

 
 
Fig. 2. Diagram of the control system. 
 

Due to inaccuracies in the measurement of some of the 
physical parameters and changing environmental 
conditions, the system parameters  and  are generally 
uncertain. However, without loss of generality, it can be 
assumed that their values lie within some known intervals: 

 
                

 
where, , , and  are known scalars satisfying: 
 

0         0 
 
In order to avoid the need for velocity feedback, while at 

the same time achieving satisfactory stability, this paper 
addresses the control of the system (28) using a output 
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feedback controller. Assuming that only the rotor 
displacement position is measured, and denoting: 

 
        

 
the system (28) can be converted into the following 
equivalent state-space form:[2] 
 

∆  ∆
                                                                                    

 

∆ 0 1
0   ,   

0
 ,  ∆ 0        

 
1 0                                                                        (30) 

 
where, , and  the parameters  and  satisfy 

0 and 0. By defining 
nominal values   ,  and scaled 
errors as Δ   , Δ , then they implies: 

Δ  with  and Δ  
with  by the class of uncertainties: 
 

∆ ∆ | 1 ∆ 1  
 

Note that the original parameters    , 
     has been transformed into the new parameters  

,   (−1, 1) by using a nominal values , and , 
 as weights. Therefore: 

 
0 1

0  , ∆ 0 0
∆ 0  ,  

0
 ,  0       

 

∆ 0
∆  , 1 0 ,  0 

 
and uncertain matrices are: 
 

0 0
0 , 0 0

0 ,  1 0
0 1 ,  1

0  

 
A general output feedback controller for the system (30) 

can be written in the following form: 
 

           
                               (31) 

 
where , ,  and  are four scalar controller 
coefficients, to be designed, and the term  is introduced 
to compensate for the effect of the force , the coefficient 
being given by [2]: 
 

1
 

B. Simulation Results 
The values of  and, and those of the interval 

boundaries,  and , 1,2, are given in Table 1.  
 

TABLE 1
Parameters  and   and lower 

and their upper bounds 
 

TABLE 2
Magnetic Parameters 

Parameter Value

 
 
 
 
 

359.6
‐10.35 
240 
390 
‐22 
‐4.5 

Parameter  value
m 
A 
N 
 
 

6kg
4 2.610  

40 
5 A 

.4mm 
 

 

  
Fig. 3. Closed-loop system response using robust stabilizer controller:  
=1.8, =6.5 (solid),  =0.1, =1 (dotted),  =0.4, =3 (dash). 

The nominal parameters for the bearings are given in 
Table 2. The close loop system response with respect to 
robust stabilizer controller is shown in Fig. 3. The close 
loop system response with respect to robust  controller 
is shown in Fig. 4 and its bode-magnitude diagram is 
shown in Fig. 5, Fig. 6 shows the ratio of regulated output 
energy to The disturbance energy of this system. The close 
loop system response with respect to robust  controller is 
shown in Fig. 7 and its bode-magnitude diagram is shown 
in Fig. 8. The obtained value of  from  controller 
without uncertainty is 0.016, and the obtained value of  
from  controller without uncertainty is 2.1538e-
006.Comparing Fig. 3, Fig. 4 and Fig. 7 shows that  
controller has a better robustness than the other controllers, 
but  controller has a better transient response. 
 

V. CONCLUSION 
In this paper, we addressed robust stability,  and  

performance via output feedback control for the class of 
uncertain linear systems. We presented the conditions of 
problem in terms of a number of linear matrix inequalities. 
Then these problems were applied to an active radial 
magnetic bearing system to support a high-speed energy 
storage flywheel. The effectiveness of the design was 
shown in simulation results. 
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Fig 4. Closed-loop system response using robust  controller:  =1.8, 

=6.5 (solid),  =0.1, =1 (dotted),  =0.4, =3(dash). 
 

 
Fig 5. Bode-magnitude diagram using robust  controller:  =1.8, 

=6.5 (solid),  =0.1, =1 (dotted),  =0.4, =3(dash). 

 
Fig  6. The ratio of regulated output energy to the disturbance energy of 
the system. 

  
Fig 7. Closed-loop system response using robust  controller:  =1.8, 

=6.5 (solid),  =0.1, =1 (dotted),  =0.4, =3(dash). 

 

 
Fig 8. Bode-magnitude diagram using robust  controller:  =1.8, 

=6.5 (solid),  =0.1, =1 (dotted),  =0.4, =3(dash). 

 
Fig 9. Closed-loop system response: Robust stabilizer (dotted),  
controller (dash),  controller (solid). 
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